
Interprocedural Symbolic Range Propagation

for Optimizing Compilers ⋆

Hansang Bae and Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907

{baeh,eigenman}@purdue.edu

Abstract. We have designed and implemented an interprocedural al-
gorithm to analyze symbolic value ranges that can be assumed by vari-
ables at any given point in a program. Our algorithm contrasts with
related work on interprocedural value range analysis in that it extends
the ability to handle symbolic range expressions. It builds on our previ-
ous work of intraprocedural symbolic range analysis. We have evaluated
our algorithm using 11 Perfect Benchmarks and 10 SPEC floating-point
benchmarks of the CPU 95 and CPU 2000 suites. We have measured the
ability to perform test elision, dead code elimination, and detect data de-
pendences. We have also evaluated the algorithm’s ability to help detect
zero-trip loops for induction variable substitution and subscript ranges
for array reductions.

1 Introduction

The motivation for the present work is the pursuit of the long-term goal of devel-
oping higher-level programming languages. At the same time, we aim to increase
the power of the present generation of optimizing compilers. One thrust towards
these goals is to strengthen the capabilities of compilers to reason about and
manipulate program sections in symbolic terms. Developing an algorithm for in-
terprocedural range propagation is a small step in this direction. By knowing the
value range that a variable may assume at any given program point, compiler
techniques can make more informed optimization decisions. We have developed
and used such techniques in the past for our Polaris parallelizing compiler [2,
13, 4]. Knowing symbolic value ranges has become key to detecting data depen-
dences, privatizing variables, substituting induction variables, and parallelizing
reduction operations. Polaris’ Range Test [5] makes use of advanced symbolic
expression manipulation capabilities, which exploit knowledge about possible
value ranges of program variables. The privatization pass [17] is able to ana-
lyze and comprehend the meaning of certain compute patterns. The induction
variable and reduction recognition passes [15] exploit value range information
to prove zero-trip loops and to narrow array subscript ranges, respectively. In

⋆ This work is supported in part by the National Science Foundation under Grants
No. 0103582-EIA, and 0429535-CCF.



X = 1 X = [-INF,INF]

IF (X.LE.N) THEN X = [1,1]

X = 2*X X = [1,1]

ELSE X = [2,2]

X = X+2 X = [MAX(1,1+N),1]

ENDIF X = [MAX(3,3+N),3]

... X = [2,3]

Fig. 1. Intraprocedural symbolic range propagation

all these cases, value range information significantly boosts Polaris’ ability to
detect parallelism. Currently, Polaris uses only intraprocedural range analysis.
It operates in concert with interprocedural expression propagation and forward
substitution, which we consider the best alternative to the new techniques and
reference point for the evaluation section. In Section 4 we will explain why we
have chosen this reference point over other related contributions. Briefly, related
work either focuses on interprocedural expression propagation [11], where no
range representation is used, or restricts the bounds of ranges to simple expres-
sions [14]. A number of approaches have also considered range information in
the context of pointer analysis for C-type languages.

2 Interprocedural Symbolic Range Propagation (ISRP)

Our framework for interprocedural analysis follows the classical fixed-point ap-
proach based on abstract interpretation, and it uses existing intraprocedural
range analysis techniques as the source of range information to propagate. Dur-
ing the analysis, ISRP collects symbolic range information within a subroutine
and generates interprocedural ranges at every important program point – at sub-
routine returns and at call sites. Next, it propagates the collected data towards
the leaves of the call graph. This is similar to the jump function approach [9]; we
use terms in that approach to present our algorithm1. We also apply procedure-
cloning to enhance the accuracy of the analysis in every calling context. Before
introducing our algorithm in detail, we briefly review our existing framework for
intraprocedural symbolic range analysis.

