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Abstract. Understanding symbolic expressions is an important capa-
bility of advanced program analysis techniques. Many current compiler
techniques assume that coefficients of program expressions, such as array
subscripts and loop bounds, are integer constants. Advanced symbolic
handling capabilities could make these techniques amenable to real ap-
plication programs. Symbolic analysis is also likely to play an important
role in supporting higher–level programming languages and optimiza-
tions. For example, entire algorithms may be recognized and replaced by
better variants. In pursuit of this goal, we have measured the degree to
which symbolic analysis techniques affect the behavior of current par-
allelizing compilers. We have chosen the Polaris parallelizing compiler
and studied the techniques such as range analysis – which is the core
symbolic analysis in the compiler – expression propagation, and sym-
bolic expression manipulation. To measure the effect of a technique, we
disabled it individually, and compared the performance of the result-
ing program with the original, fully-optimized program. We found that
symbolic expression manipulation is important for most programs. Ex-
pression propagation and range analysis is important in few programs
only, however they can affect these programs significantly. We also found
that in all but one programs, a simpler form of range analysis – control
range analysis – is sufficient.

1 Introduction

Automatic program parallelization has been studied and developed intensely in
the last two decades, especially in an effort to automatically detect parallelism
present in numerical applications. As a result, advanced analysis and transforma-
tion techniques exist today, which can optimize many programs to a degree close
to that of manual parallelization. The ability of a compiler to manipulate and
understand symbolic expressions is an important quality of this technology [1].
For instance, the accuracy of data dependence tests, array privatization, dead
code elimination, and the detection of zero-trip loops increases if the techniques
have knowledge of the value ranges assumed by certain variables.
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Several research groups have developed symbolic analysis capabilities to make
the most of program analysis techniques implemented in their compilers [1, 3–8].
The Polaris parallelizing compiler [2] has incorporated advanced symbolic anal-
ysis techniques in order to effectively detect privatizable arrays, to determine
whether a certain loop is a zero-trip loop for induction variable substitution,
and to solve data dependence problems that involve symbolic loop bounds and
array subscripts. Range Propagation [3] is the basis for this functionality. It can
determine the value ranges that symbolic expressions in the program can as-
sume. Polaris’ symbolic nonlinear data dependence test – the Range Test [4] –
makes use of Range Propagation. The Range Test is the main advanced data
dependence test in the Polaris compiler. Expression propagation is another im-
portant technique, which can eliminate symbolic terms by substituting them
with known values. Furthermore, symbolic expression simplification is essential
in several passes in the Polaris compiler.

The major impediment in adopting certain symbolic analysis techniques is
their relatively high cost [5, 9]. For example, in one of our experiments, the Polaris
compiler exhausted the available memory space that kept the range information
of that program. Whether or not this cost is worth expending is not known,
as the techniques’ effectiveness in the context of an advanced optimizing com-
piler and with contemporary application programs has not been studied. These
facts motivated our effort to quantify the gains of symbolic analysis techniques.
We present the results as follows. Section 2 outlines the analysis techniques we
measured. Section 3 describes our experimental methods and metrics. Section 4
discusses the results in detail. Section 5 reviews related work, and Section 6
presents our conclusion.

2 Symbolic Analysis Techniques in Polaris

We categorize the studied techniques into three groups. First, Range Propagation
and the Range Test are the most important techniques that deal with symbolic
terms in array subscripts. Second, Expression Propagation is a conventional
technique to transform symbolic expressions into more analyzable form. Third,
Symbolic Expression Simplification was included, because it provides essential
functionality that several Polaris passes make use of.

