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Abstract

A Hierarchy of Processor-And-Memory (HPAM)
can be viewed as an extension of the notion of a mem-
ory hierarchy. The extension entails the inclusion of
processors with di�erent performance in di�erent lev-
els of the memory hierarchy. Technology trends, ap-
plications behavior and previous research suggest that
a multiprocessor system organized as a Hierarchy of
Processor-And-Memory may o�er considerable advan-
tages over conventional multiprocessor organizations.
This paper quanti�es and analyzes the advantages of
computing-in-memory, for a multi-level HPAM sys-
tem, as compared to a conventional multiprocessor sys-
tem with the same cost. The analysis entails using
performance models and simulation data. Underly-
ing the comparative study is the assumption that the
cost of a processor is in proportion to the square of
its performance. The 9 benchmarks used in the evalu-
ations belong to the CMU, Perfect Benchmarks and
SPEC95 suites. While the evaluation methodology
takes into account the heterogeneity of HPAM, the em-
phasis is placed on modeling the impact of computing-
in-memory on the relative performance of the multi-
processors under study. The results indicate that, with
rare exceptions, HPAM outperforms conventional mul-
tiprocessor designs of identical cost by as much a 80%
in the benchmarks and the ranges of model parameters
considered in the study. In the very few exceptions to
this conclusion HPAM is never outperformed by more
than 20%.
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1 Introduction

A system organized as a Hierarchy of Processor-
And-Memory (HPAM) [23, 21, 22] can be viewed as
an extension of the familiar notion of memory hier-
archy. The extension consists of including processors
into one or more levels of the memory hierarchy. As-
suming that the top (i.e. �rst) level of the hierarchy is
the fastest, any given memory level is extended with
processors that are slower, less expensive and in larger
number than those in the preceding level. Heterogene-
ity and computing-in-memory are thus inherent to an
HPAM system. This paper quanti�es and analyzes the
advantage of computing-in-memory in HPAM as com-
pared to conventional multiprocessors with the same
cost.

There is considerable evidence that di�erences in
the rate of improvement of processor, memory and
I/O technology may call for novel computer organi-
zations within the next 10 years. In particular, the
increasing gap between CPU cycle times and mem-
ory access latency has motivated several proposals for
either \bringing the processor to the (DRAM) mem-
ory" [3, 15] or \bringing the memory (SRAM) to the
processor" . The main purpose of the proposed designs
is to avoid the so-called \memory (latency) wall" [20]
as well as the \memory bandwidth wall".

An HPAM also relies on computing-in-memory in
order to avoid long memory access latencies. The anal-
ogy to memory hierarchy is present in two forms. One,
already mentioned in the �rst paragraph, is the use
of larger numbers of lower cost, slower processors in
lower levels of the hierarchy (just as larger, less ex-
pensive slower memory technology is found in lower
levels of the memory hierarchy). The second analogy
is in relation to locality of references, the fundamental



property of real programs that well-designed memory
hierarchies exploit in order to provide small average
access times. In [21] and subsequent studies it has
been empirically established that there exists spatial
and temporal locality of (degree of) parallelism. This
behavior is exploited by HPAM by keeping \parallel"
data \close" to the processors in the level that can
process it with the desired degree of parallelism.

In a conventional multiprocessor system all proces-
sors are identical. According to [12] , as long as the
cost and performance of processors (and implicitly the
associated memory system) are linearly related, the
best multiprocessor system is one which consists of as
many of the best available processors as allowed by a
given system budget.

However, also according to [12], a superlinear rela-
tion (as observed in a revisited [14] version of Grosch's
law [8]) between cost and performance renders homo-
geneous solutions non-optimal for large enough num-
ber of processors. There is an optimal point in the
cost-performance function (of the number of proces-
sors) beyond which homogeneous solutions are no
longer desirable [9, 12, 2]. The intuition behind this
conclusion is related to Amdahl's law. An heteroge-
neous machine executes sequential code on the fastest
available processor and parallel code on the largest
possible number of processors so that neither code seg-
ments become a bottleneck. In contrast, for a simi-
lar budget and a superlinear cost-to-performance re-
lationship, a homogeneous machine would either use
slow(er) processors for the sequential code segments
or few(er) processors for the parallel code segments.

