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Abstract. Dynamic program optimization is the only recourse for op-
timizing compilers when machine and program parameters necessary for
applying an optimization technique are unknown until runtime. With the
movement toward portable parallel programs, facilitated by language
standards such as OpenMP, many of the optimizations developed for
high-performance machines can no longer be applied prior to runtime
without potential performance degradation. As an alternative, we pro-
pose dynamically adaptive programs, programs that adapt themselves
to their runtime environment. We discuss the key issues in successfully
applying this approach and show examples of its application. Experi-
mental results are given for dynamically adaptive programs that seek to
eliminate redundant runtime data dependence tests, to select the opti-
mal tile size for tiled loops and to serialize loops that do not profit from
parallelism.

1 Introduction

Many of today’s well-known program optimization techniques are applied prior
to runtime, and assume that detailed knowledge of the target machine and the
program is available. Unfortunately, this information may be unknown until
program execution. If the information a technique requires is not yet available,
then the optimization is either not applied, or is applied using possibly incor-
rect assumptions about the architecture and application. Such assumptions can
significantly limit the performance improvement, or even cause degradation.

In the context of parallel programs, the availability of portable parallel lan-
guages, such as the OpenMP API, exacerbates this problem. Portability is at-
tractive for many reasons, such as ease of distribution, and use with new comput-
ing paradigms such as network computing [KF98,LLM88] and metacomputing
[FK97]. However, portability requires that we do not use advanced knowledge of
the target configuration. This loss of information means that much of the hand-
tuning done on high-performance codes cannot be done in portable programs.

Since performance is a key issue in these programs, we cannot simply dis-
card optimizations if they cannot be statically performed. We propose, as an
alternative, dynamically adaptive programs. These programs perform optimiza-
tions dynamically as their usefulness and correctness can be evaluated. In this
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paper we discuss such a scheme and highlight key performance issues. We also
demonstrate its scope by applying it to three diverse example problems.

In our case studies, we first apply dynamic optimization to reduce redundant
runtime data dependence testing and see that the adaptive code can outperform
the original sequential code by 60%. Our scheme, which re-evaluates a loop’s
classification as serial or parallel only when necessary, executes 38% faster than
a program which always performs a dependence test and is only 5% slower than
a program which executes the loop with advanced knowledge of its data inde-
pendence. Next, we apply the dynamically adaptive programming approach to
tiling, and show that a matrix multiplication kernel, that automatically selects
the best tile size, improves by as much as 75% over an untiled version. This
dynamic scheme is within 5% of the best possible statically optimized program
using advanced knowledge of the best tile size. Finally, we show that dynamically
adaptive programs, automatically generated by the Polaris parallelizing compiler
[BDE+96,BEF+96], can detect loops that cannot amortize the overheads associ-
ated with their parallel execution, and can serialize these, leading to reductions
in parallel execution time as large as 85% on 16 processors of an Origin 2000.
On average, programs with loops serialized based on profiling showed no larger
improvement.

2 An Overview of Dynamically Adaptive Programs

Dynamically adaptive programs seek to apply optimizations that cannot have
their usefulness or correctness evaluated prior to program execution. At run-
time, these programs modify their behavior as these techniques can be applied
and evaluated. The optimizations are then re-evaluated when the parameters
effecting their usefulness or correctness change.

We have found that dynamically adaptive programs can often be written
using one of three schemes. Figure 1 shows the state transition diagrams for the
binary selection, k-ary selection and iterative modification approaches. In binary
selection, an optimization is turned on or off for a given code section. This is
done by simply verifying the correctness or usefulness of the optimization at
runtime. The optimized code will be used if it is shown to be correct or have a
better performance than the unoptimized code. This choice is then re-evaluated
when the environmental parameters effecting its correctness/usefulness change.
In this paper, our approaches to dynamic data dependence testing and dynamic
serialization use the binary selection scheme. In both cases, it is determined
whether a loop should be executed in parallel or sequentially, turning parallelism
on or off. Our approach to tiling uses k-ary selection. We try several different
tile sizes and select the one that yields the shortest execution time. Tiling could
as well use iterative modification, and we discuss the reason for choosing k-ary
selection in Section 4.
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Fig. 1. Three schemes for dynamically adaptive programs.

