
A Performance Advisor Tool for Novice Programmers

in Parallel Computing∗

Seon Wook Kim Insung Park Rudolf Eigenmann
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907-1285

Abstract

Optimizing a parallel program is often difficult. For novice programmers, who lack the
knowledge and intuition of advanced parallel programmers, it can be a very strenuous task.
We have developed a framework that addresses this problem by automating the analysis of
static program information and performance data, and offering active suggestions to novice
programmers. Our tool enables experts to transfer programming experience to new users.
It complement today’s parallelizing compilers in that it helps to tune the performance of a
compiler-optimized parallel program. To show its applicability, we present two case studies
that utilize this system. By simply following the suggestions of our system, we were able to
reduce the execution time of benchmark programs by as much as 39%.

1 Introduction

Parallelization, performance data analysis and program tuning are very difficult tasks for novice
parallel programmers. Tools such as parallelizing compilers and visualization systems help
facilitate this process. Today’s state-of-the-art parallelization and visualization tools provide
efficient automatic utilities and ample choices for viewing and monitoring the behavior of parallel
applications.

Nevertheless, tasks such as identifying performance problems and finding the right solutions
have remained cumbersome to many programmers. Meaningful interpretation of a large amount
of performance data is challenging and takes significant time and effort. Once performance
bottlenecks are found through analysis, programmers need to study code regions and devise
remedies to address the problem. Programmers generally rely on their knowhow and intuition
to accomplish these tasks. Experienced programmers have developed a sense of “what to look
for” in the given data in the presence of performance problems. Tuning programs requires
dealing with numerous individual instances of code segments. Categorizing these variants and
finding the right remedies also demand sufficient experience from programmers. For novice
programmers there are few choices other than empirically acquiring knowledge through trials
and errors. Even learning parallel programming skills from experienced peers takes time and
effort. No tools exists that help transfer knowledge from experienced to novice programmers.

∗This work was supported in part by NSF grants #9703180-CCR, #9872516-EIA, and #9975275-EIA. This
work is not necessarily representative of the positions or policies of the U. S. Government.

1



We believe that tools can be of considerable use in addressing these problems. We have
developed a framework for an automatic performance advisor called Merlin that allows per-
formance evaluation experience to be shared with others. It analyzes program and performance
characterization data and presents users with interpretations and suggestions for performance
improvement. Merlin is based on a database utility and an expression evaluator implemented
previously [1]. With Merlin, experienced programmers can guide novice programmers in han-
dling individual analysis and tuning scenarios. The behavior of Merlin is controlled by a
knowledge-based database called a performance map. Using this framework, we have imple-
mented several performance maps reflecting our experiences with parallel programs.

The contribution of this paper is to provide a mechanism and a tool that can assist novice
programmers in parallel program performance tuning. Related work is presented in Section 2.
Section 3 describes Merlin in detail. In Section 4 and 5, we present two case studies that
utilize the tool. First, we apply this system to the analysis of data gathered from hardware
counters. Next, we present an application of Merlin for the automatic analysis of timing and
static program analysis data. Section 6 concludes the paper.

2 Related Work

Tools provide support for many steps in a parallelization and performance tuning scenario.
Among the supporting tools are those that perform automatic parallelization, performance
visualization, instrumentation, and debugging. Many of the current tools are summarized
in [2, 3]. Performance visualization has been the subject of many previous efforts [4, 5, 6, 7, 8, 9],
providing a wide variety of perspectives on many aspects of the program behavior. The natural
next step in supporting the performance evaluation process is to automatically analyze the
data and actively advise programmers. However, providing such support has been attempted
by only few researchers.

The terms “performance guidance” or “performance advisor” are used in many different
contexts. Here we use them to refer to taking a more active role in helping programmers
overcome the obstacles in optimizing programs through an automated guidance system. In this
section, we discuss several tools that support this functionality.

