
Issues and Approaches in Parallel Multi-Component

and Multi-Physics Simulations

Thomas J. Downar Rudolf Eigenmann Jos�e A. B. Fortes
Nirav H. Kapadia

Purdue University, West Lafayette, IN, U.S.A. �

Abstract We discuss two large computational

problems and identify the needs and opportunities

to develop and run these applications across the

world-wide infrastructure of computer systems and

their interconnections. The applications include a

nuclear reactor simulation and a seismic processing

code. A new infrastructure being developed at Pur-

due University addresses the described needs. The

infrastructure is an extension of the Purdue Univer-

sity Network Computing Hubs (PUNCH). It facili-

tates the development and execution of large, multi-

component applications on globally distributed sys-

tems and supports remote collaboration.

Keywords: multi-physics applications, distributed

computing, Web operating system

1 Motivation

A vast parallel and distributed computational
and communication infrastructure is currently
emerging in the form of the Internet, the
World-Wide Web, and its attached compute
engines. This infrastructure is sometimes re-
ferred to as the Information Power Grid. We
are only beginning to learn how to exploit
its potential for solving large-scale computa-
tional engineering problems. On the applica-
tion side, the demands for solving ever-larger
problems are increasing at a similar speed.
These demands come with expectations of run-
ning programs that consist of a coordinated set
of geographically-distributed application com-
ponents, and to perform simulations that en-

�This work was supported in part by NSF grants

#9703180-CCR and #9872516-EIA. This work is not

necessarily representative of the positions or policies of

the U. S. Government.

compass multiple problem areas. For example,
a microscopic simulation of material behavior
might be combined with the macroscopic sim-
ulation of a manufacturing process that uses
such material; the two simulations may be de-
veloped and executed at di�erent research sites
and may exchange intermediate data via the
Information Power Grid infrastructure.

This paper takes the viewpoint that we are
in the initial stages of searching for meth-
ods to solve parallel and distributed multi-
component and multi-physics problems. The
paper presents issues from the viewpoint of two
speci�c, large-scale applications in nuclear en-
gineering and seismic processing, respectively.
It then describes our approach for the develop-
ment of an \Operating System for the Grid".
This system is based on an operational Web-
based infrastructure, called the Purdue Univer-
sity Network Computing Hubs (PUNCH). The
paper presents an an overview of this system
and outlines extensions that address the issues
raised by the described applications.

Thermal
Hydraulics Neutronics

General
Interface

Thermal
Hydraulics

Input

Neutronics
Input

Memory
Structure

(A)

Memory
Structure

(B)

Memory
Structure

(AB)

(A)⇔(AB) (AB)⇔(B)

T/H
Data
Map

T/H Side
Interface

Input

Neut.
Data
Map

Neut. Side
Interface

Input

Q f Qfp Qac Q f′ Qfp′ Qac′

P

Tf
ρv ρl α
Tm B

Tf(r →0 r)n

P′
′ρv ′α

Tf′
ρl′

′Tm B′

Tf(r →0 r)n′

Figure 1: The General Interface in the frame-
work of the coupled code

2 RETRAN-3D:

A Multi-Physics Nuclear

Engineering Application

The RETRAN-3D [1] nuclear reactor simula-
tion code has been developed over the last
30 years by the Electric Power Research In-
stitute (EPRI) for the safety analysis of com-
mercial Light Water Reactors. Today it is
used to analyze the safe operation of many
of the 400 commercial nuclear power plants in
the world, which generate a signi�cant frac-
tion of the world's electricity. The user base
for the RETRAN-3D code includes researchers
and engineers from national laboratories, nu-
clear utilities, nuclear fuel vendors, and uni-
versities.

The code is written in Fortran and C and
includes over 200,000 lines of source. Its de-
velopment represents the investment of over a
hundred man years e�ort. The code has re-
cently been targeted for redevelopment to an-
alyze the next generation of nuclear reactors.
A primary motivation for this redevelopment
is to update the physics of the code and to im-
prove its computational e�ciency.

RETRAN-3D is a multi-physics code in that
it solves the coupled two uid/temperature
and neutron/nuclide �eld equations in a nu-
clear reactor. The primary safety analysis per-
formed with the RETRAN-3D simulation is
the possibility of loss of reactor core coola-
bility and consequent fuel melting during a
postulated reactor accident event. The solu-
tions of the �eld equations required for prac-
tical problems typically leads to a mesh with
thousands of nodes. The computational times
for each transient scenario can exceed several
hours using high end scienti�c workstations.
The reduction of the computational burden
for RETRAN-3D is a high priority, particu-
larly with the recent desire to increase mod-
eling �delity (e.g. improved physics and 3-
dimensional models). However, an equally im-
portant priority in the code redevelopment ef-
fort is to streamline maintenance of the code
and to improve accessibility of the code by the
user community. The following will briey de-
scribe some of the e�orts to improve computa-
tional performance and then describe e�orts to

redesign the code to improve its maintainabil-
ity and accessibility.