2.1 Range Propagation and Range Test

The Range Analysis technique determines the value ranges assumed by variables
at each point of a program. It does this by performing abstract interpretation [10]
along the control and data flow paths. The results are kept in a range dictio-
nary [3], which maps from variables to their ranges. Polaris supports two levels of
range dictionaries. The control range dictionary collects information by inspect-
ing control statements, such as IF statements and DO statements. The abstract
interpretation (AI) range dictionary subsumes the control range dictionary and



IF (m.GT.5) THEN IF (j.GT.0.AND.j.LT.3) THEN
n = m + 4 {m>=6} DO i = 1, imax
DO i = 1, m {m>=6, n=m+4} S1: a(3*i+j) = a(3*i) + 3.14*i
a(i) = 3.14*n {m>=6, n=m+4, 1<=i<=m} ENDDO

ENDDO ENDIF
ENDIF

(a) (b)

k = 0
L1: DO i = 1, 10 L1: DO i = 1, 10
L2: DO j = 1, m L2: DO j = 1, m

k = k + 2 ...
... -> ENDDO

ENDDO a(2*i*m) = ...
a(k) = ... ENDDO

ENDDO

(c)

DIMENSION a(10000), a0(2:30)
!$OMP PARALLEL
!$OMP+PRIVATE(A0,K,TPINIT,I)

DO tpinit = 2, 30, 1
a0(tpinit) = 0.0

DIMENSION a(10000) ENDDO
... !$OMP DO
DO k = 1, 10 DO k = 1, 10, 1
DO i = 1, imax DO i = 1, imax, 1
a(3*k) = a(3*k) + 3.14*i a0(3*k) = a0(3*k)+3.14*i
ENDDO -> ENDDO
DO i = 1, 1000 DO i = 1, 1000, 1
a(2*k) = a(2*k) + 3.14*i a0(2*k) = a0(2*k)+3.14*i
ENDDO ENDDO

ENDDO ENDDO
!$OMP END DO NOWAIT
!$OMP CRITICAL

DO tpinit = 2, 30, 1
a(tpinit) = a(tpinit)+a0(tpinit)

ENDDO
!$OMP END CRITICAL
!$OMP END PARALLEL

(d)

Fig. 1. The Range Propagation technique and its applications. (a) Contents of the
range dictionary. (b) Loop that can be parallelized with the Range Test. (c) Induction
variable substitution. (d) Reduction transformation

collects additional information from all assignment statements. Figure 1(a) shows
an example code and the contents of the range dictionary.

One objective of this study is to determine the effectiveness of the range
dictionary. The Polaris compiler currently uses range dictionary information to
detect zero-trip loops in the induction variable substitution pass, to determine
array sections referenced by array accesses in the reduction parallelization pass,
and to compare symbolic expressions in the Range Test. Figure 1(c) illustrates



the case of induction variable substitution. Let us suppose the range dictionary
for the shown code section keeps the range for the variable m, which is also the
upper bound of the loop L2. If it is possible to prove that m is greater than or
equal to one thanks to the range dictionary, the loop L2 is not a zero-trip loop,
and induction variable substitution can be applied safely in the array a, as shown
in the right-hand side code. Otherwise, the compiler keeps the original code or
generates multi-version loops.

The Polaris compiler is able to recognize array reductions and translate them
into parallel form [11]. Privatized Reductions is one possible translation variant,
shown in Figure 1(d). The range information for k was used to determine the
accessed region of array a. This information is then used as the dimension of
the private copy a0, and for the bounds of the preamble and postamble loop
of the parallel reduction operation. If the range information were not available,
Polaris would use the declared dimension of the array a instead, which may be
too large, causing overhead in the preamble and the postamble.

The most important application of range analysis is the Range Test. The test
performs many comparisons between symbolic expressions in order to analyze
array subscripts. The comparison procedure determines the arithmetic relation-
ship of two expressions by examining the difference of the two expressions. If the
difference contains a symbolic expression, the range information of that expres-
sion is searched in the range dictionary. Figure 1(b) shows a simple example.
Since the possible value of j is either one or two, the Range Test can determine
that there is no loop-carried dependence in the statement S1.

