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Abstract. In this paper we provide quantitative information about the
performance differences between the OpenMP and the MPI version of
a large-scale application benchmark suite, SPECseis. We have gathered
extensive performance data using hardware counters on a 4-processor
Sun Enterprise system. For the presentation of this information we use
a Speedup Component Model, which is able to precisely show the im-
pact of various overheads on the program speedup. We have found that
overall, the performance figures of both program versions match closely.
However, our analysis also shows interesting differences in individual
program phases and in overhead categories incurred. Our work gives ini-
tial answers to a largely unanswered research question: what are the
sources of inefficiencies of OpenMP programs relative to other program-
ming paradigms on large, realistic applications. Our results indicate that
the OpenMP and MPI models are basically performance-equivalent on
shared-memory architectures. However, we also found interesting differ-
ences in behavioral details, such as the number of instructions executed,
and the incurred memory latencies and processor stalls.

1 Introduction

1.1 Motivation

Programs that exhibit significant amounts of data parallelism can be written us-
ing explicit message-passing commands or shared-memory directives. The mes-
sage passing interface (MPI) is already a well-established standard. OpenMP
directives have emerged as a new standard for expressing shared-memory pro-
grams. When we choose one of these two methodologies, the following questions
arise:

– Which is the preferable programming model, shared-memory or message-
passing programming on shared-memory multiprocessor systems? Can we
replace message-passing programs with OpenMP without significant loss of
speedup?

?
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– Can both message-passing and shared-memory directives be used simultane-
ously? Can exploiting two levels of parallelism on a cluster of SMP’s provide
the best performance with large-scale applications?

To answer such questions we must be able to understand the sources of overheads
incurred by real applications programmed using the two models.

In this paper, we deal with the first question using a large-scale application
suite. We use a specific code suite representative of industrial seismic processing
applications. The code is part of the SPEC High-Performance Group’s (HPG)
benchmark suite, SPEChpc96 [1]. The benchmark is referred to as SPECseis, or
Seis for short. Parallelism in Seis is expressed at the outer-most level, i.e., at
the level of the main program. This is the case in both the OpenMP and the
MPI version. As a result, we can directly compare runtime performance statistics
between the two versions of Seis.

We used a four-processor shared-memory computer for our experiments. We
have used the machine’s hardware counters to collect detailed statistics. To dis-
cuss this information we use the Speedup Component Model, recently introduced
in [2] for shared memory programs. We have extended this model to account for
communication overhead which occurs in message passing programs.

1.2 Related Work

Early experiments with a message passing and a shared-memory version of Seis
were reported in [3]. Although the shared-memory version did not use OpenMP,
this work described the equivalence of the two programming models for this
application and machine class. The performance of two CFD applications was
analyzed in [4]. Several efforts have converted benchmarks to OpenMP form.
An example is the study of the NAS benchmarks [5, 6], which also compared
the MPI and OpenMP performances with that of SGI’s automatic parallelizing
compiler.

Our work complements these projects where it provides performance data
from the viewpoint of a large-scale application. In addition, we present a new
model for analyzing the sources of inefficiencies of parallel programs. Our model
allows us to identify specific overhead factors and their impact on the program’s
speedup in a quantitative manner.

2 Characteristics of SPECseis96

Seis includes 20,000 lines of Fortran and C code, and includes about 230 Fortran
subroutines and 120 C routines. The computational parts are written in For-
tran. The C routines perform file I/O, data partitioning, and message passing
operations. We use the 100 MB data set, corresponding to the small data set in
SPEC’s terminology.

The program processes a series of seismic signals that are emitted by a single
source which moves along a 2-D array on the earth’s surface. The signals are



reflected off of the earth’s interior structures and are received by an array of re-
ceptors. The signals take the form of a set of seismic traces, which are processed
by applying a sequence of data transformations. Table 1 gives an overview of
these data transformation steps. The seismic transformation steps are combined
into four separate seismic applications, referred to as four phases. They include
Phase 1: Data Generation, Phase 2: Stacking of Data, Phase 3: Frequency Do-
main Migration, and Phase 4: Finite-Difference Depth Migration. The seismic
application is described in more detail in [7].

Table 1. Seismic Process. A brief description of each seismic process which makes up
the four processing phases of Seis. Each phase performs all of its processing on every
seismic data trace in its input file and stores the transformed traces in an output file.
We removed the seismic process called RATE, which performs benchmark measurements
in the official SPEC benchmark version of Seis.

Process Description

Phase 1: Data Generation

VSBF Read velocity function and provide access routines.

GEOM Specify source/receiver coordinates.

DGEN Generate seismic data.

