Interactive Compilation and Performance
Analysis with Ursa MINOR

Insung Park Michael Voss Brian Armstrong Rudolf Eigenmann*

Purdue University, School of Electrical and Computer Engineering

Abstract. This paper proposes solutions to two important problems
with parallel programming environments that were not previously ad-
dressed. The first issue is that current compilers are typically black-box
tools with which the user has little interaction. Information gathered by
the compiler, although potentially very meaningful for the user, is often
inaccessible or hard to decipher. Second, compilation and performance
analysis tools are not well integrated. While there are many advanced
instruments for gathering and browsing performance results of a pro-
gram, it is difficult to relate this information to the source program, to
the applied program transformations, and to the compiler’s reasoning.
The UrsA MINOR tool addresses these issues. The tool is designed to
help understand the structure of a program and the information gath-
ered by a compiler in an interactive way. It facilitates the comparison of
performance results under different environments and the identification
of potential parallelism, and it provides a repository for this informa-
tion. URSA MINOR is built using the Polaris compiler infrastructure. We
present case studies that show how programmers can use the tool to find
additional parallelism in a compiler-optimized program and to charac-
terize the performance of parallel applications. The tools are currently
being used in several projects to develop and study parallel applications
and to evaluate parallelizing compilers. These efforts provide feedback
for improving the Ursa MINOR tool.

1 Introduction

Developing well-performing parallel programs is a challenging task. Many pro-
gramming tools exist that assist the user in this task. Parallelizing compilers are
one important class of such tools [BEHt94, HAA96]. The apparent advantage
of using a parallelizing compiler is that the conversion of a given serial pro-
gram into parallel form i1s done mechanically by the tool. However, the compiler
may have insufficient knowledge or limited capabilities to parallelize a program
optimally. In some cases it would be easy for the user to make up for these short-
comings. For example, the compiler may detect a value-specific data-dependence,
whereas the user would know that in every reasonable program input, the values

* This work was supported in part by Purdue University and by U. S. Army contract
#DABT63-92-C-0033. This work is not necessarily representative of the positions or
policies of the U. S. Army or the Government.

are such that the dependence does not occur. In other cases, users may know
that the accessed array sections in loop iteration do not overlap. Furthermore,
certain program transformations may make a substantial performance difference,
but are applicable to very few programs, and hence not built into a compiler’s
repertoire. If a user can find the reason why a loop was not parallelized au-
tomatically, a small modification may be applied to ensure parallel execution.
Because of these reasons, manual code modification in addition to automatic
parallelization is often necessary to achieve good performance.

During the process of compiling a parallel program and measuring its perfor-
mance, a considerable amount of information is gathered. This includes all the
data that a user can deduce from the results of compilation and simulation, such
as the timing information of various program runs and structural information
of the program. Finding parallelism starts from looking through this informa-
tion and locating potentially parallel sections of code. However, the bookkeeping
effort accompanying this procedure is often overwhelming.

In this paper, we introduce an on-going tool project, supporting a scenario
of user-plus-compiler parallelization. The tool is designed to help understand
the structure of a program, compare performance results under different envi-
ronments, identify potential parallelism, and store the information for later use.
The tool, UrsA MINOR, gathers information along the course of compiling and
running a program and presents it in a format that 1s easy to look up and com-
prehend. This leads to an understanding of the compilation process, the charac-
teristics of the given program, its performance results, and the relationships of
this data. Based on this information, a user may choose to work on enhancing
the performance of an already parallelized program or start modifying the serial
program.

The tool presented here is closely related to the Polaris compiler infrastruc-
ture [BEHT94]. Polaris, as a compiler, includes advanced capabilities for array
privatization, symbolic and nonlinear data dependence testing, idiom recogni-
tion, interprocedural analysis, and symbolic program analysis. Polaris also repre-
sents a general infrastructure for analyzing and manipulating Fortran programs,
which can provide useful information regarding the program structure and its
potential parallelism. Polaris plays a major role in generating the data files
used as input to our tool. Examples of such files are loop parallelization sum-
maries, data-dependence information, and loop/subroutine call graphs. Polaris
also instruments programs for timing measurements and maximum parallelism
detection.

Section 2 presents our objectives in developing URsA MINOR, and Section 3
gives an overview and discusses its functionality. Section 4 then presents a case
study of Ursa MINOR in-use, followed by a brief discussion of future develop-
ments and improvements of the tool in Section 5. Section 6 concludes the paper.