The SUIF Explorer’s Parallelization Guru bases its analysis on two metrics: parallelism
coverage and parallelism granularity [10]. These metrics are computed and updated when
programmers make changes to a program and run it. It sorts profile data in a decreasing order
to bring programmers’ attention to most time-consuming sections of the program. It is also
capable of analyzing data dependence information and highlighting the sections that need to
be examined by the programmers.

The Paradyn Performance Consultant [6] discovers performance problems by searching
through the space defined by its own search model (named W 3 space). The search process
is fully automatic, but manual refinements to direct the search are possible as well. The result
is presented to the users through a graphical display.

PPA [11] proposes a different approach in tuning message passing programs. Unlike the
Parallelization Guru and the Performance Consultant, which base their analysis on runtime
data and traces, PPA analyzes program source and uses a deductive framework to derive the
algorithm concept from the program structure. Compared to other programming tools, the

2



suggestions provided by PPA are more detailed and assertive. The solution, for example, may
provide an alternative algorithm for the code section under inspection.

The Parallelization Guru and the Performance Consultant basically tell the user where the
problem is, whereas the expert system in PPA takes the role of a programming tool a step further
toward an active guidance system. However, the knowledge base for PPA’s expert system
relies on an understanding of the underlying algorithm based on pattern matching. Having an
algorithm-based expert system applicable to general parallel algorithms is impractical.

Our approach is different from the others, in that it is based on a flexible system controlled
by a performance map, which any expert programmer can write. An experienced user states
relationships between common performance problems, characterization data signatures that
may indicate sources of the problem, and possible solutions related to these signatures. The
performance map may contain complex calculations and evaluations and therefore can act
flexibly as either or both of a performance advisor and an analyzer. In order to select appropriate
data items and reason about them, a pattern matching module and an expression evaluation
utility are provided by the system. Experienced programmers can use this system to help novice
programmers in many different aspects in parallel programming, allowing an efficient transfer
of knowledge to inexperienced programmers. For example, if a novice programmer encounters a
loop that does not perform well, the user may activate a performance advisor to see the expert’s
suggestions on such phenomenon. Our system does not stop at pointing to problematic code
segments. It presents users with possible causes and solutions to the best of its knowledge.

3 Merlin: Performance Advisor

Merlin is a graphical user interface utility that allows users to perform automated analysis of
program characterization and performance data. This data can include dynamic information
such as loop timing statistics and hardware performance statistics, as well as compiler-generated
data such as control flow graphs and listings of statically applied techniques. It can be invoked
from the Ursa Minor performance evaluation tool [1]. The activation of Merlin is as simple
as clicking a mouse on a problematic program section from this tool.

Through compilation, simulation, and execution, a user gathers various types of data re-
garding a number of different code blocks within a target program. Upon activation, Merlin

performs various analysis techniques on the data at hand and presents its conclusions to the
user. Figure 1 shows an instance of the Merlin interface. It consists of an analysis text area,
an advice text area, and buttons. The analysis text area displays the diagnostics Merlin has
performed on the selected program unit. The advice text area provides Merlin’s solution to
the detected problems with examples, if any. Diagnosis and the corresponding advice are paired
by a number (such as Analysis 1-2, Solution 1-2).

Merlin navigates through a database that contains knowledge on diagnosis and solutions
for cases where certain performance goals are not achieved. Experienced programmers write
performance maps based on their knowledge, and novice programmers can view their suggestions
by activating Merlin. Figure 2 shows the structure of a typical map used by this framework.
It consists of three “domains.” The elements in the Problem Domain corresponds to general
performance problems from the viewpoint of programmers. They can represent a poor speedup,
a large number of stalls, etc., depending upon the performance data types targeted by the per-
formance map writer. The Diagnostics Domain depicts possible causes of these problems, such

3



Figure 1: The user interface of Merlin in use. Merlin provides the solutions to the detected
problems. This example shows the problems addressed in loop ACTFOR DO500 of program BDNA. The
button labeled Ask Merlin activates the analysis. The View Source button opens the source viewer
for the selected code section. The ReadMe for Map button pulls up the ReadMe text provided by the
performance map writer.