The relation between microprocessor cost and per-
formance is a complex one, which manufacturers con-
sider to be proprietary information. However, sev-
eral arguments suggest that cost grows superlinearly
with performance. The study reported in [14] estab-
lishes that such superlinear cost/performance relation-
ship holds for microprocessors in di�erent computa-
tional categories. In [12] it is argued that a quadratic
cost/performance rule is conservative for high-end mi-
croprocessors. Assuming a (conservative) linear rela-
tionship between VLSI area and performance, yield-
based cost models [10, 11] would suggest that chip
cost increases in proportion to performance raised to
(� + 1), where � is the number of critical masking
steps (a typical value being � = 3). It is also pre-
dicted that future improvements in performance will
incur dramatically high development costs (for both
microprocessor design and fabrication processes) [17].
Superlinear costs and the implication that homoge-
neous solutions may be suboptimal motivates the con-

sideration of heterogeneity in future multiprocessor
systems. Several studies [21, 23, 2, 12] have analyzed
the potential cost-performance gains of such systems
assuming (conservatively) that a quadratic law holds
(i.e. (�+1)=2). This assumption is also made for the
HPAM design/models used in this paper.

The rationale and initial quantitative arguments for
the HPAM concept appeared �rst in [21]. In [22], an
execution-driven HPAM simulator (HPAM Sim) that
simulates multiple processors and networks of di�er-
ent speeds was used to analyze the impact of het-
erogeneity on the performance of HPAM. In contrast,
the purpose of this paper is to quantify and analyze
the advantages of computing-in-memory (i.e. in dif-
ferent levels of HPAM) against computing on a con-
ventional \at" multiprocessor system. Performance
data was gathered by using an execution-driven sim-
ulator that models memory behavior \in the large" of
selected benchmarks from several suites (Spec95, Per-
fect Benchmarks [5] and CMU [13]).

The rest of this paper is organized as follows. Sec-
tion 2 introduces the HPAM machine model and the
execution time model of HPAM and at machines.
Section 3 presents the simulation framework and qual-
itative evaluation methodology. Section 4 presents the
simulation results and performance analysis. Section 5
concludes the paper.

2 Machine And Performance Models

A hierarchical processor-and-memory (HPAM) ma-
chine is a heterogeneous, multilevel parallel computer.
Each HPAM level contains processors, memory and an
interconnection network. The speed and number of
processors, latency and capacity of memories and net-
works di�er between levels in the hierarchy. The fol-
lowing characteristics hold across the di�erent HPAM
levels from top to bottom: individual processor perfor-
mance decreases, number of processors increases, and
memory/network latency and capacity increase.

Tasks are assigned to HPAM levels according to
their degree of parallelism (DoP). Highly parallel code
fractions of an application are assigned to bottom lev-
els, while sequential and modestly parallel fractions
are assigned to top levels.

In this paper, the simplest of the possible HPAM
design points, with only two processor-and-memory
levels, is studied, and its performance is compared to
a homogeneous (\at") machine with the same esti-
mated cost. Both HPAM and at machines are as-
sumed to support a global shared address space. The



HPAM machine is speci�ed only to the extent neces-
sary to evaluate the impact of computing-in-memory.
The relatively straightforward design is shown in Fig-
ure 1, along with the at machine model. The ho-
mogeneous machine is composed of a number of in-
terconnected processors with on-chip caches on the
�rst level; extra (o�-chip) cache storage on the sec-
ond level; and main memory on the third level. In the
HPAM machine, memory in the second level is aug-
mented with processors. The second HPAM level is
hence composed of connected processors with on-chip
caches. The �rst level of HPAM contains only one
processor, as powerful as one of the processors in the
homogeneous con�guration, and the second level con-
tains several identical processors, less powerful than
the processor in the �rst level (by about a factor of
two in this paper). Such con�guration is referred as a
2-level HPAM throughout this paper, since only two
HPAM levels are \active" (i.e., contain processors). It
is assumed, for simplicity, that the network connecting
the di�erent levels is a bus.