3 Case Study 1: Runtime Dependence Tests

Runtime data dependence tests can be used when traditional compile-time
dependence tests cannot determine if it is safe to execute a loop in parallel
[SMC91,RP94,RP95]. A common case in which traditional tests fail is when an
array is accessed with a subscripted subscript. This would be the case when an
access is of the form A(B(i)), where i is the loop index and B is the subscript
array. Since the compiler cannot determine the values held in the B array, a
cross-iteration data dependence is conservatively assumed. In a runtime test,
such a loop is speculatively run in parallel, and all accesses to the A array are
tracked. After the loop completes, it is determined from the gathered informa-
tion whether any cross-iteration dependencies exist. If there are dependencies,
the loop is re-executed sequentially. To ensure correctness, all variables that may
be modified must be copied prior to the speculative execution of the parallel loop
and restored if the loop is found not to be parallel.

The obvious downside of such a runtime test is the overhead it introduces
into the program. All of the variables that may be modified must be copied prior
to loop execution, variables which may have dependencies must be tracked as
the loop executes, and the gathered information must be evaluated when the
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loop completes. If the loop is found to have cross-iteration dependencies, the
overheads are compounded by the need to then restore all modified variables
and to re-execute the loop sequentially. Fortunately, the subscript array may
remain constant throughout the program or may only change infrequently. This
phenomenon is called schedule reuse [Law96] and may be exploited to minimize
the incurred overheads. The dependence test need only be applied when the
values in the subscript array are modified, otherwise the previously determined
classification, parallel or not parallel, is still valid.

An example of a loop that cannot be statically parallelized by Polaris is
the MXMULT do10 loop in the Perfect Benchmark DYFESM. The loop is not
parallelized due the array MX being accessed with a subscripted subscript. The
loop, however, can be executed correctly in parallel. Thus, if a runtime test is
applied to this loop, it would show the loop to be parallel. It can also be noted
that the subscript array, responsible for the access pattern, remains constant
throughout the program execution. Thus, it would suffice to perform a runtime
test on this loop once, verifying that it could be run in parallel, and then to
simply execute it in parallel thereafter.

Runtime data dependence testing fits well into our dynamically adaptive
scheme. The optimization to be performed is loop parallelization. The executing
program must decide if this optimization is beneficial for a given loop (i.e. the
loop is in fact parallel). This is done using binary selection, classifying the loop as
parallel or not parallel with a runtime data dependence test. The classification
is then re-evaluated when the conditions determining its applicability change
(whenever the subscript array is modified.)

In our experiment, we hand modified DYFESM to incorporate this scheme.
After the test loop is executed, a TEST flag is set to FALSE. At each point
in the program where the subscript array is modified, this TEST flag is set to
TRUE. The next time the MXMULT do10 loop is executed, the classification
of the loop as parallel or serial is still valid if TEST is still FALSE. If TEST is
TRUE the dependence test must again be performed.

We executed the hand modified version of DYFESM on 4 processors of an Ul-
traSPARC Enterprise. We also ran a version that always performed the runtime
test, and one that ran MXMULT do10 in parallel without testing it. For all ver-
sions we expressed the parallelism using the OpenMP API. Figure 2 shows that
none of the versions of the loop approach a linear speedup of 4. The overhead is
due to a critical section that must enclose the reduction statements in the par-
allel versions (reductions are statements of the form A = A + . . . ). Performing
the runtime test improves over the sequential version by 16%. When a dynamic
approach is used, and retesting is only done when necessary, an improvement
of 60% is seen. The fixed parallel version, having advanced knowledge of the
loop’s data independence, shows only a slight improvement over the dynami-
cally adaptive version. Therefore, the dynamically adaptive program is able to
perform within 5% of the optimal statically optimized program.
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Fig. 2. The speedup, on 4 processors of an UltraSPARC Enterprise, of several versions
of the MXMULT do10 loop from DYFESM. The Always Test version refers to the
program with the runtime data dependence test applied in each execution of the loop.
The Dynamic version retests the loop only when the subscript array is modified. The
Fixed Parallel version refers to a parallel version with no testing performed. It assumes
that the loop is always parallel.