4



as floating point dependencies, data cache overflows, etc. Finally, the Solution Domain contains
possible remedies. These elements are linked by Conditions. Conditions are logical expressions
representing an analysis of the data. If a condition evaluates to true, the corresponding link is
taken, and the element in the next domain pointed to by the link is explored. Merlin invokes
an expression evaluator for the evaluation of these expressions. When it reaches the Solutions
domain, the suggestions given by the map writer are displayed and Merlin moves on to the
next element in the Problem domain.

.

.

.

.

.

.

.

.

.

Problem
Domain

Diagnostics
Domain

Solution
Domain

condition 1

condition 2

problem 1

problem 2

problem 3

diagnostics 1

diagnostics 2

diagnostics 3

solution 1

solution 2

solution 3

Figure 2: The internal structure of a typical Merlin performance map. The Problem Domain

corresponds to general performance problems. The Diagnostics Domain depicts possible causes of the

problems, and the Solution Domain contains suggested remedies. Conditions are logical expressions

representing an analysis of the data.

For example, in the default map of the Ursa Minor tool, one element in the Problem
domain is entitled “poor speedup.” The condition for this element is “the loop is parallel
and the parallel efficiency is less than 0.7.” The link for this condition leads to an element
in the Diagnostics Domain labeled “poor speedup symptoms” with conditions that evaluate
the parallelization and spreading overheads. When these values are too high, the corresponding
links from these conditions points to suggestions for program tuning steps, such as serialization,
fusion, interchange, and padding. The data items needed to compute this expression are fetched
from Ursa Minor’s internal database using the pattern matching utility. If needed data are
missing, (e.g., because the user has not yet generated hardware counter profiles,) Merlin

displays a message and continues with the next element. The performance map is written in
Ursa Minor’s generic input text format [1]. It is structured text of data descriptions that
can be easily edited, so map writers can use any text editor. Merlin reads this file and stores
it internally. When a user chooses a loop for automatic analysis, Merlin begins tracing the
conditions in the Problem domain.

Merlin differs from conventional spreadsheet macros in that it is capable of comprehend-
ing static analysis data generated by a parallelizing compiler. Merlin can take into account
numeric performance data as well as program characterization data, such as parallel loops de-
tected by the compiler, the existence of I/O statements, or the presence of function calls within
a code block. This allows a comprehensive analysis based on both performance and static data
available for the code section under consideration.

5



A Merlin map enables efficient cause-effect analyses of performance and static data. It
fetches the data specified by the map from the Ursa Minor tool, performs the listed operations
and follows the links if the conditions are true. There are no restrictions on the number of
elements and conditions within each domain, and each link is followed independently. Hence,
multiple perspectives can be easily incorporated into one map. For instance, stalls may be
caused by poor locality, but it could also mean a floating point dependence in the pipeline
CPU. In this way, Merlin considers all possible causes for performance problems separately
and presents an inclusive set of solutions to its users. At the same time, the remedies suggested
by Merlin assist users in “learning by example.” Merlin enables users to gain expertise in an
efficient manner by listing performance data analysis steps and many example solutions given
by experienced programmers.

Merlin is able to work with any performance map as long as it is in the proper format.
Therefore, the intended focus of performance evaluation may shift depending on the interest of
the user group. For instance, the default map that comes with Merlin focuses on a perfor-
mance model based on parallelization and spreading overhead. Should a map that focuses on
architecture be developed and used instead, the response of Merlin will reflect that intention.
Furthermore, the Ursa Minor environment does not limit its usage to parallel programming.
Ursa Minor coupled with Merlin can be used to address many topics of the optimization
processes in various engineering practices.