2.2 Expression Propagation

By propagating the expression assigned to a variable to the variable’s use sites,
symbolic expressions can deliver more accurate information. Polaris can propa-
gate constant integer, constant logical, and symbolic expressions within a pro-
cedure and across procedures. Real-valued expressions can also be propagated,
but this option is switched off by default.

Before analyzing individual subroutines, Polaris performs interprocedural ex-
pression propagation, during which assignments to propagated expressions are
inserted at the top of each procedure. Then, these expressions are propagated to
possible call sites. This process iterates until no new expressions are discovered.
Subroutine cloning is performed during this process, if the same subroutine is
called with two different expressions.

Intraprocedural expression propagation is performed on each subroutine after
the induction variable substitution pass. This Polaris pass introduces variables
for which propagation can be important, as our measurements will show. How-
ever, other than this effect, intraprocedural expression propagation is essentially
subsumed by intraprocedural and range propagation. As mentioned earlier, this
technique can also propagate real-valued expressions and array expressions. We
will include this option in our measurements as well.



Table 1. Benchmark suite

Code # Lines Serial time Code # Lines Serial time
APSI 7361 57.8 TURB3D 2100 183.6

HYDRO2D 4292 80.3 WAVE5 7764 96.3
MGRID 484 54.5 ARC2D 4650 55.1
SU2COR 2332 55.0 MDG 1430 27.1
SWIM 429 84.7 TRFD 580 126.0

TOMCATV 190 96.1 MG 1460 57.4

2.3 Symbolic Expression Simplification

The simplification of symbolic expressions is important, as compiler–
manipulated expressions tend to increase in complexity, making them difficult
to analyze. Nearly all Polaris passes make use of expression simplifier functions.
For instance, the procedure performing symbolic expression comparison assumes
that the two expressions are reduced to their simplest form. Polaris provides the
following three simplifying techniques for symbolic expressions:

– Combine: A+4*A -> 5*A

– Distribute: A*(3+B) -> 3*A+A*B

– Divide: 3*A/A -> 3

3 Experimental Methodology

The fully-optimized programs serve as the baseline of our measurements. Start-
ing from these programs, we disabled each compiler technique individually. For
techniques that contain several levels of optimization, we took measurements
with increasing levels. We compared the resulting, transformed code with the
base code to examine the difference in the number of parallelized loops, and we
measured the overall program performance of the parallel programs. In order to
understand the performance impact of the techniques on the programs before
parallelization, we also measured the performance of the transformed programs
executed sequentially (i.e., without OpenMP translation).

3.1 Benchmark Suite

Table 1 shows our benchmark suite. We selected scientific/engineering programs
written in Fortran77 from the floating point benchmarks in SPEC CPU95, from
the Perfect Benchmarks and from the serial version of NAS Parallel Benchmarks.
We chose the SPEC CPU95 over CPU2000 codes because Polaris requires For-
tran77 input. All SPEC CPU2000 Fortran77 programs are present in the SPEC
CPU95 suite. Since they are essentially the same codes, we expect that the results
in terms of the number of parallelized loops would be the same for the SPEC
CPU2000 codes. However, the speedup of the parallel programs is expected to be



higher for the SPEC CPU2000 compared to the CPU95 codes, due to the larger
input data sizes. Several Perfect Benchmarks with their original input data sets
execute in only a few seconds on today’s machines. Therefore we have increased
the problem sizes of ARC2D and TRFD. Among the four NAS benchmarks written
in Fortran77, we found that symbolic analysis makes a difference only in MD.
We included this code in our figures.

3.2 Set-up and Metrics

The Polaris compiler outputs parallel programs written in OpenMP, which we
compiled using the Forte compiler to generate code for Sun workstations. We
used a four-processor shared-memory Sun E-450 system for our experiments. The
following shows all settings for this experiment. The compiler flag ”-stackvar”
allocates all local variables on the stack, and ”-mt” is needed for multithreaded
code.