4 Case Study 2: Tiling

An optimization commonly used to enhance temporal locality in parallel loop
nests is tiling. A loop is tiled by partitioning the iteration space into regions of
a chosen size and shape known as tiles. All iterations within a tile are executed
before a processor begins executing a new tile. If there is temporal reuse within
a tile, the reused locations can remain resident in the processor cache between
accesses. The original iteration order might have evicted the data item from the
cache because of a large number of other accesses before the reuse.

A common example used to demonstrate the applicability of tiling is matrix
multiplication. Figure 3 shows a matrix multiplication before and after tiling.
In Figure 3.a, one can note that each element of B is reused in each iteration of
the I loop. If the cache is large enough to hold the entire B array, then after the
first iteration of the I loop, there will be no more cache misses on accesses to B.
However, if the cache is not large enough, then the entire B array will need to
be reloaded into the cache in each iteration of the I loop. In Figure 3.b, a tiled
version of the matrix multiplication is shown. Now smaller tiles of the B array
are operated on within each iteration of the I loop. By choosing a small enough
tile size, one can ensure the portion of B used will remain in the cache between
iterations of the I loop. If the tile size is too small, unnecessary overheads are
introduced by the added iterations of the outer loops.

The difficulty arises in choosing the tile size. This decision requires that the
size of the A, B and C matrices be known, and that the size of the cache is known
as well. If one writes a program that is portable among different machines, the
size of the cache cannot be assumed. The size of the arrays may also not be
statically determinable. Thus a dynamic scheme must be used to determine the
proper tile size.
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DO I = 1,N,1
DO K = 1,N,1
DO J = 1,N,1
C(J,I) = A(K,I)*B(J,K) + C(J,I)

ENDDO
ENDDO

ENDDO

(a) Untiled

DO KK = 1,N,BLK
DO JJ = 1,N,BLK
DO I = 1,N,1
DO K = KK,min(kk+BLK-1,N),1
DO J = JJ,min(jj+BLK-1,N),1
C(J,I) = A(K,I)*B(J,K) + C(J,I)

ENDDO
ENDDO

ENDDO
ENDDO

ENDDO

(b) Tiled

Fig. 3. Matrix multiplication: (a) original and (b) tiled into BLKxBLK sized tiles.

To demonstrate the applicability of adaptive programs to this problem, we
hand modified a matrix multiplication kernel to automatically select a tile size
using k-ary selection. The kernel performs 100 matrix multiplications on two
512× 512 matrices. Each element in the matrices is a 4-byte real number. Our
approach is to try several possible tile sizes and to choose the one that yields
the minimum execution time. The first time that the multiplication is run, it is
executed without tiling, and this time is recorded. After this, each execution of
the multiplication is performed using a tile size of

N

2i
×
N

2i
(1)

where i is the number of times the nest has already been executed.
Therefore, tile sizes of 256 × 256, 128 × 128, 64 × 64, . . . are tried. This

continues until a tile size of 16×16 is reached (it is assumed that smaller tile sizes
would be inefficient on most machines). At each step, the tile size yielding the
minimum time is recorded. After all tile sizes have been tried, the one producing
the minimum time is used for each subsequent multiplication.

Iterative modification could also be used to select the tile size. This approach
would begin with the untiled loop and, as with our k-ary selection approach, run
with smaller tile sizes on each subsequent execution of the loop. The iterative
modification scheme would, however, stop as soon as a configuration yielded a
larger execution time than the previously used configuration. At this point, it
could be assumed that the overhead associated with the smaller tile size had
begun to offset its benefit. Unfortunately, this approach could lead to the selec-
tion of a local minimum and so we chose to use the less efficient k-ary selection
technique.

We ran our hand modified kernel on both an UltraSPARC Enterprise with
direct mapped 1 MByte external data caches and direct mapped 16 Kbyte inter-
nal data caches, and a SPARCstation 20 with direct mapped 256 Kbyte external
caches and no internal data caches. On both machines we ran on 4 processors. We
then ran the same kernel with the tile size fixed for various sizes, and also with
the multiplication in its original untiled form. Figure 4 shows that the dynamic
scheme shows performance close to the best fixed tile size on both machines. On
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both machines, the dynamic scheme chose the correct tile size and was able to
perform within 5% of the best statically optimized program.

Fig. 4. The speedup of a 100 Matrix Multiplications.