As mentioned above, Merlin is accessed through the Ursa Minor performance evaluation
tool [1]. The main goal of Ursa Minor is performance optimization through the interactive
integration of performance evaluation with static program analysis information. It collects
and combines information from various sources, and its graphical interface provides selective
views and combinations of the gathered data. Ursa Minor consists of a database utility, a
visualization system for both performance data and program structure, a source searching and
viewing tool, and a file management module. Ursa Minor also provides users with powerful
utilities for manipulating and restructuring the input data to serve as the basis for the users’
deductive reasoning. Ursa Minor can present to the user and reason about many different
types of data (e.g., compilation results, timing profiles, hardware counter information), making
it widely applicable to different kinds of program optimization scenarios. The ability to invoke
Merlin greatly enhances the functionality of Ursa Minor.

4 Case Study 1: Hardware Counter Data Analysis

In our first case study, we discuss a performance map that uses the speedup component model
introduced in [12]. The model fully accounts for the gap between the measured speedup and
the ideal speedup in each parallel program section. This model assumes execution on a shared-
memory multiprocessor and requires that each parallel section be fully characterized using
hardware performance monitors to gather detailed processor statistics. Hardware monitors are
now available on most commodity processors.

With hardware counter and timer data loaded into Ursa Minor, users can simply click
on a loop from the Ursa Minor table view and activate Merlin. Merlin then lists the
numbers corresponding to the various overhead components responsible for the speedup loss in
each code section. The displayed values for the components show overhead categories in a form
that allows users to easily see why a parallel region does not exhibit the ideal speedup of p on p

6



Table 1: Overhead categories of the speedup component model.

Overhead Contributing Description Measured
Category Factors with

Memory stalls IC miss Stall due to I-Cache miss. HW Cntr
Write stall The store buffer cannot hold additional stores. HW Cntr
Read stall An instruction in the execute stage depends on an

earlier load that is not yet completed.
HW Cntr

RAW load stall A read needs to wait for a previously issued write
to the same address.

HW Cntr

Processor stalls Mispred. Stall Stall caused by branch misprediction and recovery. HW Cntr
Float Dep. stall An instruction needs to wait for the result of a

floating point operation.
HW Cntr

Code overhead Parallelization Added code necessary for generating parallel code. computed
Code generation More conservative compiler optimizations for par-

allel code.
computed

Thread
management

Fork&join Latencies due to creating and terminating parallel
sections.

timers

Load imbalance Wait time at join points due to uneven workload
distribution.

processors. Merlin then identifies the dominant components in the loops under inspection and
suggests techniques that may reduce these overheads. An overview of the speedup component
model and its implementation as a Merlin map are given below.

4.1 Performance Map Description

The objective of our performance map is to be able to fully account for the performance losses
incurred by each parallel program section on a shared-memory multiprocessor system. We
categorize overhead factors into four main components. Table 1 shows the categories and their
contributing factors.

Memory stalls reflect latencies incurred due to cache misses, memory access times and net-
work congestion. Merlin will calculate the cycles lost due to these overheads. If the percentage
of time lost is large, locality-enhancing software techniques will be suggested. These techniques
include optimizations such as loop interchange, loop tiling, and loop unrolling. We found, in
[13], that loop interchange and loop unrolling are among the most important techniques.

Processor stalls account for delays incurred processor-internally. These include branch mis-
predictions and floating point dependence stalls. Although it is difficult to address these stalls
directly at the source level, loop unrolling and loop fusion, if properly applied, can remove
branches and give more freedom to the backend compiler to schedule instructions. Therefore, if
processor stalls are a dominant factor in a loop’s performance, Merlin will suggest that these
two techniques be considered.

Code overhead corresponds to the time taken by instructions not found in the original
serial code. A positive code overhead means that the total number of cycles, excluding stalls,
that are consumed across all processors executing the parallel code is larger than the number

7



used by a single processor executing the equivalent serial section. These added instructions
may have been introduced when parallelizing the program (e.g., by substituting an induction
variable) or through a more conservative parallel code generating compiler. If code overhead
causes performance to degrade below the performance of the original code, Merlin will suggest
serializing the code section.