The following design parameters, based on current
technology values, have been assumed for both the at
and HPAM designs:
Processor performance: A base processor with
clock frequency of 300MHz is assumed for the �rst
level of both the homogeneous and HPAM con�gura-
tions. Following the cost-oriented approach on which
the HPAM concept is based, the processors of the sec-
ond level of the HPAM machine must be slower than
the base processor. It is assumed that performance,
approximated by average number of instructions ex-
ecuted over a period of time, is proportional to the
square root of cost [23]. Let FN1 denote the number
of processors with clock cycle FCLK1 (assumed to be
1/300MHz=3.33ns) and average clocks per instruction
FCPI1 = 1 in the homogeneous machine; HN2 the
number of processors with clock cycle HCLK2 and av-
erage clocks per instruction HCPI2 = 1 in the second
level of the HPAM machine; and assume that the �rst
level of HPAM has only one processor. The clock cy-
cle and average CPI of HPAM second-level processors
is given by the following equation, which expresses a
quadratic relationship between cost and performance.

HCLK2 �HCPI2 =

r
HN2

FN1 � 1
� FCLK1 � FCPI1

(1)
Bus performance: A bus clock of 60MHz and bus

widths of both 16 and 32 Bytes are assumed. This
choice is inspired by the use of a 66MHz, 16-Byte bus
in Alpha 21164 [4] systems.

Cache sizes: The cache sizes assumed are based
on miss rate measurements. The approach described
in [16] is followed to obtain cache sizes that are scaled
to the working set sizes of the benchmarks under study.
Benchmarks from the CMU task-parallel, Perfect Club
and Spec95 suites have been used in this study. The
conclusion reached is that working sets for the CMU
benchmarks are smaller than Perfect Club's, which are
smaller than the Spec95 working sets. Therefore, dif-
ferent cache sizes for these suites have been chosen.
The cache con�gurations used are: direct-mapped L1
caches with 32Byte blocks and 2-way set associative
L2 caches with 64Byte blocks. The cache sizes used in
the simulations are shown in Table 1.

Level 1 (KB) Level 2 (MB)
CMU Perf. Spec CMU Perf. Spec

HPAM 16 16 64 0.5 1 2
Flat 64 64 256 0.5 1 2

Table 1: Cache sizes assumed in the simulations

Number of processors: Since a parallel region of
code is assumed to execute concurrently without over-
heads, small processor counts need to be used to min-
imize the error that this assumption introduces in the
execution model. Homogeneous con�gurations with
4 and 16 processors, and HPAM con�gurations with
one processor in the �rst level and 16 processors in the
second level are used in this paper.

2.1 Performance Model

The performance model represents the execution
times for both HPAM and homogeneous con�gurations
using the notation in Table 2 and Section 2. Figure 1
shows a graphical representation of the terminology
used for access times across the hierarchy. The simu-
lator is able to measure the parameters FICs, FICp,
HICi, FA1;j and HAi;j of the execution time model.

The execution time expressions for the homoge-
neous and HPAM con�gurations are introduced in
Equations 2 and 3, respectively. Equation 2 consists
of three major terms. The �rst term is the time to
execute the sequential fraction of the code. The sec-
ond term is the time to execute the parallel fraction
of the code, when all processors execute concurrently.
The third term is the execution time contribution due
to memory accesses to remote levels. It is assumed
that the parallel fraction of the code can be executed
without overheads due to synchronization and shared-
memory tra�c inside the level.



FN1 number of processors in the at machine
HNi number of processors in level i of HPAM
FCLK1 clock cycle of the at machine processors
FCPI1 CPI, at machine processors
HCLKi clock cycle of level i HPAM processors
HCPIi CPI, HPAM level-i processor
CSIZEi total cache space available at level i
BSIZEi block size of the cache at level i.
DoPt minimum degree of parallelism for a DO

loop to be assigned to 2nd level of HPAM
FICs instruction count, sequential mode (at)
FICp instruction count, parallel mode (at)
HICi instruction count, HPAM level-i
FAs1;j number of memory references issued

in the sequential code in the at machine
that are serviced by a cache in level j

FAp1;j number of memory references issued
in the parallel code in the at machine
that are serviced by a cache in level j