5 Case Study 3: Dynamic Serialization

Even well-structured parallel applications, executed on current shared-memory
machines, may run slower than their serial counterparts. These programs slow
down if they contain parallel regions that cannot amortize the overheads as-
sociated with their parallel execution. It is therefore important to recognize
situations in which the parallel execution of a code section would perform less
than its original serial version, and to “undo” the parallelization. The overheads
responsible for this poor performance include factors such as fork/join costs,
communication overheads, and added memory latency for accessing remote data.
All of these quantities are target-specific. In addition, the work performed by a
program region depends on the input and may vary as the program runs. Thus,
the impact of parallel overheads are a function of the program, the program
input and the machine configuration. In a portable program, these parameters
are only known at runtime. Hence, deciding whether a parallel code region will
be profitable can benefit from a dynamically adaptive runtime scheme.

We added a pass to the Polaris parallelizing compiler to automatically gener-
ate programs that include a dynamic scheme for serialization [VE99]. Each loop
is classified dynamically as serial or parallel using the state transition diagram
shown in Figure 5. This scheme is a binary selection like our data dependence
test. The Warmup and Test states in Figure 5 can be collapsed into the VER-
IFY state in Figure 1, and the Serial and Parallel states refer to the RUN state.
Initially, each loop is classified as Parallel and starts in the Warmup state. Each
loop is allowed to execute all of its iterations once in parallel before any timing
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is done. This is done so that the timing of the loop is not influenced by cold
misses in the cache.

WarmUp Sate:

Run WarmUp
Parallel Loop

  Test State:

Run and Time
Parallel Loop

/ STATE = TEST
Start State

/ LOOP = PARALLEL

TEST PASSES /
Update ITERATIONS
STATE = PARALLEL
LOOP = PARALLEL

TEST FAILS /
Update ITERATIONS
STATE = SERIAL
LOOP = SERIAL

   Serial State:

Run Serial Loop

   Parallel State:

Run Parallel Loop

# iterations > ITERATIONS /
STATE = WARMUP
LOOP = PARALLEL

# itertaions < ITERATIONS  /
STATE = WARMUP
LOOP = PARALLEL

Fig. 5. The state transition diagram for dynamic serialization.

The test used to classify a loop as serial or parallel is based upon a sequential
profile of the program on a base machine. The average per-iteration time of each
loop is recorded on the base machine and is fed into the Polaris compiler when
the adaptive program is generated. At runtime, a small kernel, embedded in the
program, is run and timed to determine a scaling factor that is used to scale the
profiled timings to the target machine. The test is to compare the per-iteration
scaled sequential time to the measured parallel time. If the parallel time is longer,
the loop is classified as Serial.

The model in Figure 5 is used as a basis for a proof of concept. There are
many optimizations that can be done to improve the model. For example, the
decision to re-test could be refined to reduce unnecessary testing: a loop that
executes very quickly, and is therefore serialized, may not need to be re-tested
if its iteration count increases by only little. One may note that loops that
execute only once may not be correctly classified. However, loops that slow
down are usually small, and these loops would only become important if they
were executed frequently.

To evaluate this technique for dynamic serialization, we first generated par-
allel versions of six benchmark programs from the Perfect and SPEC95 bench-
marks suites: ARC2D, FLO52, MDG, HYDRO2D, SWIM and TOMCATV.
These programs were generated by Polaris with the parallelism expressed us-
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ing OpenMP. We then timed these original versions on 1 and 16 processors of an
Origin 2000. We used the loop timings collected during these runs to generate
a version of each program in which loops that executed more quickly on 1 pro-
cessor were serialized. We view this profile-based program as the best possible
statically optimized program using serialization to avoid overheads.

Next, we generated versions of each program using the dynamically adaptive
scheme outlined in the previous section. The base timings used in the dynamic
scheme were collected on a SPARCstation 20. This dynamic scheme, like the
profile-based approach, uses a profile, but the profile is scaled and thus allows
the program to be run on any machine, not just the machine on which the
profiling was done.

We ran the various versions of each program on 16 processors of an Origin
2000. Figure 6 shows that the dynamic scheme was able to improve the perfor-
mance in 4 of the 6 programs. The normalized execution times of the adaptive
programs improved by as much as 85%, and on average 15%. The profile-based
scheme likewise improved performance in 4 programs, and was able to improve
performance by as much as 89%, and on average 15%.