The goal of symbolic range propagation [3] is to collect a valid set of symbolic
value ranges for each variable at every program point. The collected ranges
can be used for advanced compiler analyses such as data dependence testing,
dead code elimination, and program verification – the main application of the
analysis in the current Polaris compiler is a nonlinear symbolic data dependence

1 In contrast to [9], our jump function is defined for the value ranges of all variables
of a statement, not for a single variable.



test [5]. Figure 1 gives an example of the value ranges for program variable X ,
valid before each statement, as analyzed by the existing intraprocedural analysis
technique. To derive this information, ranges defined by individual statements
are intersected along the control flow. At control flow merge points, unions of
ranges are computed. The ranges so analyzed supply the source of candidate
interprocedural symbolic ranges for ISRP.

In presenting the ISRP algorithm, we make use of the following terms.

Definition 1. A symbolic range is a mapping from a variable to its value range,
V = [LB,UB], where LB is the lower bound and the UB is the upper bound. All
variables contained in the expressions {V,LB,UB} belong to the scope of the
subroutine enclosing the program point being analyzed. If either LB or UB is
infinite, we call it an open range, otherwise it is a closed range.

Definition 2. An interprocedural (symbolic) range is a symbolic range that is
gathered from information in one subroutine and inserted at relevant points in
another subroutine – either at the subroutine entry or after a call statement.

Definition 3. For a caller P, a callee Q, and a call site S that calls Q in P,
the jump function at S is the set of known symbolic ranges before S, expressed
in terms of input variables to Q (actual parameters and global variables).

Definition 4. The return jump function at Q is the set of known symbolic
ranges at the end of Q, expressed in terms of return variables to P (return
parameters, reference parameters and global variables).

Without loss of generality we use only integer type and logical type. The
existing, intraprocedural framework did not allow logical type, but we added it to
make our analysis more general. If the type of V is logical, LB should be equal to
UB. Notice, that the jump functions express symbolic ranges in terms of variable
names in the present subroutine. In order to create interprocedural ranges, these
names may need to be changed to those used in the target subroutine. This also
applies for the return jump functions.

Figure 2 gives a high-level description of our algorithm. It uses the following
functions:

Compute Jump Functions()

This routine produces intraprocedural value ranges that are valid at each pro-
gram point in a subroutine. The source of information are ranges as analyzed by
the intraprocedural range analysis algorithms plus the inserted interprocedural
ranges (at the beginning of the subroutine and after each call statement). At
each call statement, the interprocedural ranges collected from
Get Backward Interprocedural Ranges are intersected with ranges that exist be-
fore the call site. However, when a certain variable is modified in the callee or its
descendants in the call graph, the previous range for that variable is discarded.
Note that the resulting jump functions, as per Definition 3 are expressed in
terms of variables in the current subroutine. In order to create interprocedural



Propagate_Interprocedural_Ranges()

{

Initialize_Call_Graph()

while (there is any change in interprocedural ranges) {

foreach Subroutine (reverse topologically) {

Get_Backward_Interprocedural_Ranges()

Compute_Jump_Functions()

Compute_Return_Jump_Functions()

}

Get_Forward_Interprocedural_Ranges()

}

}

Fig. 2. Algorithm for interprocedural symbolic range propagation.

ranges, renaming of actual to formal parameters will need to be performed (by
Get Forward Interprocedural Ranges()).

Compute Return Jump Functions()

This routine generates value ranges as per Definition 4 at the return point of
the current subroutine. Information at multiple return points is merged – for
simplicity, we just take unions.

Get Forward Interprocedural Ranges()

This routine creates the interprocedural symbolic value ranges valid at the entry
point of each subroutine – this is done by applying jump functions to each
subroutine, appropriately converting actual parameters to formal parameters.
In addition, this step performs procedure-cloning for different calling contexts.

Get Backward Interprocedural Ranges()

This routine propagates interprocedural symbolic value ranges backward from
all callees to the current subroutine. It uses information from return jump func-
tions in the callees. If a value range contains a formal parameter of the callee,
it is mapped to the corresponding actual parameter. Note that the algorithm
performs this step reverse topologically. Hence, intraprocedural analysis for each
callee has already been done, including the generation of return jump functions.
For leaves in the call graph, this subroutine performs no action. This reverse
order is for speeding up a single iterative step; in-order traversal would converge
to the same solution, eventually.