FA1;j FA1;j = FAs1;j + FAp1;j
HAi;j number of memory references issued in

level i of HPAM that are serviced by a
cache in level j

MATi access time of the memory in level i
FP1;j j = 1: hit time of 1st level cache

j > 1: penalty of bringing a cache
block from level j to 1 in the at machine

HPi;j j = i: hit time of HPAM ith level
j 6= i: penalty of bringing a cache block
from level j to level i

CLKbus clock cycle of the inter-level bus
Wbus width of the inter-level bus

Table 2: Notation used throughout the paper
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Figure 1: Parameters of the execution time model for
2-level HPAM and homogeneous con�gurations

Equation 3 is similar to Equation 2, the main dif-
ference being that instructions and memory accesses

can be issued in any level of the hierarchy that con-
tains processors. It is assumed that HN1 = 1 and
HIC1 = FICs, and that there is no overlap in execu-
tion between levels 1 and 2.

FT ime = (2)

(FICs � FCPI1 � FCLK1 + FAs1;1 � FP1;1)+�
FICp � FCPI1 � FCLK1 + FAp1;1 � FP1;1

FN1

�
+0

@levelsX
j=2

FA1;j � FP1;j

1
A

HTime = (3) 
levelsX
i=1

HICi �HCPIi �HCLKi +HAi;i �HPi;i
HNi

!
+

0
@levelsX

i=1

levelsX
j=1;j 6=i

HAi;j �HPi;j

1
A

Memory access times: The memory access
times, together with the time to transfer a data block
over the bus, are used to calculate the penalties HPi;j
and FP1;j. It is assumed that the on-chip L1 cache
is accessed in two CPU clock cycles, as in the Alpha
21164 [4]. For the second-level cache, it is assumed
that the same SRAM technology of the L1 cache is
used. The memory access time has to be scaled ac-
cording to the size di�erence between the two caches.
The assumption used is that the second-level cache is
divided into HN2 banks, one bank per processor on
the second level of the HPAM machine. Hence, each
processor on the second level of HPAM has an on-chip
cache of size CSIZE2

HN2

. According to [18], the access
time increase due to a larger on-chip cache size can be
approximated by a constant factor when the cache size
is doubled. This constant factor is approximately 14%
for a 0.8�m technology [18]; this value is assumed in
the performance analysis to obtain an expression for
MAT2 in terms of MAT1 and the cache sizes.

Penalties FP1;j, HPi;j : There are two cases
to be considered. Hit times (i = j) are set to on-
chip memory access times; hence, FP1;1 = MAT1,
HP1;1 = MAT1 and HP2;2 = MAT2. Miss penalties
(i 6= j) are given by the access time of the memory
providing the data to serve the miss plus transfer time
on the bus.

The argument for computing-in-memory is built
upon the fact that o�-chip accesses are expensive: the



o�-chip available bandwidth is smaller than the on-
chip bandwidth due to packaging constraints (limited
number of pins), and the latency is larger due to the
necessity of driving o�-chip lines with larger capaci-
tance [3, 15]. For the con�gurations shown in Figure 1,
the possible performance gains of an HPAM over a
at machine due to computing-in-memory are based
on the fact that an access generated by an HPAM
level-2 processor that hits in its local cache (with ac-
cess time MAT2) is faster than an access generated
by a level-1 processor on the homogeneous con�gura-
tion that misses on its local cache (access time FP1;2).
Even though such HPAM level-2 hit is slower than a
level-1 hit in the homogeneous machine (access time
MAT1), it can be overlapped with several other \slow"
hits in the remaining level-2 processors.

The o�-chip overhead is modeled by Equations 4
and 5. The non-negative parameter OHPAM repre-
sents potential overheads of accessing memory on a
processor-and-memory chip compared to accessing a
memory-only chip. Contention on the PAM memory
ports when both the on-chip processor and an external
processor request a memory access is thus captured by
OHPAM . This parameter is varied in the simulations
in order to observe its impact on performance.

FP1;2 =MAT2 + (1 +
BSIZE1

Wbus

) �CLKbus (4)

HP1;2 = FP1;2+ OHPAM (5)

Table 3 shows the actual timings used in the sim-
ulations of CMU and Spec95 benchmarks. The range
shown for HP1;2 corresponds to OHpam ranging from
0 to 50 base processor clock cycles.