FANF Apply 2-D spatial filters to data via Fourier transforms.

DCON Apply predictive deconvolution.

NMOC Apply normal move-out corrections.

PFWR Parallel write to output files.

VRFY Compute average amplitude profile as a checksum.

Phase 2: Stacking of Data

PFRD Parallel read of input files.

DMOC Apply residual move-out corrections.

STAK Sum input traces into zero offset section.

PFWR Parallel write to output files.

VRFY Compute average amplitude profile as a checksum.

Phase 3: Fourier Domain Migration

PFRD Parallel read of input files.

M3FK 3-D Fourier domain migration.

PFWR Parallel write to output files.

VRFY Compute average amplitude profile as a checksum.

Phase 4: Finite-Difference Depth Migration

VSBF Data generation.

PFRD Parallel read of input files.

MG3D A 3-D, one-pass, finite-difference migration.

PFWR Parallel write to output files.

VRFY Compute average amplitude profile as a checksum.

The four phases transfer data through file I/O. In the current implementa-
tion, previous phases need to run to completion before the next phase can start,



except for Phases 3 and 4, which both migrate the stacked data, and therefore
only depend on data generated in Phase 2. The execution times of the four
phases on one processor of the Sun Ultra Enterprise 4000 system are:

Data Generation Data Stacking Time Migration Depth migration
Phase 1 Phase 2 Phase 3 Phase 4 Total

272s 62.2s 7.1s 1,201s 1,542s

More significant is the heterogeneous structure of the four phases. Phase 1
is highly parallel with synchronization required only at the start and finish.
Phases 2 and 4 communicate frequently throughout their execution. Phase 3
executes only three communications, independent of the size of the input data
set, and is relatively short.

Figure 1 shows the number of instructions executed in each application phase
and the breakdown into several categories using the SPIX tool [8]. The data was
gathered from a serial run of Seis. One fourth of the instructions executed in
Phase 4 are loads, contributing the main part of the memory system overhead,
which will be described in Figure 4. Note that a smaller percentage of the in-
structions executed in Phase 3 are floating-point operations, which perform the
core computational tasks of the application. Phase 3 exhibits startup overhead
simply because it executes so quickly with very few computation steps.
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Fig. 1. The Ratio of Dynamic Instructions at Run-Time, Categorized by Type. In-
structions executed for the four seismic phases from a serial run were recorded.

Figure 2 shows our overall speedup measurements of MPI and OpenMP ver-
sions with respect to the serial execution time. The parallel code variants execute
nearly the same on one processor as the original serial code, indicating that neg-
ligible overhead is induced by adding parallelism. On four processors, the MPI
code variant exhibits better speedups than the OpenMP variant. We will describe
reasons in Section 4.
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Fig. 2. Speedups of the MPI and OpenMP Versions of Seis. Graph (a) shows the
performance of each seismic phase as well as the total performance on one processor.
Graph (b) shows the speedups on four processors. Speedups are with respect to the
one-processor runs, measured on a Sun Enterprise 4000 system. Graph (a) shows that
the parallel code variants run at high efficiency. In fact, parallelizing the code improves
the one-processor execution of Phase-1 and Phase 4. Graph (b) shows that nearly ideal
speedup is obtained, except with Phase 3.

3 Experiment Methodology

3.1 Speedup Component Model

To quantify and summarize the effects that the different compiling and program-
ming schemes have on the code’s performance, we will use the speedup component
model, introduced in [2]. This model categorizes overhead factors into several
main components: memory stalls, processor stalls, code overhead, thread man-
agement, and communication overhead. Table 2 lists the categories and their
contributing factors. These model components are measured through hardware
counters (TICK register) and timers on the Sun Enterprise 4000 system [9].

The speedup component model represents the overhead categories so that
they fully account for the performance gap between measured and ideal speedup.
For the specific model formulas we refer the reader to [2]. We have introduced the
communication overhead category specifically for the present work to consider
the type of communication used in Seis. The parallel processes exchange data
at regular intervals in the form of all-to-all broadcasts. We define the communi-
cation overhead as the time that elapses from before the entire data exchange
(of all processors with all processors) until it completes. Both the MPI and the
OpenMP versions perform this data exchange in a similar manner. However the
MPI version uses send/receive operations, whereas the OpenMP version uses
explicit copy operations, as illustrated in Figure 3.
The MPI code uses blocking sends and receives, requiring processors to wait
for the send to complete before the receive in order to swap data with another
processor. The OpenMP code can take advantage of the shared-memory space



Table 2. Overhead Categories of the Speedup Component Model.