In summary, the algorithm computes the interprocedural symbolic ranges
propagated backward from callees’ contexts and ranges propagated forward from
callers’ contexts until it reaches a fixed point. Each iteration performs range
analysis within a subroutine, selects valid symbolic ranges across subroutine



(a)

1st iteration

Subroutine Forward ISR Return Jump Callsite Jump Backward ISR

B - V=[W+M,W+M] - - -
A - φ β N=[10,40] T=[U+N,U+N]

MAIN - - α X=[1,1],Y=[2,2] φ

A T=[1,1],U=[2,2] - β - T=[U+N,U+N]
B M=[10,40] - - - -

2nd iteration

B M=[10,40] V=[W+M,W+M],M=[10,40] - - -
A T=[1,1],U=[2,2] U=[2,2] β N=[10,40],U=[2,2] T=[U+N,U+N],N=[10,40]

MAIN - - α X=[1,1],Y=[2,2] Y=[2,2]
A T=[1,1],U=[2,2] - β - T=[U+N,U+N],N=[10,40]
B M=[10,40],W=[2,2] - - - -

3rd iteration

B M=[10,40],W=[2,2] V=[W+M,W+M],M=[10,40] - - -
W=[2,2]

A T=[1,1],U=[2,2] U=[2,2] β N=[10,40],U=[2,2] T=[U+N,U+N],N=[10,40]
U=[2,2]

MAIN - - α X=[1,1],Y=[2,2] Y=[2,2]
A T=[1,1],U=[2,2] - β - T=[U+N,U+N],N=[10,40]

U=[2,2]
B M=[10,40],W=[2,2] - - - -

(b)

Fig. 3. Interprocedural symbolic range propagation on an example code. (a) An ex-
ample program with three program units and two call sites. The goal is to compute
backward/forward Interprocedural Symbolic Ranges (ISRs) at the entry to each sub-
routine and at the call sites. (b) Step-by-step process of ISRP on the code. Each row
is completed in a single step by the algorithm in Figure 2.

boundaries, and feeds those new data into the intraprocedural range analysis for
the next iterative step.

The example illustrated in Figure 3 shows a simple program with three pro-
gram units and two subroutine calls, and interprocedural symbolic range propa-
gation on that program. The goal of the analysis is to compute Interprocedural
Symbolic Ranges (ISR) that are valid at the entry to each subroutine and after
the call sites. In other words, the analysis collects forward ISR at the entry of
each subroutine and backward ISR for each call site as shown in Figure 3(a).



Table 1. Benchmark suite.

Code Size Subroutines Call sites Code Size Subroutines Call sites

ARC2D 4650 36 100 applu 3868 13 26
BDNA 4843 38 162 apsi 7361 66 328
DYFESM 8446 57 204 fpppp 2784 13 52
FLO52Q 2324 27 86 hydro2d 4292 39 200
MDG 1430 12 42 mgrid 484 11 46
MIGRATION 3455 23 110 su2cor 2332 26 242
OCEAN 3198 34 490 swim 429 6 10
QCD2 2816 30 166 tomcatv 190 1 0
SPEC77 4870 39 232 turb3d 2101 19 206
TRACK 4628 29 106 wupwise 2184 22 284
TRFD 580 4 20 Total 67265 545 3112

Figure 3(b) presents step-by-step process of ISRP on the code example. Each
column shows the result after performing each step in the algorithm in Figure 2.
For example, during the first iteration, the analysis computes return jump func-
tion for B (V = [W + M, W + M ]), backward ISR for β (T = [U + N, U + N ]),
jump function for β (N = [10, 40]), return jump function for A (φ), backward
ISR for α (φ), and jump function for α (X = [1, 1], Y = [2, 2]) successively.
Then it finally computes forward ISRs for A and B, which come directly from
the jump functions for α and β after converting actual parameters into formal
parameters. The resulting forward ISRs have changed since the start of the it-
eration, which triggers next iteration and the analysis continues with a new set
of initial information. The analysis finally stops after third iteration where the
starting forward ISRs are identical to the resulting forward ISRs.