– CPU: 480 MHz UltraSparc II
– Number of processors: 4
– Memory: 4GB
– Operating System: SunOS 5.8
– Compiler: Forte 6.1
– Compiler flags: -fast -stackvar -mt -openmp

We use the overall program speedup – serial execution time of the original
code divided by parallel execution time of the transformed code – as a metric
for presenting the performance of the programs, and also briefly describe the
features of the transformed codes, such as the number of parallelized loops to
explain the quality of the transformed codes.

4 Results and Analysis

4.1 Impact on Sequential Execution of Transformed Programs

In a first experiment, we ran all transformed benchmarks without compiling
OpenMP directives and compared it with the serial programs. In this way, we
could observe the effect of each technique on the performance before parallel
code generation. Such effects are due to (1) direct changes of the source code by
the techniques and (2) affected restructuring transformations. Our expression
propagation techniques are implemented such that they perform direct substitu-
tions of the source code. Also, the expression simplification techniques affect the
programs directly. Among the restructuring transformations that are affected
by symbolic analysis are induction variable substitution and reduction trans-
formations. Understanding these performance effects is important because they
represent degradation that is not a result of the parallel execution or lack thereof.

We found that expression propagation can introduce overhead. For example,
expression propagation made a statement longer than a hundred lines in APSI,



Table 2. Number of parallel loops with and without range analysis. RT stands for
Range Test. The figures in each colum describe: “total (lost outer-level)” parallel loops.
“=” means the code is identical with the base code, The “No AIRD” row shows the
results with no AI range dictionary used; in “No RD” both the AI and the control
range dictionary are switched off; The last row “No RT” serves as a reference showing
the effect of disabling the Range Test

Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D WAVE5 ARC2D MDG TRFD MG

Base 141 92 10 54 16 6 24 185 126 20 5 35
No AIRD 141(2) = = = = = = 185(2) = 20 5 =
No RD 139(10) 92(3) = = = = 24 181 = 19(2) 11(2) 35(7)
No RT 122(7) 89 8 44 7 = 22 160(7) 125 13(1) 8(2) 24(2)

disabling code generation by the backend compiler. TURB3D ran 144% longer be-
cause of the overhead from expression propagation. SU2COR increased by 9%. All
other programs showed no more than 5% overhead after program transformation.

We found that the expression simplification technique is necessary for many
benchmarks. For instance, TRFD ran 240% longer after disabling the combining
functionality for simplification. That means that, without this technique, the
restructured, serially executed program would run so inefficiently that it would
offset much of the gain from parallel execution.

Another interesting situation is the reduction transformation. Sometimes,
this transformation is expensive because of inefficient preamble and postamble,
as shown in Figure 1(d). This happend after certain compiler techniques were
disabled in our experiments, resulting in insufficient information for data depen-
dence analysis. We deal with that situation further in the following subsection.

In order to observe the effect of each compiler technique on the parallel
program performance, we ran all benchmarks on four processors. We describe
the result of the experiments category by category in the following subsections.

4.2 Range Analysis

Table 2 shows the characteristics of the transformed codes, with en-
abled/disabled techniques that relate to range analysis. The figures in each col-
umn represent the total number of parallel loops in the program. The numbers
in parentheses explain how many outer level parallel loops were lost. For exam-
ple, without the range dictionary, Polaris found 92 parallel loops in HYDRO2D.
Although the base code and the code with disabled range dictionary have the
same number of parallel loops, three outer–level loops could no longer be found
parallel.

As expected, many programs benefit from the Range Test, since it is the only
advanced data-dependence test used in Polaris. (Polaris also includes an optional
Omega test. The performance when using this test instead of the Range Test is
essentially the same as the “No RD” version.) More importantly, the table shows
that the computation of full range information using the AI range dictionary is
necessary only for APSI and WAVE5. This means that the relatively inexpensive
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Fig. 2. Program performance with and without Range Analysis

control range dictionary is sufficient for Polaris to analyze the other codes. The
table further shows that half of the benchmark codes do not need any range
information – they can still be analyzed as accurately as the fully-optimized
code. Although many subscripts contain symbolic terms, these terms cancel out
in comparison operations. For example, the two expressions i+m-3 and i+m+5

can be compared by the test without the need of range information.