Overhead Contributing Description Measured
Category Factors with

Memory stalls IC miss Stall due to I-Cache miss. HW Cntr
Write stall The store buffer cannot hold ad-

ditional stores.
HW Cntr

Read stall An instruction in the execute
stage depends on an earlier load
that is not yet completed.

HW Cntr

RAW load stall A read needs to wait for a pre-
viously issued write to the same
address.

HW Cntr

Processor stalls Mispred. Stall Stall caused by branch mispre-
diction and recovery.

HW Cntr

Float Dep. stall An instruction needs to wait for
the result of a floating point
operation.

HW Cntr

Code overhead Parallelization Added code necessary for gener-
ating parallel code.

computed

Code generation More conservative compiler op-
timizations for parallel code.

computed

Thread management Fork&join Latencies due to creating and
terminating parallel sections.

timers

Load imbalance Wait time at join points due to
uneven workload distribution.

Communication Load imbalance Wait time at communication
points.

timers

overhead Copy operations Data movement between
processors.

Synchronization Overhead of synch. operations.

compute

communicate

FOR p=1 TO <all other processors>
   send(p,Work(...p...))

FOR p=1 TO <all other processors>
   receive(p,Work(...p...))

FOR p=1 TO <all other processors>
   COPY Work(...p...)         GlobalBuffer(...p...)

BARRIER

FOR p=1 TO <all other processors>
    COPY GlobalBuffer(...p...)        Work(...p...)

                  MPI
implementation

OpenMP
implementation

Fig. 3. Communication Scheme in Seis and its Implementation in MPI and OpenMP.



and have all processors copy their processed data into the shared-space, perform
a barrier, and then copy from the shared-space.

3.2 Measurement Environment

We used a Sun Ultra Enterprise 4000 system with six 248 MHz UltraSPARC
Version 9 processors, each with a 16 KB L1 data cache and 1 MB unified L2 cache
using a bus-based protocol. To compile the MPI and serial versions of the code
we use the Sun Workshop 5.0 compilers. The message-passing library we used
is the MPICH 1.2 implementation of MPI, configured for a Sun shared-memory
machine. The shared-memory version of Seis was compiled using the KAP/Pro
compilers (guidef77 and guidec) on top of the Sun Workshop 5.0 compilers.
The flags used to compile the three different versions of Seis were -fast -O5

-xtarget=ultra2 -xcache=16/32/1:1024/64/1.
We used the Sun Performance Monitor library package and would make 14

runs of the application, gathering hardware counts of memory stalls, instruction
counts, etc. Using these measurements we could describe the overheads seen in
the performance of the serial code and difference between observed and ideal
speedup for the parallel implementations of Seis. The standard deviation for all
these runs was negligible, except in one case mentioned in our analysis.

4 Performance Comparison between OpenMP and MPI

In this section we first inspect the overheads of the 1-processor executions of the
serial as well as the parallel program variants. Next, we present the performance
of the parallel program executions and discuss the change in overhead factors.

4.1 Overheads of the Single-Processor Executions

Figure 4 shows the breakdown of the total execution time into the measured
overheads. “OTHER” captures all processor cycles not spent in measured stalls.
This category includes all productive compute cycles such as instruction and data
cache hits, and instruction decoding and execution without stalls. It also includes
stalls due to I/O operations. However we have found this to be negligible. For
all four phases, the figure compares the execution overheads of the original serial
code with those of the parallel code running on only one processor. The difference
in overheads between the serial and single-processor parallel executions indicate
performance degradations due to the conversion of the original code to parallel
form. Indeed, in all but the Fourier Migration code (Phase 3) the parallel codes
incur more floating-point dependence stalls than the serial code. This change is
unexpected because the parallel versions use the same code generator that the
serial version uses, except that they link with the MPI libraries or transform
the OpenMP directives in the main program to subroutines with thread calls,
respectively.
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Fig. 4. Overheads for One-Processor Runs. The graphs show the overheads found in
the four phases of Seis for the serial run and the parallel runs on one processor. The
parallel versions of the code cause more of the latencies to be within the FP units than
the serial code does. Also, notice that the loads in the Finite-Difference Migration
(Phase 4) cause less stalls in the parallel versions than in the serial code. In general,
the latencies accrues by the two parallel version exhibit very similar characteristics.



Also from Figure 4, we can see that in Phases 1, 2, and 4 compiling with
the parallel environment reduces the “OTHER” category. It means that the in-
structions excluding all stalls execute faster in the 1-processor run of the parallel
code than in the serial code. This can be the result of higher quality code (more
optimizations applied, resulting in less instructions) or in an increased degree of
instruction-level parallelism. Again this is unexpected, because the same code
generator is used.