3 Experiments

We have measured the effectiveness of the presented interprocedural symbolic
range propagation algorithm on several aspects of optimizing compilers – data
dependence analysis, test elision with dead code elimination, and other optimiza-
tions for automatic parallelization. We implemented our analysis in the Polaris
parallelizing compiler and our reference point, to which we refer as Base, is the
performance of the current version of Polaris with full optimization. That in-
cludes intraprocedural symbolic range propagation, interprocedural expression
propagation with forward substitution, automatic partial inlining, and procedure
cloning. The existing constant propagation pass also removes unreachable code
sections due to control flows resolved at compile time. We switched this func-
tion off and implemented a stand-alone pass that can interface with the range
information.

Another feature of our ISRP implementation is a substitution pass that sub-
stitutes a variable with its corresponding symbolic expression. This capability



Table 2. The number of test elision and dead code elimination.

Codes Base ISRP Codes Base ISRP

ARC2D 4 5 applu 4 4
BDNA 15 15 apsi 1 18
DYFESM 18 26 fpppp 12 7
FLO52Q 2 5 hydro2d 9 9
MDG 0 1 mgrid 0 0
MIGRATION 4 6 su2cor 7 8
OCEAN 67 72 swim 0 0
QCD2 0 3 tomcatv 0 0
SPEC77 3 3 turb3d 5 15
TRACK 4 10 wupwise 19 27
TRFD 2 8 Total 176 242

builds the interface with existing compiler passes that do not have the ability to
query range information. For this substitution, we used simple decision heuristics
to avoid unwanted chains of forward substitutions generating large expressions
(a drawback of the current constant propagation and forward substitution tech-
nique). For example, replacing a variable with a known numeric value is always
preferred, whereas replacing loop variables (indices, bounds) with complex ex-
pressions is not.

3.1 Benchmark Suite

We selected 21 scientific engineering codes from the Perfect Benchmarks, SPEC
CPU95 floating point, and SPEC CPU2000 floating point suites. This set of
codes includes most of the Fortran 77 codes in each benchmark suite except for
some codes that fail to compile (for reasons other than ISRP). Table 1 shows
the feature of each benchmark, such as code size, number of subroutines or
function calls, and number of call sites. Our algorithm converts all function calls
to subroutine calls as a preliminary step.

3.2 Test Elision and Dead Code Elimination

Test elision and dead code elimination are optimizations that can benefit from
static analysis such as constant propagation and range propagation. As more
information about conditions is known, the compiler may prove that the test
condition is always true or always false and thus eliminate one branch. We
measured how the interprocedural range information affects the compile-time
resolution of branches and corresponding dead code elimination.

Table 2 presents the number of successfully resolved branches with the Base
method and with ISRP. For a fair comparison, we only counted one instance
of cloned procedures. The results show that the number of statically resolved



Table 3. The number of data dependence arcs.

Codes Base ISRP Codes Base ISRP

ARC2D 801 459 applu 677 677
BDNA 1124 1081 apsi 11395 8222
DYFESM 1388 1108 fpppp 22064 20006
FLO52Q 263 279 hydro2d 110 66
MDG 1120 908 mgrid 83 19
MIGRATION 7180 6219 su2cor 10915 8712
OCEAN 433 370 swim 0 0
QCD2 17257 3579 tomcatv 45 45
SPEC77 2392 1652 turb3d 371 342
TRACK 2003 1781 wupwise 2013 1071
TRFD 93 40 Total 81727 56636

branches with ISRP is greater than or equal to that with Base for all benchmark
codes except for fpppp. Fpppp contains a pattern that benefits from repeated
information propagation and dead code elimination, which is performed by the
Base technique but not by ISRP. The type of information to be propagated is
simple, however, and done equally well by both techniques.