Wbus MAT1 MAT2 FP1;2 HP1;2
16B 6.7ns 12.8ns 63ns 63ns to 230ns
32B 6.7ns 12.8ns 46ns 46ns to 213ns

Table 3: Access times used in simulations of CMU and
Spec95 benchmarks

Notice that HP2;2 =MAT2 is about twice as large
as FP1;1 = MAT1, i.e., accessing on-chip memory in
the second level of HPAM is twice as slow as accessing
on-chip memory in the �rst level. However, when the
level-2 processors overlap their memory accesses, the
e�ective memory bandwidth is larger than the band-
width available in the �rst level due to the larger num-
ber of available processors and independent memory
banks.

As for the miss penalties to the main memory (level
3), a �xed value of 300ns is assumed for both con�gu-
rations based on the mainmemory latency of an Alpha
server [3, 24]: FP1;3 = HP1;3 = 300ns. It is assumed
that HP2;1 = HP1;2 and HP2;3 = HP1;3.

3 Evaluation Methodology

The following programs have been studied in this
paper: Airshed, Stereo, Radar, FFT2 (CMU suite);
Ocean, Arc2D, FLO52 (Perfect Benchmarks); Hy-
dro2d and Tomcatv (Spec95 suite).

All the benchmarks studied are originally sequen-
tial and written in Fortran. Each benchmark is in-
strumented with Polaris [19], a source-to-source par-
allelizing compiler, to identify parallel DO loops. Each
identi�ed parallel loop is \wrapped" with traps to a
simulator engine at the beginning and end of the loop.
The simulator is composed of an execution-driven en-
gine and a multi-level cache simulator built on top of
Shade [1]. A trap signals the engine that a parallel
region of the code with a speci�c degree of parallelism
has been reached.

The memory hierarchy simulator implements a data
cache for each level of an HPAM con�guration. Each
cache is de�ned by its size, block size and associativ-
ity. Block sizes in a given level of the hierarchy must
be either of the same size as a block of the upper level
cache or larger by a power-of-two factor. The cache
coherence protocol used is based on the MESI protocol
with extensions to support memory accesses being po-
tentially generated on every level of the hierarchy [7].
Instruction caches are assumed to be perfect (100%
hit rate) by the simulator.

4 Results and Analysis

Table 4 presents the basic characteristics of the
benchmarks studied: total instructions count (IC),
degree of parallelism threshold used to determine par-
allel loops (DoPt), fraction of instructions that are ex-
ecuted in sequential mode (ICs), and local hit rates
for levels 1 and 2 of the HPAM con�guration. The hit
rate of HPAM level Li shown in Table 4 is de�ned as
the number of data references issued by processors in
level i of HPAM that hit in level i divided by the total
number of references issued in level i.

The values of DoPt shown in Table 4 correspond
to the degree of parallelism threshold used to decide
whether a DO loop is executed in HPAM in parallel



Bench. IC DoPt ICs Hit; L1 Hit; L2
Airshed 6.49E10 25 1.7% 93.3% 99.8%
Stereo 3.64E9 256 23.0% 97.4% 98.4%
Radar 2.63E9 400 97.4% 96.6% 99.7%
FFT2 3.59E9 64k 86.5% 99.4% 99.8%
Ocean 1.88E11 64 89.9% 98.9% 99.9%
Arc2D 1.49E11 16 0.04% 97.1% 99.5%
FLO52 3.10E10 16 1.2% 96.5% 99.9%
Hydro2d 4.13E11 64k 1.2% 97.0% 99.4%
Tomcatv 2.65E11 511 7.0% 98.4% 99.4%

Table 4: Benchmark summary: number of instruc-
tions, minimum degree of parallelism executed in the
second level of HPAM (DoPt), % sequential execution
and L1 and L2 hit rates for the HPAM con�guration

(in the second level) or sequentially. The at machine
executes all non-sequential loops in parallel. The value
of DoPt is chosen so that the percentage of code with
degree of parallelism DoP , 1 < DoP < DoPt, is neg-
ligible.