Fig. 6. The normalized execution time measured for several benchmark programs.

The noticeably poor performance of ARC2D must be explained. The ARC2D
benchmark shows a large degradation in both the adaptive program and the
profile-based program. This is due to the fact that in the profiles, there are loops
which execute more quickly in the sequential version, however, serializing them
in the parallel version causes degradation elsewhere in the application. This can
be attributed to cache effects induced by the serialization. For example, if there
are two consecutive parallel loops that access the same regions of an array, the
first loop loads the data into the cache and thus the second loop sees no misses
to this array. If the first loop were serialized, both loops would incur misses.
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Again the dynamically adaptive programs outperform the original unopti-
mized programs in most cases. In addition, on average the optimal profile-based
programs show no better performance than the dynamic scheme.

6 Related Work

Several techniques have been proposed to adapt a program dynamically to its in-
put and/or runtime environment. In [BDH+87], Byler et al. develop multiversion
loops for loop parallelization, in which a parallel and serial version are selected
from at runtime. We use multiversion loops in our dynamic serialization scheme.
In [GB95], Gupta and Bodik develop a framework for the runtime application
of loop fission, loop fusion, loop alignment and loop reversal. Gupta and Bodik
focus on modifying parameters to alter the execution of code sections and do
not generate multiversions of code. We use a similar technique when we perform
tiling dynamically. Such an approach is useful when generating multiversions is
infeasible or impractical.

Several techniques have been developed which apply dynamic optimization
to specific optimization problems. Saavedra and Park dynamically determine the
amount of software prefetching and distance of the prefetch instructions to im-
prove the performance of parallel programs on networks of workstations [SP96].
Hall and Martonosi propose a system that dynamically adjusts the number
of processors used by compiler-parallelized programs to improve throughput
[HM97]. In [DR97], Diniz and Rinard use dynamic feedback to automatically
select the best synchronization policy for parallel object-based programs. Diniz
and Rinard briefly outline the idea of dynamic feedback as a generic approach
to optimization. They use alternating sampling and production phases of user
defined lengths. In contrast, our approach re-evaluates configurations automat-
ically as the environmental factors effecting previous decisions change.

In parallel programming, the technique most often thought of when dis-
cussing runtime techniques, however, is runtime data dependence testing. In
[SMC91,RP94,RP95], runtime tests are performed to uncover parallelism un-
detectable at compile-time. The authors discuss schedule reuse, a phenomenon
which can be exploited to reduce the number of times a test need be applied.
We apply these techniques in our runtime data dependence example, and show
that they fit well into our dynamic optimization framework.

The schemes discussed above are all forms of dynamic optimization. Our goal,
however, is not to only solve a particular problem, as these schemes did, but to
develop a generic scheme for dynamic optimization and to show its applicability
to a wide range of problems. Thus, we aim at combining and integrating the many
techniques discussed in the literature cited above, as well as new techniques, into
one generic framework.
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7 Conclusion

We have shown dynamically adaptive programs to be an effective means of apply-
ing optimizations when the information required to determine their usefulness,
or correctness, is unavailable until runtime. We have discussed the key features of
such programs and issues that must be addressed for efficient implementations.
We described the binary selection, k-ary selection and iterative modification ap-
proaches.

We demonstrated that using a dynamic approach to remove redundant run-
time data dependence tests can yield a decrease in execution time of 38% com-
pared to always performing the tests. This was within 5% of the performance of
a program with the tested loop explicitly parallelized. In a second experiment,
the tile size was automatically selected in a matrix multiplication kernel. The
resulting code showed improvements as large as 75% over the untiled code, and
was within 5% of the best statically tiled version. Third, we presented a dynamic
serialization scheme as automatically applied by the Polaris compiler. It showed
decreases in parallel execution time as large as 85%. On average, a profile-based
approach showed no larger gain.

Dynamically adaptive programs is a new paradigm that promises to over-
come one of the most severe limitations of optimizing compilers: their depen-
dence on the availability of compile-time information. Our general framework
will make it possible to defer optimization decisions until runtime, inspect the
state of the program and the machine environment, use timers and hardware
monitors to evaluate optimizations, and use multi-version code, parameterized
code, or dynamic recompilation for runtime tuning. This may not only yield truly
performance-portable programs but also lead to a new generation of optimizing
compilers.
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