Overall, Table 2 shows that ISRP provides more accurate static informa-
tion than Base and (except for the minor case in fpppp) subsumes the Base
techniques.

3.3 Data Dependence Analysis

Data dependence analysis is of obvious importance in optimizing compilers. We
counted the number of dependence arcs in each benchmark code with Base and
with ISRP to see how effective ISRP is in breaking data dependence arcs.

Table 3 shows the resulting numbers for each benchmark code. ISRP reduced
the number of dependence arcs up to 79% for all benchmark codes except for
FLO52Q. The increased number in FLO52Q is due to limitations of our simple for-
ward substitution heuristics. Those variables were marked as private variables
with Base whereas they carry cross-iteration dependences with ISRP. Another
observation is that the total number of dependence pairs to disprove is increased
for some codes and decreased for other codes – numbers are not presented here.
Limited forward substitution accounts for the former case and better test eli-
sion accounts for the latter case. However, in both cases, the number of data
dependence arcs decreased for most codes. This shows that limited forward sub-
stitution is not a significant factor to achieve accuracy in the data dependence
analysis.



Fig. 4. Compiler’s decisions for relevant questions with ISRP. If a loop is a non-zero-
trip loop, the induction variable substitution pass can safely transform the code. If
there is a closed subscript range for an array reduction, the compiler generates more
efficient code for the reduction.

3.4 Detecting Zero-trip Loops and Array Bounds

Our parallelizing compiler additionally makes use of the collected range informa-
tion when making decisions in several parallelization passes. One such case is the
induction variable substitution pass, which tries to decide if a loop is a zero-trip
loop. Not knowing that a loop is non-zero-trip may prevent the substitution of
an induction variable with its closed form [15]. The Polaris compiler inserts a
runtime test in this case. ISRP can potentially eliminate this runtime overhead.

Another pass benefiting from range analysis is the reduction parallelization
technique. In absence of accurate information about index ranges used by an
array reduction pattern, the compiler must consider the entire array a potential
reduction variable. This conservative measure cost significant runtime overhead.
Again, ISRP has the potential to reduce this cost.

Figure 4 shows the percentage of preferred compiler’s decisions in those passes
with Base and with ISRP. In the benchmarks not listed here, we did not find
any significant differences. ISRP substantially increased the number of desirable
decisions for the codes in Figure 4. The compiler could answer all the questions
in favor of each optimization for TRFD and su2cor. In TRFD, a significant code
section was statically parallelized with ISRP whereas Base relied on a run-time
test.

4 Related Work

Range analysis in imperative programming languages has been addressed in
several contexts over the last few decades, most of them stemming from a formal



foundation – Abstract Interpretation[6, 7]. One of the major concerns of early
work was how to make the analysis reach a fixed point at reasonable speed in
the presence of loop-like program structures, and widening and narrowing[6] were
then introduced to guarantee termination of the analysis. The demand for whole
program analysis has also emerged and interprocedural analysis has become a
key enabler of compiler optimizations in many contexts. The importance and
effectiveness of range analysis or symbolic analysis have also been addressed in
several contributions.

Havlak’s work[11] served as an infrastructure for interprocedural symbolic
analysis in the Parascope compilation system[1]. He divided a symbolic inter-
procedural analysis problem into four sub-problems, depending on if the analysis
propagates symbolic values for variables or predicates, and if the information is
passed to or returned from the callee. Two of the problems, returned values and
passed predicates (linear equalities) were evaluated in his work. Our approach
differs in two important regards. First, Havlak’s work focuses on symbolic expres-
sion propagation, as opposed to value ranges. Second, our work is more general
in that it can give solutions to all the four sub-problems. Before and after a
call site, each symbolic value range with the same lower bound and the upper
bound gives a set of passed expressions and returned expressions. Symbolic lower
bounds and upper bounds can be used to infer a valid relationship between two
expressions or variables. Including this work, interprocedural symbolic analysis
was also applied in analyzing array accesses [8, 10] to be used for interprocedural
parallelization and other optimizations. Although analyzing array subscripts is
a major application of our framework, ISRP has more flexibility that enables
many other potential optimizations.