Thread management accounts for latencies incurred at the fork and join points of each
parallel section. It includes the times for creating or notifying waiting threads, for passing
parameters to them, and for executing barrier operations. It also includes the idle times spent
waiting at barriers, which are due to unbalanced thread workloads. We measure these latencies
directly through timers before and after each fork and each join point. Thread management
latencies can be reduced through highly-optimized runtime libraries and through improved
balancing schemes of threads with uneven workloads. Merlin will suggest improved load
balancing if this component is large.

Ursa Minor combined with this Merlin map displays (1) the measured performance of the
parallel code relative to the serial version, (2) the execution overheads of the serial code in
terms of stall cycles reported by the hardware monitor, and (3) the speedup component model
for the parallel code. We will discuss details of the analysis where necessary to explain effects.
However, for the full analysis with detailed overhead factors and a larger set of programs we
refer the reader to [12].

4.2 Experiment

For our experiment we translated the original source into OpenMP parallel form using the
Polaris parallelizing compiler [14]. The source program is the Perfect Benchmark ARC2D, which
is parallelized to a high degree by Polaris.

We performed our measurements on a Sun Enterprise 4000 with six 248 MHz UltraSPARC
V9 processors, each with a 16KB L1 data cache and 1MB unified L2 cache. Each code
variant was compiled by the Sun v5.0 Fortran 77 compiler with the flags -xtarget=ultra2

-xcache=16/32/1:1024/64/1 -O5. For hardware performance measurements, we used the
available hardware counter (TICK register) [15].

ARC2D consists of many small loops, each of which has a few milli-seconds average execution
time. Figure 3 shows the overheads in the loop STEPFX DO210 of the original code, and the
speedup component graphs generated before and after applying a loop interchange transforma-
tion.

Merlin calculates the speedup component model using the data collected by a hardware
counter, and displays the speedup component graph. Figure 3 (b) shows the speedup component
graph of the Polaris-parallelized code. It shows that code overhead degrades the speedup by a
factor of 2. Merlin suggests several recipes to reduce this overhead. In addition, Merlin’s
advice is to reduce the memory latency. This is based on an additional performance map that
detects that the program spends more than 25% of its total execution time in memory stalls.
From several suggested recipes the user tries loop interchanging, which results in significant, now
superlinear speedup. Figure 3 (c) shows that the memory stall component has become negative,
which means that there are fewer stalls than in the original, serial program. The negative
component explains why there is superlinear speedup. The speedup component model further
shows that the code overhead component has drastically decreased from the original parallelized

8



Figure 3: Performance analysis of the loop STEPFX DO210 in program ARC2D. The graph (a) on the

left shows the overhead components in the original, serial code. The graphs (b) and (c) show the speedup

component model for the parallel code variants on 4 processors before and after loop interchanging is

applied. Each component of this model represents the change in the respective overhead category relative

to the serial program. Merlin is able to generate the information shown in these graphs.

program. The code is even more efficient than in the serial program, further contributing to
the superlinear speedup.

In this example, the use of the performance map for the speedup component model has
significantly reduced the time spent by a user analyzing the performance of the parallel program.
It has helped explain both the sources of overheads and the sources of superlinear speedup
behavior.

5 Case Study 2: Simple Techniques to Improve Performance

In this section, we present a performance map based solely on execution timings and static
compiler information. Such a map requires program characterization data that a novice user
can easily obtain. The map is designed to advise novice programmers in improving the per-
formance of programs achieved by a parallelizing compiler such as Polaris [14]. Parallelizing
compilers significantly simplify the task of parallel optimization, but they lack knowledge of
the dynamic program behavior and have limited analysis capabilities. These limitations often
lead to marginal performance gains. Therefore, good performance from a parallel application
is often achieved by a substantial amount of manual tuning. In this case study, we assume
that novice programmers have used a parallelizing compiler as the first step to optimize the
performance of the target program and that its static analysis information is available. The
performance map presented in this section aims at increasing this initial performance.

9



Table 2: Optimization technique application criteria.