2 Objectives of URSA MINOR

The intended users of the UrRsA MINOR tool are parallel programmers that have
some experience with parallelizing compilers and performance analysis tools.
In order to assist them in their effort to find parallelism, the tool pursues the
following objectives:

Integrated Browsers for Program, Compilation, and Performance Data :
The Ursa MINOR tool collects and facilitates the use of program, compi-
lation, and performance data. The information needs to be presented in a
format that conveys high-level as well as detailed descriptions of a program.
In this way, a user can start from an overall view of the program and in-
spect the details whenever he/she feels the need to concentrate on a specific
portion of the program. The tool complements and integrates capabilities
provided by other tools, such as the Pablo [Ree94], Paradyn [MCCT95], and
PTOPP [EM93] performance analysis environments.

Interactive Compilers : The current, predominantly black-box use of paral-
lelizing compilers needs to be changed into interactive scenarios. This goes
beyond interactive pass invocation as pioneered by tools such as Start/Pat
[ASM89] and Parascope [BKK*89]. The ultimate goal of the Ursa Mi-
NOR project is to provide a comprehensive environment that encompasses
the process of writing, compiling, running, and improving parallel programs.
Enhancing parallelizing compilers with an interactive capability to provide
information available throughout the program development process, con-
tributes to this goal.

These objectives distinguish our approach from related efforts; such as the
Polaris, Pablo and Paradyn projects, which provide advanced facilities for opti-
mizing and instrumenting programs, gathering performance data, and visualizing
this information. The UrRsA MINOR environment provides aids for the user to
understand the gathered performance data, and to reason about the information
in an interactive way, which goes significantly beyond the level available in these
related projects. In the sense that the tool provides users with advice to improve
performance, URSA MINOR has a similar objective to that of VTune[Int97], with
one important difference being the targeted (in our case parallel) architectures.

In addition to the main objectives, we observe the following design rules to
make our tool more useful and easily accessible:

Portability: For disseminating a new tool to the user community, it is impor-
tant that it be easy to install on new platforms. We approach this goal by
implementing URSA MINOR in the target-independent Java language, and
by using only widely-available Application Programming Interfaces (APIs).
No complicated makefiles and platform-dependent features are included. The
tool makes use of information gathered by other tools, such as the Polaris
compiler and its performance analysis libraries. The portability of these fa-
cilities is provided for many platforms. In addition, Ursa MINOR will be

built to be flexible in the data format it can read, such that it can adapt
to the tools (compilers and performance analyzers) available on the local
platform.

Leveraging off of existing tools: We consider using other available tools to
augment the features of URsA MINOR that we regarded as “not original but
nice to have”. For instance, there are spreadsheets capable of rich graphical
presentation of data. By allowing the information to be understood by one
of these spreadsheets, we can take advantage of its features to create charts,
while focusing on the new functionality of UrRSA MINOR.

Expandability : The main function of the UrRsa MINOR tool is information
gathering and browsing. Hence, whenever we obtain new types of information
about the given program we should be able to see 1t through the tool with
minimal modifications. We can also enable the tool to read a generic data
file, so that a new type of information, if it is in the specified format, can be
understood by the tool without any modification.

3 Description of URSA MINOR

In this section, we give an overview of the UrRsSA MINOR tool and describe its
functionality. We also discuss how our design objectives were realized in the tool.

3.1 Overview

The UrRsA MINOR project provides tools that assist parallel programmers in
effectively writing and tuning codes. It provides users with information avail-
able from various sources in a comprehensible way. These sources include tools
such as compilers, profilers, and simulators. It interacts with users through a
graphical interface, which can provide selective views and combinations of the
data. Figure 1 shows an overall view of the interaction between Ursa MINOR
and various data files.

The UrsAa MINOR tool collects and combines information from various
sources. Timing information is gathered from instrumented program runs. The
tool performing this instrumentation is a Polaris-based utility, not discussed fur-
ther in this paper. Maximum parallelism estimates are supplied by the Max/P
tool [Pet93, KEIT]. Information on which loops are serial or parallel is provided
by the actual Polaris compiler. The UrRsA MINOR tool includes a subroutine and
loop calling structure analyzer, also implemented using the Polaris infrastruc-
ture.