Patterson[14] adopted value range propagation to statically predict if a cer-
tain branch is taken or not. The range representation used in his work carries
the probability that a variable has a certain lower bound, an upper bound, and
a stride. Because the analysis is intended for a single optimization, static branch
prediction, he limited the complexity of the problem so that the analysis can
trade-off accuracy and efficiency. For example, the interprocedural analysis only
concerns about propagation through parameter mappings, and symbolic expres-
sions for the value ranges can have at most one variable, which greatly simplifies
the problem. Our analysis is intended for general use in several compiler opti-
mizations and considers arbitrary symbolic expressions.

There are also efforts that adopt range analysis in the C language because of
its applicability for non-numerical programs. While tackling issues that arise in
C-type languages (primarily pointer analysis) these approaches have not shown
or claimed progress for high-performance computing applications. The work by
Verbrugge et. al.[18] expressed range analysis as Generalized Constant Propa-
gation (GCP) and implemented it in the McCAT optimizing/parallelizing com-
piler[12]. They used the concept of an invocation graph that maintains context-
sensitive information, and also utilized points-to information and read/write sets
to minimize the loss of information during interprocedural analysis. They also
introduced “stepping”, which is a variation of widening and narrowing, to guar-



antee finite fixed-point iterations. The use of the invocation graph is similar to
procedure cloning in that it maintains context-sensitive special information for
each invocation of a function. One limitation of their work is that it only handles
non-symbolic ranges.

Rugina’s work[16] on symbolic bounds analysis took a different approach
to achieve a similar goal. He did not adopt conventional concepts such as ab-
stract interpretation and fixed-point algorithm. Instead, he set up a system of
constraints within a region of interest and introduced a way of reducing the
constraint system to a linear program under an assumption that the positivity
of each coefficient is known. A framework for interprocedural analysis was also
introduced, which describes mapping and unmapping actions at call sites. To
avoid fixed-point iteration for recursive calls, he introduced a method of build-
ing a system of recursive constraints. The idea of not doing fixed-point iteration
is an outstanding feature compared with other related work. This feature may
improve the efficiency of the analysis but it left unclear how to compare the ac-
curacy of this technique with that of a conventional fixed-point technique, such
as ours.

The most recent work by Yong and Horwitz[19] also adopted range analysis
to compute a safe approximation of the set of memory locations that may be
accessed by each pointer dereference. To simplify the problem, they treated all
memory accesses as pointer dereferences even for a scalar variable. Their work
focused on language-specific challenges such as pointer arithmetic and type mis-
match due to union and casting, introducing advanced range description methods
that embed type information. Like other conventional techniques, they adopted
the concept of widening and narrowing for convergence but their interprocedural
analysis does not handle context-sensitive information and symbolic ranges.

5 Conclusion

We have designed and implemented an interprocedural symbolic range analysis
technique and have shown that the resulting compiler pass substantially en-
hances the accuracy of other optimizations. The reference point we have chosen
in our evaluation of 21 science/engineering benchmarks is the combination of in-
terprocedural expression propagation, intraprocedural symbolic range analysis,
forward substitution, and automatic partial inlining, as currently implemented in
the Polaris parallelizing compiler. We believe this to be the best state-of-the-art
symbolic range analysis framework for high-performance computing applications,
among related contributions.

ISRP is an enabling technique for other optimizations. We can expect sub-
stantial performance improvement once we enhance existing optimization passes
to take advantage of the new information. As is, we have already found 14 more
parallel loops in our benchmark codes.

Advanced program analysis comes at the cost of longer compilation time.
We have measured up to 150% increased compilation time in all but two cases.
Such increase seems acceptable, given the benefits and ever-increasing processor



speeds. It is known that symbolic range analysis has exponential worst-case
complexity [3], which explains substantial increases in compilation time in two
of our codes – OCEAN and TRACK, which have a large number of call sites. In
ongoing work we are considering optimizations of the algorithm to improve such
behavior.