The level hit rates shown in Table 4 show that the
applications under study exhibit good locality with re-
spect to degree of parallelism. A more detailed look at
the distribution of accesses across the hierarchy [6] is
presented in Table 5 for the benchmark Airshed. The
total number of accesses is the same for both HPAM
and at machines; the way accesses are divided across
the levels, however, is di�erent.

The access distribution shows how accesses gener-
ated by the ith HPAM level tend to be locally served
(values shown in bold face). In this example, the sum
of HPAM level-1 and level-2 hits (HA1;1 +HA2;2) is
larger than the number of at level-1 hits (FA1;1). In
addition, the number of HPAM level-1 misses serviced
by level 2 (HA1;2) is about 3.3 times smaller than the
corresponding number of misses on the at machine
(FA1;2). This means that the HPAM processors hit
their level caches more often than the at design, even
though the total cache capacity of the HPAM machine
is smaller (see Table 1).

4.1 Performance Comparison

The approach taken to study the performance ben-
e�ts of computing-in-memory consists of comparing
a 2-level HPAM machine to a homogeneous machine.
The basis of comparison is execution time, as modeled
in Section 2.1. The two architectures are compared
under two di�erent scenarios. The choice of the sce-

Flat
FA1;1 FA1;2 FA1;3

4,421,280,188 43,643,411 3,604,499

HPAM
HA1;1 HA1;2 HA1;3

209,486,013 13,417,183 1,635,899
HA2;1 HA2;2 HA2;3

6,561,554 4,235,536,996 1,890,453

Table 5: Distribution of accesses across levels for the
benchmark Airshed on both 2-level HPAM (HAi;j)
and at (FA1;j) con�gurations.

narios is based on a constant-cost approach: a base
homogeneous machine with four identical processors
is assumed, and two di�erent designs with equivalent
cost are generated by following the cost/performance
model of Equation 1:
Scenario 1: The homogeneous machine has 4 iden-
tical processors, each clocked at 300MHz and with a
CPI of one. The HPAM machine has 1 processor on
the �rst level identical to the processor used on the ho-
mogeneous machine; this processor is responsible for
executing the sequential fractions of the application.
The second level contains 16 processors, each of them
clocked at 129MHz (value obtained from the model
presented in Section 2, Equation 1). This scenario is
based on the HPAM concept that fast processors are
expensive and should be used in sequential computa-
tion while parallel computation should be handled by
a larger number of slower processors.
Scenario 2: The HPAM machine is identical to the
one described for Scenario 1. However, the homoge-
neous machine has sixteen processors instead of four.
Hence both HPAM and at machines execute parallel
code with the same number of processors. The same
principle used in the square-root cost model of Equa-
tion 1 is used to determine the clock speed of each
processor based on the base clock speed of 300MHz:
with the same cost of four 300MHz processors, it is
possible to implement sixteen processors (for the at
machine) clocked at

p
4=16 � 300 = 150MHz.

The simulation results presented in the rest of this
section refer to these two scenarios. For a given sce-
nario, the simulation plots show speedup, de�ned as
execution time on the homogeneous machine divided
by execution time on the HPAM machine, for varying
PAM overhead OHpam, with the bus width assuming
values of 16 and 32 Bytes. The benchmark Tomcatv is
�rst examined. Figure 2 shows the speedup of HPAM



over a homogeneous con�guration assuming Scenario
1. In this case, HPAM performs 34% to 42% better
than the homogeneous case for the two bus widths con-
sidered and forOHpam up to 50 clock cycles of the base
CPU shown in the graph. Notice that for a bus width
of 32 Bytes (dotted line of Figure 2), a level-1 cache
block can be fetched to the cache in one bus cycle.
Even with a wide bus, the time to access the level-2
cache from level 1 in the homogeneous con�guration
is larger than the time to access the level-2 cache from
level 2 in the HPAM case, since the o�-chip datapath
is clocked at a slower rate than the on-chip datapath.
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Figure 2: Speedup curve for Tomcatv, Scenario 1.
Speedup is the ratio of the execution times, and the X
axis is the PAM overhead modeled on Equation 5.