In the current implementation, these information sources are available in files
that need to be created explicitly by the user before URSA MINOR can read and
combine them. Once they exist, several tool options are provided to read from
the various original files, add to the existing information incrementally, store the
entire database, or read from a previously saved database. In future releases we
plan to automate the process of creating the information sources by, for example,
invoking the compiler on-demand.

Generated by
Calling Structure Data Dependence Polaris-based Tools
Analyzer Result Test Summa Other Information

Information
Sources

I
| |
| |
| |
| |
| |
Sources ; : !
i Performance Results S'"}UIat'?\; Rtg)ort e
} — } Other Tools
| |
| |
| |
| |
| |
| |

W RS 4
. ot
., open/save ot export
e, ot
. ‘_,-'
", P

URSA MINOR 4
DataBase

o

presentation/edit database

Call Graph View
interam‘ interaction

presentation/edit database

Loop Table View

Fig. 1. Interaction provided by the UrRsa MiNoR Tool.

Internally, UrRsA MINOR stores information in a “database”, which is for-
matted as text with appropriate annotations. This database in itself can serve
as a browsable source of information. Furthermore, the information can be saved
in a format that commercial spreadsheets can read from, allowing a richer set of
data manipulations and graphical representations.

The UrRsA MINOR tool is written in Java. Thus, any platform on which the
Java runtime environment is available can be used to run the tool. It uses the
basic Java language with standard APIs, which enhances the portability of the
tool. Object orientation in Java allows a relatively easy addition of new types
of data to the database. The windowing toolkits and utilities provided a good
environment for prototyping user interfaces, which enabled us to focus on the
design of the tool functionality.

One of our related projects is to make publicly available a database of pro-
gram characteristics and performance data for a collection of program and bench-
mark suites. Java, with its network support, makes a useful language for this
project. By enabling the use of the Ursa MINOR database via the World-Wide
Web, users in remote sites can have a better understanding of the programs they
are examining and compare the results of their experiments.

In the next section, we examine more closely the functionality of Ursa Mi-
NOR.

3.2 Functionality

The Ursa MINOR tool presents information to the users through two display
windows: A loop information table and a call graph. The user interacts with
UrsA MINOR by choosing menu items or mouse-clicking.

File View

Loop Mame Timing 0 # Exec Parent

ACTFOR_doZ40 23.292 3 ACTFOR

ACTFOR_do500 21.385 3 ACTFOR

ACTFOR_do3s0 20.786 ACTFOR_do500

ACTFOR_doZ3s 9.9698 ACTFOR_doz40

ACTFOR_doZ37 8.2528 ACTFOR_doz40

RESTAR_dol15 6.0124 RESTAR

RESTAR_do700 2.z187 RESTAR

ACTFOR_dnZ 36 14354 ACTFOR_doz40

ACTFOR_dnZ 36 1118 ACTFOR_doz40

ACTFOR_dn3zn 0.637 ACTFOR

RESTAR_dnSG0 0.7754 RESTAR

RESTAR_do200 07112 RESTAR

RESTAR_dal150 0y

RESTAR_do10 0.2645 RESTAR_do560:

it contains I/0 statements,

ZERO_do10 0.1407 the fallowing variables (may) have laop-carried dependences:
J

UFDATE _do100 0.1z8g

ACTFOR_dory00 0.1096

ACTFOR_do6&0 0.1008

RESTAR_do702 0.0985

RESTAR_do701 0.0962 IRESTAR_UU?UU I 7

Fig. 2. Loop Table View of the UrRsa MiNoOR Tool.

Figure 2 shows the loop table view, each line displaying information for an
individual loop. Currently, the table displays information such as timing results
from various program runs, the number of invocations of each loop, the parent
in the calling structure, and the maximum degree of parallelism provided by
Max/P [Pet93, KE97]. It also indicates whether a loop is serial or parallel as
detected by Polaris. If 1t is serial, the reason given by the compiler can be dis-
played on mouse-clicking. In Figure 2, the user has clicked on loop RESTAR_do560
to see the reason inhibiting parallelization.

Whenever additional information is available, more columns can be added.
Also, a user can rearrange columns, delete columns, sort the entries alphabeti-
cally or based on the execution time. By specifying the column displaying serial
timing information, speedup can be calculated on-demand.

Another view of URSA MINOR provides the calling structure of a given pro-
gram, which includes subroutine, function, and loop nest information as shown

in Figure 3. Each rectangle represents either a subroutine, function, or loop.
Clicking one of these will display the corresponding source code. In Figure 3 the
user 1s inspecting the loop ACTFOR_d0240 in this way. If one wants a wider view
of the program structure, the user can zoom in and out. This display enables a
better understanding of the program structure for tasks such as interchanging
loops or finding outer or inner candidate parallel loops.