Figure 2 shows the program performance on four processors. Three programs
APSI, WAVE5, and TURB3D achieved speedup less than one. This is due to the fact
that we have used the “eager parallelization scheme” in Polaris. That is, the
compiler is conservative in its profitability analysis – it avoids the parallelization
of small parallel loops only if there is a provable disadvantage. This is appropri-
ate for our study, where we are interested in the compiler’s ability or inability to
detect parallelism. In addition, TURB3D is included without advanced interpro-
cedural analysis, which could improve the performance of the code significantly,
but was not yet available in our version of Polaris.

In terms of program performance, four benchmarks, HYDRO2D, WAVE5, MDG and
TRFD, benefit from the range dictionary. The code section in Figure 3 shows the
case that needs range analysis in HYDRO2D. This loop accounts for 5% of the serial
execution time, and is the main factor of the performance difference. After induc-
tion variable substitution, the array tst contains symbolic subscripts i-mq+j*mq.
The range information for the variable mq (mq>=1) enables the Range Test to
compare expressions such as j*mq and 1-mq+(j-1)*mq, allowing the compiler
to disprove the output dependence on tst. The perfomance gain after disabling
the Range Test in TURB3D comes from not parallelizing small loops.

The phenomenal performance loss in MDG comes from an inefficient reduc-
tion transformation. Remarkably, INTERF_do1000 and POTENG_do2000, the most
time-consuming loops in MDG, were parallelized even without the Range Test.
However, a small other loop was transformed very inefficiently without Range
Analysis. The loop looks like a reduction operation, but is a fully parallel loop.
This fact can be detected by the Range Test with range dictionary information.



Table 3. Cost of range anlaysis. (a) Percent compilation time of range analysis. The
analysis time spans from 0.63 seconds to 153 seconds with full range dictionary, and
from 0.38 seconds to 21 seconds only with control range dictionary. (b) Normalized
memory requirement (1=No range analysis). The memory requirement spans from 33
Megabytes to 266 Megabytes with full range dictionary, and from 33 Megabytes to 125
Megabytes only with control range dictionary

(a)

Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D WAVE5 ARC2D MDG TRFD MG

Full 27.0 16.8 6.8 5.9 14.9 9.9 7.0 9.4 15.6 13.4 17.8 8.4
Control 3.1 9.5 1.6 2.0 6.6 8.6 2.7 3.6 4.7 4.3 7.1 2.4

(b)

Full 2.13 1 1 1.06 1 1 1 1.05 1.07 1.12 1 1.15
Control 1 1 1 1.01 1 1 1 1 1 1.02 1 1.02

However, without range information, the loop ends up being transformed as an
array reduction, which is highly inefficient due to large pre/postambles in this
case. The graph indicates the control range dictionary is sufficient to detect the
explicit parallelism in the loop. In TRFD, Polaris was unable to parallelize the two
most time-consuming loops without any range dictionary. Instead, many small
inner loops were parallelized, causing significant performance degradation.

The results in this section indicate that Range Analysis is performance-
critical for a small set of benchmarks only. Figure 4 shows that the range informa-
tion affects the compiler, nevertheless. It presents the failure rate of expression
comparison during the Range Test. It clearly shows that Polaris is able to make
better decisions, thanks to range information, in all but one program. In MDG,
the number of comparisions is less without the Range Dictionary. The lack of
range information made several monotoniciy tests fail during the Range Test,
making further comparisons useless. MG has more comparison failures with full
range analysis because the effort to get more accurate value ranges ended up gen-
erating less useful information. For example, the AI range dictionary gives LT

k = 0
DO j = 1,nq DO j = 1,nq
DO i = 1,mq DO i = 1,mq

... ...
k = k + 1 -> tst(i-mq+j*mq) = DMIN1(tcz, tcr)
tst(k) = DMIN1(tcz, tcr) ENDDO