Scenario 1, Scenario 2,
Bench. OHpam = OHpam =

0 50 0 50
Airshed 1.63 1.51 0.96 0.89
Stereo 1.08 1.01 1.19 1.11
Radar 1.00 0.87 1.78 1.54
FFT2 1.01 0.98 1.70 1.64
Ocean 1.01 0.97 1.81 1.73
Arc2d 1.64 1.63 0.92 0.92
FLO52 1.70 1.66 0.89 0.88
Hydro2d 1.55 1.53 1.01 1.00
Tomcatv 1.37 1.34 1.07 1.05

Table 6: Summary of results: Speedups (HPAM ver-
sus at architecture) for scenarios 1 and 2, and PAM
overheads of 0 and 50 base CPU clock cycles

In scenario 2, the homogeneous con�guration is ca-
pable of executing the parallel fraction of Tomcatv
faster than the HPAM machine can, because each ho-

mogeneous processor is 16% faster than the HPAM
processors on the second level. However, the serial
fraction of the code is executed in the homogeneous
machine at 50% of the speed of the HPAM level-1 pro-
cessor. As Tomcatv has about 7% of its execution in
sequential mode (see Table 4), the time spent in the
sequential fraction of the code is signi�cant in the total
execution time. As HPAM executes this portion of the
code twice as fast as the homogeneous machine, the to-
tal execution time is 4% to 11% smaller for HPAM.

For an application with more available parallelism,
Airshed, HPAM performs worse than the homogeneous
con�guration in Scenario 2. In this scenario, the ho-
mogeneous con�guration executes the parallel fraction
of the code faster than HPAM, and as the execution
of the sequential fraction (about 1.7% of the code) is
no longer the dominant factor in the performance, the
overall execution time is smaller in the homogeneous
case. However, HPAM performs signi�cantly better
for the same application if Scenario 1 is assumed.

Table 6 summarizes the results obtained for scenar-
ios 1 and 2. The HPAM con�guration outperforms
the homogeneous con�guration in Scenario 1 except
for the cases where the application is highly sequen-
tial. Two reasons contribute to this performance ad-
vantage. First, The larger number of processors in the
HPAM con�guration. By following a constant-cost ap-
proach, assuming the quadratic cost/performance rule
shown in Equation 1, the second level of the HPAM
system has a larger aggregate performance than the
homogeneous machine. Second, good locality of refer-
ences with respect to degree of parallelism, combined
with computing-in-memory in the second level. Good
locality is responsible for keeping the inter-level com-
munication low, while computing-in-memory provides
fast access to on-chip memory for processors in the
second level.

As for Scenario 2, HPAM outperforms the homoge-
neous con�guration when the fraction of the code that
is sequential is signi�cant, such as in Radar. When
the application is highly parallel, the homogeneous
machine outperforms HPAM because each processor
in the homogeneous machine is faster than an HPAM
second-level processor, and because the fast processor
on the �rst level of HPAM is idle during the parallel
execution in the second level.

5 Conclusions

The collected experimental data shows that appli-
cations exhibit good locality of reference with respect



to degree of parallelism. An HPAM machine bene-
�ts from such locality property in several ways. First,
communication between HPAM levels is reduced, since
most of the references issued from a processor tend to
be serviced by a processor in the same level. In addi-
tion, computing-in-memory also bene�ts from locality,
since processors in the lower hierarchy levels have fast
access to on-chip data.

The performance analysis presented in this paper
has shown that for several applications with di�erent
parallelismpro�les, execution times are smaller for a 2-
level HPAM system when compared to a homogeneous
design, under a constant cost model. Computing-in-
memory improves system performance in HPAM by
allowing a large number of processors to overlap their
accesses to local memory, thus exposing large available
bandwidth in the slow memory levels.

In this paper, a very simple HPAM design point
was presented, with only two active levels. The re-
sults indicate that the performance advantages of such
a conservative HPAM architecture are already evident
with current technology. Such conclusion motivates
the ongoing research e�orts in designing wider and
deeper HPAM hierarchies, characterizing and mapping
a broader class of applications to HPAM with opti-
mized level scheduling algorithms, and simulatingwith
�ner accuracy a larger set of HPAM design points.
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