UrsA MINOR can save the database in a format that generic spreadsheet
programs can understand. In Figure 4 we have read this form into the commer-
cial XESS3 spread-sheet program. This allows one to exploit the many options
and graphical representations of this tool. In Figure 4 the user has chosen an
execution time graph for the program BDNA, comparing the performance of Po-
laris with the compiler from Sun Microsystems, (the third line indicating “linear
speedup” for reference).

4 Case Studies

4.1 Experiments with the ARC2D Application

In a current study, we are comparing parallel directive languages for their suit-
ability as a portable compiler output representation [Vos97]. In doing so, we have
expressed the parallelism in several benchmark codes with various directive sets.
If the performance results of these codes are significantly different, URsA MINOR
is used 1n the search for explanations of these differences. An example of such
a search performed on the Perfect Benchmarks code ARC2D, is presented here as
our first case study.

First, as a base-line measurement, a loop by loop profile of the serial version
of the code executed on a 4 processor UltraSPARC workstation was done. The
results of this instrumentation was then gathered by UrRsA MINOR and trans-
formed into a form which is readable by commercial spreadsheet packages such
as Excel and Xess3. A major concern with instrumentation is that the overhead
associated with it will noticeably impact the measured performance. Using the
number of times each loop is executed, as well as the execution time measured
by the instrumentation, it i1s easily determined when such perturbation occurs.
In ARC2D, 114 of the 149 instrumented loops had significant overhead associ-
ated with their instrumentation, this being over 0.1% of the execution time of
the loop. Removing the instrumentation from these 114 loops, reduced the total
execution time of the program by over 46%. Ursa Minor currently provides the
average execution times necessary for this computation. In future releases of the
tool, this computation will be fully automated.

Additionally, the most time-consuming loops were identified in the serial
code. The Polaris-parallelized versions of these loops were used to compare the
performance of several parallel directive languages. The major loops in ARC2D
parallelized by Polaris are FILERX_do19, STEPFX_do210 and STEPFX_do230.
The identification of these loops was straightforward given that Ursa MINOR
presented the execution times of each loop as well as annotated it as parallel or

File Wiew

RESTAR_do340

Main Program

. RESTAR_d0550 subroutine
Function

Parallel Loop

. RESTAR_da560 Serial Loop
Unidentified Loop

DUMP
. CSRD$ LOOPLABEL *ACTFOR_do240’
C3PAR DOALL PRIVATE(FPXP0,FPYPO, FPZPO, F1ZP0, F1XPO, FLYPU, F2XPO, F2YPO, F22P0)

CE$PAR PRIVATE(FOZPO, FOXPO,FOYPO, THDO, ZDTIII VD'm anﬂ), REDUEIIDN(EHH)
ACTFOR CEPAR SHH"EB(HLE“UN ALENGT,RCUTS, B1H, A1, B1,B2H,A2, B34, A3, B2, B3, B4H, A4, B4)

ACTFOR_do10 NBod, & 4
CEPAR DﬂSERInL

i= 1+k nspeci(1), 4

ACTFOR_to100

ACTFOR_do240 .
ACTFOHJDZSS :
2p = 000
. ACTFORd323% || bopng | GOpLABEL "ACTFOR_doz3s"
CSHDS SBFE_CINDTION LH-19%i LE.0
CHPAR DI
i< s i1
. ACTFOR_d0237 ind0(j
AR tymach

yd = y0(i) +(-1)%y0()

zd = Z0(i)+(-1)*20(j)
ACTFDFLanSB xdt0(j) = xd+(-1)*2. DO*DBLECINT (alengu?xd))*alengt
ydt0(3) = yd+(-1)*2.DO*DBLECINT (alengutyd))*alengt

ACTFOR_to320

File Edit Search View Fomat Tools Options Graph Connections

1c31 |:||:| =50956
! A B C D [3 F [] H -

Execution Time of BONA

serial 1 proc 2 proc 3 proc 4 proc
44,7741 50095 33.0402] 32.210g] 24,679
44,7741 45, 956] 41.457] 40.4161 39,5439
44,7741 44. 71741 22.3871] 14. 9247 11,1935

Execution Time of || File Edt Options
serial 1 proc 2 pr

24 7003 29 5485
Sun_compiler] 24 7003 29 9124
Tdeal 24 7003 24 7003

Execution Time of BDNA

Execution Time of

serial 1 proc 2 pro)
Polariz 314.07281] 292.02957) 2]
Sun compiler 31407281 304. 09473 23]
31407281 314. 07281 15

T T T T T
serial 1proc Zproc 3proc 4proc

Fig. 4. Spread-Sheet View of the UrRsa MiNoOR Tool.

serial. The relative importance of these loops in the serial version can be seen in
Figure 5.