Techniques Criteria

Serialization speedup < 1
Loop Interchange # of stride-1 accesses < # of non stride-1 accesses
Loop Fusion speedup < 2.5

5.1 Performance Map Description

Our goal in this study is to provide users with a set of simple techniques that may help enhance
the performance of a parallel program based on data that can be easily generated. This includes
timing and static program analysis data.

Based on our experiences with parallel programs, we have chosen four techniques that are
(1) easy to apply and (2) may yield considerable performance gain. These techniques are
serialization, loop interchange, and loop fusion. They are applicable to loops, which are often
the focus of the shared memory programming model. All of these techniques are present in
modern compilers. However, compilers may not have enough knowledge to apply them most
profitably [13], and some code sections may need small modifications before the techniques
become applicable automatically.

We have devised criteria for the application of these techniques, which are shown in Table 2.
If the speedup of a parallel loop is less than 1, we assume that the loop is too small for
parallelization or that it required extensive modification. Serializing it prevents performance
degradation. Loop interchange may be used to improve locality by increasing the number of
stride-1 accesses in a loop nest. Loop interchange is commonly applied by optimizers; however,
our case study shows many examples of opportunities missed by the backend compiler. Loop
fusion can likewise be used to increase both granularity and locality. The criteria shown in
Table 2 represent simple heuristics and do not attempt to be an exact analysis of the benefits
of each technique. We simply assumed the threshold of the speedup as 2.5 to apply the loop
fusion.

5.2 Experiment

We have applied these techniques based on the criteria presented above. We have used the same
machine as in Section 4. The OpenMP code is generated by the Polaris OpenMP backend.
The results on five programs are shown. They are SWIM and HYDRO2D from SPEC95, SWIM

from SPEC2000, and ARC2D and MDG from the Perfect Benchmarks. We have incrementally
applied these techniques starting from serialization. Figure 4 shows the speedup achieved by
the techniques. The improvement in execution time ranges from -1.8% for fusion in ARC2D to
38.7% for loop interchange in SWIM’2000. For HYDRO2D, application of the Merlin suggestions
did not noticeably improve performance.

Among the codes with large improvement, SWIM from SPEC2000 benefits most from loop
interchange. It was applied under the suggestion of Merlin to the most time-consuming loop,
SHALOW DO3500. Likewise, the main technique that improved the performance in ARC2D was
loop interchange. MDG consists of two large loops and numerous small loops. Serializing these

10



Figure 4: Speedup achieved by applying the performance map. Detailed numbers can be seen in

Table 3. The speedup is with respect to one-processor run with serial code on a Sun Enterprise 4000

system. Each graph shows the cumulative speedup when applying each technique.

small loops was the sole reason for the performance gain. Table 3 shows a detailed breakdown
of how often techniques were applied and their corresponding benefit.

Using this map, considerable speedups are achieved with relatively small effort. Novice
programmers can simply run Merlin to see the suggestions made by the map. The map can
be updated flexibly without modifying Merlin. Thus if new techniques show potential or the
criteria needs revision, expert programmers can easily incorporate changes.

6 Conclusions

We have presented a framework and a tool, Merlin, that addresses an important open is-
sue in parallel programming: Guiding novice programmers in the process of tuning parallel
program performance. It is a utility with a graphical user interface that allows inexperienced
programmers to examine suggestions made by expert programmers on various subjects. While
equipped with a powerful expression evaluator and pattern matching utility, Merlin’s analy-
sis and advice are entirely guided by a performance map. Any experienced programmers can
write a performance map to help new programmers in gaining experience. Merlin is accessed
through a performance evaluation tool, so performance visualization and data gathering are
done in conjunction with this performance advisor.

We have presented two case studies that utilize Merlin. In the first study, Merlin is
used to compute various overhead components for investigating performance problems. In the
second study, we have introduced a simplified performance map that can still effectively guide
users in improving the performance of real applications. The results show that the relatively
small effort to run Merlin can lead to a significant gain in speedup.