ENDDO ENDDO
ENDDO

Fig. 3. Need for range dictionary in HYDRO2D
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Fig. 4. Expression comparison failure rate

Table 4. Number of parallel loops with and without expression propagation. “’*”
means outer-level parallelism. Expression propagation was not applied to the base
code for WAVE5

Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D ARC2D MDG TRFD MG

Base 141 92 10 54 16 6 24 126 20 5 35
No IntraEP 141 = = 54 = = 24 = 20 6(1) =
No InterEP 141(*1) 92 10 54 16 = 25 126 17 8(2) 35(2)
No EP 141(5,*1) 92 10 54 16 = 25 126 17 8(2) 35(2)

>= MAX(1,1+LB) for a certain code section, where LB is unavailable at compile-
time, and the compiler cannot compare LT with 1+LB. On the other hand, the
control range dictionary gives LT >= 1+LB in the same situation, and the above
comparison can be done easily.

4.3 Expression Propagation

The effects of expression propagation on the benchmark codes are presented in
Table 4. Interprocedural propagation helped Polaris find more parallel loops in
MDG and TRFD. Moreover, additional intraprocedural expression propagation was
essential in finding outer-level parallelism in TRFD. The reason is that the poten-
tial dependence caused by a variable introduced by induction variable substitu-
tion was disproved by propagating information to the use site of that variable.
For the benchmark APSI, interprocedural expression propagation provided in-
formation that helped the compiler recognize that an outermost loop had only
one iteration and serialize this loop. This explains why Table 4 shows more
outer-level parallelism without that technique.

In MDG and TRFD, expression propagation improved performance, as pre-
sented in Figure 5. The most time-consuming loops POTENG_do2000 in MDG and
OLDA_do100 and OLDA_do300 in TRFD were not parallelized without interproce-
dural expression propagation and even without additional intraprocedural ex-
pression propagation for the case of TRFD. However, expression propagation does



not make much difference in terms of execution time for the SPEC benchmarks.
For some benchmarks, the actual substitution of the propagated expression in-
curred a slight overhead because of the increased strength of the operation. Using
NINT((160*xljet)/xlr) instead of npjet a huge number of times is an example
of the potential disadvantage of expression propagation.

The OpenMP translation of Polaris is responsible for the odd behavior of
ARC2D when interprocedural expression propagation was disabled. The code sec-
tion in Figure 6(a) accounts for the performance difference. The left-hand-side
code was generated with interprocedural expression propagation, whereas the
right-hand-side code was generated without this technique. Both outermost loops
are parallel. Polaris detected the original array work as private. Expression prop-
agation helps Polaris determine that only an array subrange of size jmax, where
jmax is definied in the subroutine, is actually needed as private. Since OpenMP
does not support partial arrays to be declared private, Polaris chooses to allocate
from the heap a smaller array and use array expansion rather than privatization.
Unfortunately, this turns out to perform less than privatizing the full array in
this case.

However, without expression propagation, there were four loop nests where
the outer loop was no longer parallel, setting off the performance gain in Fig-
ure 6(a). Those four loops have similar shapes. Figure 6(b) shows one of them.
With expression propagation, the compiler could substitute jx with ju-j and
remove the assignment to jx, making it possible to do loop-blocking utilizing
OpenMP directives. The subroutine containing this loop is called 400 times,
and the value of ju-jl is 288, making the number of fork-joins in the right-
hand side loop 114799 more than that of the left-hand side loop. MG speeds up
only with intraprocedural expression propagation. In other configurations, the
parallelizer performs reduction transformation that introduces huge overhead in
preambles/postambles.