STEPFX_do230

(123%) STEPFX_do210
(122%)

FILERX_do1¢
(75%)

Others
(68.0%)

Fig. 5. Percentage of Execution Time Spent in Major Loops of ARC2D.

The parallelism found by Polaris was expressed in two forms. One using the
native Sun SPARC dialect and the other using the portable KAP/Pro direc-
tive set [Kuc88], a descendant of the proposed ANSI X3H5 standard. Browsing
through the performance results displayed by UrsA MINOR it was seen that on
4 processors, the KAP/Pro directive language exhibited superior performance.
Furthermore, by adding the loop-by-loop profile of ARC2D, as parallelized by
the Sun native compiler, an interesting phenomenon was discovered.

A significant “negative overhead” existed for many of the loops in the
KAP/Pro version when comparing the 1 processor parallel execution to the
execution of the untransformed code. Apparently, sequential optimizations were
performed in the KAP/Pro version which were not performed in the serial ver-
sion. Interestingly, this same optimization was often performed in the loops found
to be parallel by the native compiler, but not in the Polaris version which used
the Sun SPARC directives. The performance of the three major loops 1s shown
in Figure 6.

Using the source code browsing capabilities, a side-by-side comparison of the
loop nests uncovered the reason. Loop interchanging was being applied to many
of the loop nests in the KAP/Pro directive version by the back-end compiler.
The use of the Sun SPARC directives inhibited this transformation. Loop in-
terchanging was not disabled when parallelizing the code with the native Sun
parallelizing compiler; however it was applied less frequently. For a more de-
tailed discussion of this phenomenon and others uncovered during the analysis
of ARC2D, please refer to /citeVoss97.

A further analysis of the serial source code and the Polaris translated ver-
sions, as well as the program structures shown by the graphical loop structure
representation, showed that the two most significant loops STEPFX_do210 and

° 14
) . »
0
‘04 10
£ s — —
F3 e —
g —=
£ @ 4 /
: / PO
5 A ——— SIS e
0 T T . . i 0 |
ser 1 2 3 4 1 2 3 4
Number of Processors Number of Processors
(a) (b)
10 "
T
88 .
1] o -
£ 6 2
F = 2
84 — - | Y —
£ T e,
5 2 / =
i -
0 . ‘ o | |
ser 1 2 3 4 1 2 3 4
Number of Processors Number of Processors
12 "
S)
8 -
g s
F 6 N 2 -
N g
g4 ‘ A, &
0 T T . . i 0 |
ser 1 2 3 4 1 2 3 4

Number of Processors

(e)

Number of Processors

(f)

---©--- Polaris+Native Directives

—=A-- Polaris+KAP/Pro Directives

Fig. 6. Loop Performance of ARC2D on an UltraSPARC: (a) Execution
Time of FILERX_do19, (b) Speedup of FILERX_.dol9, (¢) Execution Time
of STEPFX_do210, (d) Speedup of STEPFX_do210, (¢) Execution Time of
STEPFX_do230 and (f) Speedup of STEPFX_do230.

STEPFX_do230 were imperfectly nested in the original source, but were trans-
formed into a perfect nest by Polaris. The application of forward substitution
and deadcode elimination by Polaris created perfectly nested loops, which the
back-end compiler was then able to interchange. Therefore, although the native
Sun parallelizing compiler was able to identify the same amount of parallelism
as Polaris, 1t did not create perfectly nested loops, and therefore did not facili-
tate further optimization. Figure 7 shows the performance of the three parallel
versions of ARC2D executed on 4 processors of the UltraSPARC. This figure
also shows the performance that would be obtained in the Sun SPARC directive

version if the interchanging had been done.

- Native Sun Parallelizer

D Polaris+Sun Directives

2 \:| +Perfect Nest Interchange

- +Imperfect Nest Interchange

- Polaris+KAP/Pro Directives

Fig. 7. Performance of ARC2D on 4 Processors of UltraSPARC.