With the increasing number of new users of parallel machines, the lack of experience and

11



Table 3: A detailed breakdown of the performance improvement due to each technique.

Benchmark Technique Number of Modifications % Improvement

ARC2D Serialization 3 -1.55
Interchange 14 9.77
Fusion 10 -1.79

HYDRO2D Serialization 18 -0.65
Interchange 0 0.00
Fusion 2 0.97

MDG Serialization 11 22.97
Interchange 0 0.00
Fusion 0 0.00

SWIM’95 Serialization 1 0.92
Interchange 0 0.00
Fusion 3 2.03

SWIM’00 Serialization 0 0.00
Interchange 1 38.69
Fusion 1 0.03

transfer of programming knowledge from advanced to novice users is becoming an important is-
sue. A novel aspect of our system is that it alleviates these problems through automated analysis
and interactive guidance. With advances in performance modeling and evaluation techniques
as exemplified in this paper, parallel computing can be made amenable to an increasingly large
community of users.

References

[1] Insung Park, Michael J. Voss, Brian Armstrong, and Rudolf Eigenmann. Parallel pro-
gramming and performance evaluation with the ursa tool family. International Journal
of Parallel Programming, 26(5):541–561, November 1998.

[2] J. Brown, A. Geist, C. Pancake, and D. Rover. Software tools for developing parallel
applications. 1. code development and debugging. In Proc. of Eighth SIAM Conference on
Parallel Processing for Scientific Computing, March 1997.

[3] J. Brown, A. Geist, C. Pancake, and D. Rover. Software tools for developing parallel
applications. 2. interactive control and performance tuning. In Proc. of Eighth SIAM
Conference on Parallel Processing for Scientific Computing, March 1997.

[4] Michael T. Heath. Performance visualization with ParaGraph. In Proc. of the Second
Workshop on Environments and Tools for Parallel Scientific Computing, pages 221–230,
May 1994.

[5] Daniel A. Reed. Experimental performance analysis of parallel systems: Techniques and
open problems. In Proc. of the 7th Int’ Conf on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 25–51, 1994.

12



[6] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The
Paradyn parallel performance measurement tool. IEEE Computer, 28(11):37–46, November
1995.

[7] J. Yan, S. Sarukkai, and P. Mehra. Performance measurement, visualization and model-
ing of parallel and distributed programs using the AIMS toolkit. Software-Practice and
Experience, 25(4):429–461, April 1995.

[8] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. VAMPIR: visual-
ization and analysis of MPI resources. Supercomputer, 12(1):69–80, January 1996.

[9] B. Topol, J. T. Stasko, and V. Sunderam. PVaniM: A tool for visualization in network com-
puting environments. Concurrency Practice and Experience, 10(14):1197–1222, December
1998.

[10] W. Liao, A. Diwan, R. P. Bosch Jr., A. Ghuloum, and M. S. Lam. SUIF explorer: An
interactive and interprocedural parallelizer. In Proc. of the 7th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 37–48, August 1999.

[11] K. C. Li and K. Zhang. Tuning parallel program through automatic program analysis.
In Proc. of Second International Symposium on Parallel Architectures, Algorithms, and
Networks, pages 330–333, June 1996.

[12] Seon Wook Kim and Rudolf Eigenmann. Detailed, quantitative analysis of shared-memory
parallel programs. Technical Report ECE-HPCLab-00204, HPCLAB, Purdue University,
School of Electrical and Computer Engineering, 2000.

[13] Seon Wook Kim, Michael Voss, and Rudolf Eigenmann. Performance analysis of paral-
lel compiler backends on shared-memory multiprocessors. Proceedings of Compilers for
Parallel Computers (CPC2000), pages 305–320, January 2000.

[14] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programming
with Polaris. IEEE Computer, pages 78–82, December 1996.

[15] David L. Weaver and Tom Germond. The SPARC Architecture Manual, Version 9. SPARC
International, Inc., PTR Prentice Hall, Englewood Cliffs, NJ 07632, 1994.

13