References

1. V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok. The
parascope editor: an interactive parallel programming tool. In Supercomputing ’89:
Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages 540–550,
New York, NY, USA, 1989. ACM Press.

2. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programming
with Polaris. IEEE Computer, 29(12):78–82, December 1996.

3. William Blume and Rudolf Eigenmann. Symbolic range propagation. In Proceed-
ings of the 9th International Parallel Processing Symposium, pages 357–363, Santa
Barbara, CA, April 1995.

4. William Blume and Rudolf Eigenmann. Demand-driven, Symbolic Range Propa-
gation. Lecture Notes in Computer Science, 1033: Languages and Compilers for
Parallel Computing, pages 141–160, 1996.

5. William Blume and Rudolf Eigenmann. Nonlinear and symbolic data dependence
testing. IEEE Transactions on Parallel and Distributed Systems, 9(12):1180–1194,
December 1998.

6. Patrick Cousot and Radhia Cousot. Static determination of dynamic properties
of programs. In Proceedings of the 2nd Internatioal Symposium on Programming,
pages 106–130, April 1976.

7. Patrick Cousot and Rhadia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of 4th ACM Symposium, pages 238–252, 1977.

8. Béatrice Creusillet and Francois Irigoin. Interprocedural Array Region Analyses.
In Eighth International Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’95), pages 4–1 to 4–15, August 1995.

9. Dan Grove and Linda Torczon. Interprocedural constant propagation: A study
of jump function implementations. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 90–99, 1993.

10. Mary W. Hall, Brian R. Murphy, Saman P. Amarasinghe, Shih-Wei Liao, and Mon-
ica S. Lam. Interprocedural analysis for parallelization. In LCPC ’95: Proceedings
of the 8th International Workshop on Languages and Compilers for Parallel Com-
puting, pages 61–80, London, UK, 1996. Springer-Verlag.

11. Paul Havlak. Interprocedural Symbolic Analysis. PhD thesis, Dept. of Computer
Science, Rice University, May 1994.

12. Laurie J. Hendren, C. Donawa, Maryam Emami, Guang R. Gao, Justiani, and
B. Sridharan. Designing the mccat compiler based on a family of structured in-
termediate representations. In Proceedings of the 5th International Workshop on
Languages and Compilers for Parallel Computing, pages 406–420, London, UK,
1993. Springer-Verlag.

13. Seuing-Jai Min, Seon Wook Kim, Michael Voss, Sang-Ik Lee, and Rudolf Eigen-
mann. Portable compilers for OpenMP. In OpenMP Shared-Memory Parallel



Programming, Lecture Notes in Computer Science #2104, pages 11–19, Springer
Verlag, Heidelberg, Germany, July 2001.

14. Jason R. C. Patterson. Accurate static branch prediction by value range prop-
agation. In Proceedings of the conference on Programming language design and
implementation, pages 67–78. ACM Press, 1995.

15. William M. Pottenger and Rudolf Eigenmann. Idiom recognition in the polaris
parallelizing compiler. In Proceedings of the 9th International Conference on Su-
percomputing, pages 444–448, 1995.

16. Radu Rugina and Martin C. Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementation, pages 182–195, Vancouver,
Canada, June 2000.

17. Peng Tu and David Padua. Array privatization for shared and distributed memory
machines (extended abstract). SIGPLAN Not., 28(1):64–67, 1993.

18. Clark Verbrugge, Phong Co, and Laurie J. Hendren. Generalized constant prop-
agation: A study in c. In Proceedings of the Internatioal Conference on Compiler
Construction, pages 74–90, April 1996.

19. Suan Hsi Yong and Susan Horwitz. Pointer-range analysis. In Proceedings of the
11th International Static Analysis Symposium (SAS ’04), page 16 pages, August
2004.