Ursa MINOR allowed the characteristics responsible for the performance
differences in ARC2D to be quickly identified. The often tedious task of tabu-
larizing profiling results was performed automatically and the identification of
the parallel loops in this table was made obvious. The nesting structure of the
loops was a major factor in the performance of this code, and UrRsa MINOR’s
graphical display of the loop structure was a significant aid in quickly identi-
fying this phenomenon. A detailed study of the several versions of the source
code for each loop nest was often necessary, and a side-by-side comparison was
easily performed with the browsing facilities. The graphs presented in Figures b
through 7 can be generated by exporting the Ursa Minor database to the Xess3
spreadsheet and using its graphing functions.

4.2 Experiment with the Seismic Application

As the second case study, we introduce another project that characterizes and
analyzes large-scope industrial applications [AE97]. One of the programs we
considered was the Seismic Benchmark Suite [MH93]. Tt is a seismic activity
simulation program consisting of 20,000 lines of Fortran code. Here, we briefly
describe how the UrRsSA MINOR tool can be of help in the process of analyzing a
large application.

The Seismic Benchmark Suite contains a deep hierarchy of nested subroutines
and loops. Our goal is to understand the computational complexity of the overall
application suite and how this complexity changes with increasing numbers of
available processors. In order to do this we not only need the measurements of
loop execution times but also a formulation of the time spent in each loop as a

function of the number of processors and the input data size. The UrsA MINOR
tool aids in analyzing both the structure of the loop-hierarchy as well as the
individual times each loop contributes to the application suite.

The execution time for a loop can be formulated by averaging the time spent
in a single iteration and multiplying the average by the number of iterations. If
the number of iterations that a loop executes is known, then an estimation of the
total loop execution time is the number of iterations times the average execution
time per iteration. The UrRsa MINOR tool displays the average execution time
for an iteration of each loop in an easily accessible table.

However, a loop’s execution time may consist of a number of inner loops.
Knowing the loop hierarchy, provided visually with Ursa MINOR, the major
components of the total execution time become clear. A representation of the
call-graph as well as the hierarchy of loop nestings coupled with the actual times
spent in each loop is necessary in finding which sections of the code are the
dominant ones.

Another objective of the Seismic case study was to produce a well-performing
program, using Polaris as a starting point. We did this by parallelizing the pro-
gram with Polaris and then improving its performance by hand. UrRsA MINOR
assisted this manual process by providing the loop-by-loop table, from which
we could calculate the speedup and efficiency for each loop. Loops which had a
speedup below 1 were flagged. These loops were investigated further concerning
how to improve their automatic parallelization by Polaris. If no improvements
could be made, these loops were forced to execute serially so that they would
not incur any parallel execution overhead. In doing so, we used the feature that
URsA MINOR can place information in a format importable by a spreadsheet ap-
plication, with which we then performed operations such as computing “speedup
columns” and creating diverse graphical displays.

5 Future Development

URrsa MINOR is an ongoing tool project. We will continue to add new program,
compilation and performance information to our tool. This means that we search
for new sources of data as well as extracting more from existing ones. Polaris,
for example, maintains a large amount of information needed for parallelization,
such as the value ranges that variables assume, array sections being accessed,
data dependences, applicable transformations, performance estimations. If the
tool can obtain such data, 1t can significantly improve the user’s understanding
of the program under consideration. Also, we are planning to add more display
features whenever the newly obtained data call for a different type of presentation
for effective communication with the users.

Another goal is to integrate parallelizing compilers and performance analysis
facilities more tightly into our tool. In this way we will create an environment
that facilitates the entire process of developing parallel programs. Users will be
able to selectively apply parallelization techniques by interacting with the tool,
or to query available information for a specific piece of code while writing or

compiling a program. Following the design objective of leveraging off of exist-
ing tools, we will continuously search for available facilities to incorporate into
the tool. An important complementing objective is to provide methodologies for
interpreting performance data. Such methodologies will guide the user in iden-
tifying improvements to the application program and the underlying computer
system.

As mentioned in Section 3.1, we are planning to create a database of all the
program characteristics and performance data and make 1t available through the
Internet. While 1t requires minor modifications to the UrRsA MINOR tool, creating
such a repository would take considerable effort in collecting and organizing the
data. We are currently developing such an organization, which will encompass
characteristics of several program and benchmarks suites, performance results on
diverse machines, and facilities to visualize and reason about this information.
This database will reduce redundant work that is often necessary for researchers
to familiarize themselves with new programs. Also, making available the basis
for performance comparison allows active communication among optimization
researchers.