We have also measured the effectiveness of more specific options of expression
propagation. These are the propagation of array expressions and propagation of
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Fig. 5. Program performance with and without expression propagation



SUBROUTINE filery(jdim, ...) SUBROUTINE filery(jdim, ...)
... ...
jdim = jmax !$OMP+PRIVATE(..., work)
... ...
ALLOCATE (work0(1:jdim, ...)) DO n = 1, 4
DO n = 1, 4 DO k = kbegin, kup

DO k = 1, kmax-1 DO j = jlow, jup
DO j = jlow, jup work(j,k,1) = ...

work0(j,k,1,my_cpu_id) = ... ...
...

(a)

!$OMP PARALLEL DO j = 2, ju-jl, 1
DO j = 2, ju-jl, 1 jx = ju+(-jl)

!$OMP DO !$OMP PARALLEL
DO k = 2, ku, 1 !$OMP DO
f(ju+(-j), k) = ... DO k = kl, ku, 1
... = f(2+ju+(-j), k) f(jx, k) = ...

ENDDO ... = f(2+jx, k)
!$OMP END DO NOWAIT ENDDO

ENDDO !$OMP END DO NOWAIT
!$OMP END PARALLEL !$OMP END PARALLEL

ENDDO

(b)

Fig. 6. Code sections of ARC2D with and without expression propagation. (a) Priva-
tization in subroutine FILERY. (b) Loop blocking

real expressions. The base code was generated with array expression propaga-
tion and without real expression propagation. In general, the effects of these
techniques are negligible compared to other techniques examined in this section.
However, we have seen code examples where propagation generated very long
expressions, which is undesirable.

4.4 Expression Simplifier

In general, the symbolic expression simplifier turned out to be important. This
is because nearly all passes implemented in Polaris use that functionality. For in-
stance, the Range Test assumes the two expressions to be compared are in their
simplest form before the comparison. Table 5 shows the effects of this technique
on the benchmark codes. The combining capability plays a more important role
in helping the Range Test than the other two capabilities, because it performs
the actual simplification in the expression manipulation. On the other hand, can-
celing common factors in the denominator and the numerator does not happen
frequently, so the effect was negligible, except for TRFD.

Figure 8 shows the overall performance of each program without the expres-
sion simplifier. As we have seen in this section, TRFD again shows an extreme
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Fig. 7. Program performance with and without expression propagation

Table 5. Number of parallel loops with and without expression simplifier. SU2COR
could not be parallelized without combining functionality

Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D WAVE5 ARC2D MDG TRFD MG

Base 141 92 10 54 16 6 24 185 126 20 5 35
No Divide = 92 = 54 = = 24 185 = = 6(1) =
No Distribute 130(15) 92(3) 8 48 = 6 23 177(7) 125 15(2) 11(2) 31(8)
No Combine 121(11) 89 8 N/A 7 6 22 156(11) 129(1) 13(2) 9(2) 24(4)
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Fig. 8. Program performance with and without expression simplifier



performance loss. For TURB3D, disabling the simplifier resulted in serializing small
loops with a performance gain.

An important additional consideration is the expression simplifier’s impact on
memory usage during program analysis. Polaris could not fully analyze SU2COR

with expression simplification turned off because it exhausted its swap space (2
GB).

As in the case without expression propagation, ARC2D shows odd behavior
without the combining capability. It turned out that the code section responsible
for this behavior runs faster with inner-level parallelism, which is not true in gen-
eral. Without the combining capability, the compiler could only find inner-level
parallelism, which happened to perform better because of insufficient number of
iterlations at outer level.