In Phase 4, the parallel code versions reduce the amount of load stalls for
both the one-processor and four-processor runs. The parallel codes change data
access patterns because of the implemented communication scheme. We assume
that this leads to slightly increased data locality.

The OpenMP and MPI programs executed on one processor perform simi-
larly, except for Phase 3. In Phase 3, the OpenMP version has a higher “OTHER”
category, indicating less efficient code generation of the parallel variant. How-
ever, Phase 3 is relatively short and we have measured up to a 5% performance
variance in repeated executions. Hence, the shown difference is not significant.

4.2 Analysis of the Parallel Program Performance

To discuss how the overheads change when the codes are executed in parallel we
use the Speedup Component Model, introduced in Section 3.1. The results are
given in Figure 5 for MPI and OpenMP on one and four processors in terms of
speedup with respect to the serial run. The upper bars (labeled “P=1”) present
the same information that is displayed in Figure 4. However, the categories are
now transformed so that their contributions to the speedup become clear. In the
upper graphs, the ideal speedup is 1. The effect that each category has on the
speedup is indicated by the components of the bars. A positive effect, indicated
by the bar components on top of the measured speedup, stands for a latency that
increases the execution time. The height of the bar quantifies the “lack of ideal
speedup” due to this component. A negative component represents an overhead
that decreases from the serial to the parallel version. Negative components can
lead to superlinear speedup behavior. The sum of all components always equals
the number of processors. For a one-processor run, the sum of all categories
equals one.

The lower graphs show the four-processor performance. The overheads in
Phase 1 remain similar to those of the one-processor run, which translates into
good parallel efficiency on our four-processor system. This is expected of Phase 1,
because it performs highly parallel operations but only communicates to fork
processes at the beginning and join them at the end of the phase. Phase 2 of
the OpenMP version shows a smaller improvement due to the code generation
overhead component, which explains why less speedup was measured than with
the MPI version. Again, this difference is despite the use of the same code gener-
ating compiler and it shows up consistently in repeated measurements. Phase 3
behaves quite differently in the two program variants. However this difference is
not significant, as mentioned earlier.
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Fig. 5. Speedups Compared Model for the Versions of Seis. The upper graph displays
the speedups with respect to the serial version of the code and executed on only one
processor. The lower graph shows the speedups obtained when executing on four pro-
cessors. An overhead component represents the amount that the measured speedup
would increase (decrease for negative components) if this overhead were eliminated
and all other components remained unchanged.



Figure 5 shows several differences between the OpenMP and the MPI imple-
mentation of Seis. In Phase 4 we can see the number of memory system stalls is
less in the OpenMP version than in the MPI version. This shows up in the form
of a negative memory system overhead component in the OpenMP versions. In-
terestingly, the MPI versions has the same measured speedup, as it has a larger
negative code generation overhead component. Furthermore, the processor sys-
tem stalls decrease in the 4-processor execution, however this gain is offset with
an increase in communication overheads. These overheads are consistent with
the fact that Phase 4 performs the most communication out of all the phases.

Overall, the parallel performance of the OpenMP and the MPI versions of
Seis are very similar. In the most time-consuming code, Phase 4, the performance
is the same. The second-most significant code, Phase 2, shows better performance
with MPI than with OpenMP. However, our analysis indicates that the reason
can be found in the compiler’s code generation and not in the programming
model. The communication overheads of both models are very small in Phases 1,
2, and 3. Only Phase 4 has a significant communication component and it is
identical for the MPI and OpenMP variants of the application.

5 Conclusions

We have compared the performance of an OpenMP and an MPI version of a
large-scale seismic processing application suite. We have analyzed the behav-
ior in detail using hardware counters, which we have presented in the form of
the speedup component model. This model quantifies the impact of the various
overheads on the programs’ speedups.

We have found that the overall performance of the MPI and OpenMP variants
of the application is very similar. The two application variants exploit the same
level of parallelism, which is expressed equally well in both programming models.
Specifically, we have found that no performance difference is attributable to
differences in the way the two models exchange data between processors.

However, there are also interesting differences in individual code sections.
We found that the OpenMP version incurs more code overhead (e.g., the code
executes more instructions) than the MPI version, which becomes more pro-
nounced as the number of processors is increased. We also found situations where
the OpenMP version incurred less memory stalls. However, we do not attribute
these differences to intrinsic properties of any particular programming model.

While our studies basically show equivalence of the OpenMP and MPI pro-
gramming models, the differences in overheads of individual code sections may
point to potential improvements of compiler and architecture techniques. Inves-
tigating this potential is the objective of our ongoing work.
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