An important factor in developing an interactive program is the feedback
from its users. In order to be able to serve a growing user community, we will
include a way to configure URSA MINOR so that it can adapt to the users’
preferences.

6 Conclusions

We have presented an on-going tool project for parallel programming. The Ursa
MINOR tool fills two substantial voids in the programmer’s toolbox. It facilitates
interactive access to the information gathered by parallelizing compilers and
supports integrated views of this information with that provided by performance
analysis tools. We expect this tool to grow and become an overall programming
environment for parallel applications. We have shown how users can benefit from
simply putting information together in one place. The tool is portable and easy
to install, using the Java language. It also provides a basis for developing a
database and browser of program characteristics for distribution via the Web.

UrsA MINOR 1is evolving in a need-driven way. Its developers are involved
in projects such as the characterization and analysis of real applications and
the development of parallelizing compilers. Tool capabilities needed in these
efforts will be integrated in UrRsA MINOR. Keeping close together the tool design
projects and application characterization efforts will ensure the practicality of
our tool in the future.

References

[AE97] Brian Armstrong and Rudolf Eigenmann. Performance forecasting: Char-
acterization of applications on current and future architectures. Technical

Report ECE-HPCLab-97202, Purdue University, School of Electrical and

[ASMS89]

[BEH'94)

[BKK*89]

[EM93]

[HAA96)

[Int97]

[KE97]

[Kuc88]

Computer, Engineering, High-Performance Computing Laboratory, Febru-
ary 97.

Bill Appelbe, Kevin Smith, and Charles McDowell. Start/Pat: A Parallel-
Programming Toolkit. JTEEE Software, 6(4):29-38, July 1989.

William Blume, Rudolf Eigenmann, Jay Hoeflinger, David Padua, Paul
Petersen, Lawrence Rauchwerger, and Peng Tu. Automatic Detection of
Parallelism: A Grand Challenge for High-Performance Computing. [IEEFE
Parallel and Distributed Technology, 2(3):37-47, Fall 1994.

V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok.
The ParaScope editor: An interactive parallel programming tool. In Inter-
national Conference on Supercomputing, pages 540-550, 1989.

Rudolf Eigenmann and Patrick McClaughry. Practical Tools for Optimizing
Parallel Programs. Presented at the 1993 SCS Multiconference, Arlington,
VA, March 27 - April 1, 1993.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with
the SUIF compiler. IFEF Computer, pages 84-89, December 1996.

Intel. VTune: Visual Tuning Environment, 1997.
http://developer.intel.com/design /perftool / vtune/index.htm.

Seon-Wook Kim and Rudolf Eigenmann. Maz/P: detecting the mazimum
parallelism in a Fortran program. Purdue University, School of Electri-
cal and Computer, Engineering, High-Performance Computing Laboratory,
1997. Manual ECE-HPCLab-97201.

Kuck & Associates, Inc., Champaign, Illinois. KAP User’s Guide, 1988.

[MCC*95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.

[MHO93]

[Pet93]

[Ree94]

[Vos97]

Hollingsworth R. Bruce Irvin, Karen L.. Karavanic, Krishna Kunchitha-
padam, and Tia Newhall. The Paradyn parallel performance measurement
tools. IEEE Computer, 28(11), November 1995.

C. C. Mosher and S. Hassanzadeh. ARCO seismic processing performance
evaluation suite, user’s guide. Technical report, ARCO, Plano, TX., 1993.

Paul Marx Petersen. FEvaluation of Programs and Parallelizing Compil-
ers Using Dynamic Analysis Techniques. PhD thesis, Univ. of Illinois at
Urbana-Champaign, Center for Supercomputing Res. & Dev., January 1993.
Daniel A. Reed. Experimental performance analysis of parallel systems:
Techniques and open problems. In Proc. of the 7th Int’ Conf on Modelling
Techniques and Tools for Computer Performance Evaluation, pages 25-51,
1994.

Michael J. Voss. Portable loop-level parallelism for shared memory multi-
processor architectures. Master’s thesis, School of Electrical and Computer
Engineering, Purdue University, October, 1997.

This article was processed using the ¥TEX macro package with LLNCS style