5 Related Work

We have found no comprehensive studies that measure the impact of symbolic
analysis techniques, as presented in this study. However, a number of projects
have developed compile-time symbolic analysis techniques similar to those con-
sidered in this paper. Haghighat and Polychronopoulos proposed a methodology
for the discovery of certain program properties that are essential in the effective
detection and efficient exploitation of parallelism [6]. The authors’ methodology
was implemented as a symbolic analysis framework for the Parafrase-2 paral-
lelizing compiler. Induction variable substitution, dead-code elimination, sym-
bolic data dependence test, and program performance prediction were suggested
as possible analysis techniques that could benefit from the symbolic analysis
framework. The authors also showed their analyzer performed well, especially in
detecting complex induction variables such as induction variables in conditional
statements.

Fahringer proposed symbolic analysis techniques to be used as part of a
parallelizing compiler and a performance estimator for optimization of parallel
programs [7]. He suggested an algorithm for computing lower and upper bounds
of symbolic expressions based on a set of constraints, to be used in comparing
symbolic expressions, simplifying systems of constraints, examining non-linear
array subscript expressions for data dependences, and optimizing communica-
tions. Another functionality he suggested is the capability of estimating the
number of integer solutions to a system of constraints, which can be used to
support detection of zero-trip loops, elimination of dead code, and performance
prediction of parallel programs. His techniques were implemented for the Vi-
enna Fortran Compilation System (VFCS), a High-Performance-Fortran-style
parallelizing compiler. His technique for comparing symbolic expressions enabled
hoisting communication out of loop nests in FTRVMT, a dominant loop in OCEAN.

There were also efforts to analyze symbolic expressions across procedure
boundaries. Havlak constructed interprocedural symbolic anaylsis mechanisms as
an infrastructure for the Parascope compilation system [8]. His analysis is based
on the program representation in Thinned-gated single-assignment (TGSA) form



– an extended form of Static single-assignment (SSA), and operates interproce-
durally by relating a call graph to each value graph for a procedure. During the
analysis, information such as passed values, returned values, array subscripts
and bounds, loop bounds, and predicates are considered. The effectiveness of his
technique was measured only by comparing dependence graphs.

Recent research deals with symbolic analysis by formulating it as a system
of constraints. Pugh and Wonnacott’s research on nonlinear array dependence
analysis [12, 14] suggested a method of obtaining certain conditions under which
a dependence exists. Value-based dependence analysis, which delivers more ac-
curate information, was also described by a set of constraints, and the author
suggested uninterpreted function symbols as a way of representing non-affine
terms that could exist during dependence analysis. Rugina and Rinard’s work
on symbolic bound analysis [15] proposed a scheme to compute symbolic bounds
for each pointer and array index variable at each program point, and to compute
a set of symbolic regions that a procedure accesses. They reduced the systems
of constraints to linear programs to obtain symbolic bounds.

6 Conclusion

We have measured the impact of symbolic analysis techniques, specifically range
propagation, expression propagation, and symbolic expression simplification. Us-
ing several SPEC CPU95, Perfect, and NAS benchmarks we have analyzed the
techniques’ ability to help recognize parallelism and improve program perfor-
mance.

We have found that all techniques make a significant difference in at least
one of the programs. Expression simplification is important for most programs,
while full range propagation does not affect the program performance substan-
tially. Somewhat unexpected, interprocedural expression propagation was only
relevant for two of the programs. More complex programs are affected more sig-
nificantly. Symbolic analysis effects performance the most in the Perfect the least
in the NAS benchmarks. This suggests that the techniques will impact full-scale
applications more significantly than measured in our experiments.

In our analysis we found that secondary effects of symbolic analysis tech-
niques can make a performance difference. For example, in several program
sections, the techniques helped recognize parallel loops that were too small to
improve performance and introduced overhead instead. Improved performance
estimation capabilities could help remedy these situations and would thus be
important complements of advanced program analysis techniques.

We found that, in all programs, the simpler form of range propagation, which
derives information from control statements only, was sufficient. This finding is
significant, as it will allow compiler developers to implement advanced opti-
mization techniques that rely on symbolic analysis without high compile-time
expenses. It holds in particular for the Range Test, which is able to analyze data
dependences in the presence of nonlinear and symbolic subscripts.
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