2.1 Parallel Computing for Improv-
ing Computational Performance

Recent e�orts to reduce the computational
burden in RETRAN-3D have focused on the
functional decomposition of the �eld equation
solution and the domain decomposition of the
spatial mesh [2]. The functional decomposi-
tion was achieved by assigning the solution
of the temperature/uid and neutron/nuclide
�eld equations to separate processors with data
exchange performed using the PVM message
passing model [3]. Domain decomposition was
achieved by using natural boundaries in the nu-
clear reactor system and employing a threads
based multiprocessing model. For example,
during the solution of the hydrodynamics ma-
trix equations, a separate thread is created for
the portions of the matrix corresponding to
the nuclear reactor core and each of the four
loops used to transport uid to the steam gen-
erators. This decomposition is reasonably ef-
�cient because of the weak coupling between
each of these �ve components. One of the most
challenging aspects of mixing message passing
and threads parallel programming models in
RETRAN-3D has been the development of al-
gorithms to schedule processors and to opti-
mize data access patterns. The target plat-
forms for the RETRAN-3D code are high-end
multiprocessor workstations.

The RETRAN-3D code integrates two sim-
ulation components, solving the uid/ temper-
ature and the neutron/nuclide �eld equations,
respectively. There is a clear separation be-
tween the two components. They are based on
independent codes that exchange messages via
a well-de�ned interface [5] at each time step
of the simulation. Figure 1 shows the compo-
nent structure and the interface. The inter-
face module is responsible for the conversion
between units used in the two components, for
the mapping between the di�erent node struc-
tures, and for data packing into messages to be
sent and unpacking of received messages.

2.2 The Motivation for Network and
Distributed Computing

The modularization of RETRAN-3D and the
use of a general interface module provides the
potential of improved maintainability and ac-
cessibility of the code without compromising
code security. Because the RETRAN-3D code
was developed and is maintained by EPRI for
the analysis of commercial light water reactors,
it contains a large amount of proprietary data
and security of the code is an important consid-
eration. The maintenance of RETRAN-3D is a
considerable task with various responsibilities
distributed among national laboratories, uni-
versities, and private contractors. The current
administration of the code involves the prior
clearance of prospective users and the subse-
quent distribution of the code with an instal-
lation package on a CD ROM. The burden for
compilation and execution of the code falls en-
tirely on the user and any available local soft-
ware support. Modi�cations to the RETRAN-
3D can occur as frequently as each quarter,
which often requires a redistribution of the en-
tire code package.

There are several opportunities for the
RETRAN-3D multi-physics application to ex-
ploit the global, distributed compute infras-
tructure.

1. Facilitating remote collaboration: New
methods for access and administration of the
RETRAN-3D code can be developed. Instead
of the current distribution scheme, the code
could be maintained separately at the insti-
tution with primary responsibility for the de-
velopment of the respective component. Ac-
cess to the other institutions would be provided
through a shared network facility. This facil-
ity would provide remote collaboration tools
that allow new users to ask questions, \meet"
with the developers, exchange ideas, and work
on common problems. Novice users and ana-
lysts could run experiments that can be mon-
itored and assisted directly by the experts at
the code's home site.

2. \Net-make": Given that the home sites of
the di�erent code components are at di�erent
organizations, facilities must be provided that
support the building process of a new simula-

tion. Code components must be fetched from
their home site, and the availability of a new
version of a code component must be made
known. Basic mechanisms to create this facil-
ity would include posting mechanisms for new
components and screening mechanisms that
would test for compatibility of a new compo-
nent version with the previous one. The latter
may include a description of component up-
dates and guides for the adaptation of the in-
terface.

3. Distributed execution: Executing the sim-
ulation at di�erent sites has two objectives.
First, it is natural to execute a code compo-
nent at its home organization. This will allow
the local experts to use better monitoring facil-
ities (e.g., use advanced instruments that don't
have network support) and to strictly protect
access to the code. The network infrastruc-
ture thus would facilitate the communication
among the code's components between the re-
spective home sites. It would identify the ap-
propriate communication media for a particu-
lar simulation run and perform the mapping of
the code's interface descriptions onto the inter-
connection system. Second, distributed execu-
tion can take advantage of available machine
resources, hence improving the code's execu-
tion performance. In this scenario the network
infrastructure will, upon an execution request,
identify both the appropriate compute nodes
and the communication media. It will then
map the computation and communication links
to this con�guration and route input/output to
the user's access points.

There are a number of issues arising in such
scenarios. A remote collaboration environment
will need to provide secure, shared �le spaces
for collaborating groups at di�erent geograph-
ical locations. It will be natural for such an
environment to take advantage of existing fa-
cilities, such as the Netmeeting utility. Hence
the integration of existing tools is an issue.
\Netmake" facilities will need to support local
and global scenarios. A local scenario would
build the application component at a partic-
ular site, accessing the already existing com-
ponents at the remote organization via a well-
de�ned interface description. A global make

would build all components for an entire sim-

ulation. This will require appropriate book-
keeping and noti�cation messages going to the
respective developer sites, with network direc-
tories keeping track of the code versions and
their coherency. Support for distributed ap-
plication execution will require basic facilities
for message passing across distributed compute
nodes. The actual properties of these nodes
and their interconnection is not known at de-
velopment time. It needs to be determined and
the code needs to be adapted prior to the exe-
cution or { in an advanced scenario { dynami-
cally at runtime. Such adaptation can include
the switch from message-passing communica-
tion to shared-memory data exchange, the re-
compilation of a code for a new target archi-
tecture, and the dynamic exchange of new al-
gorithms that are more appropriate for the se-
lected machine organization.

3 Seismic: A Multi-Program

Application Suite for Oil

and Gas Exploration

The Seismic application is used in the seismic
processing industry for the search of oil and
gas [4, 5]. The code represents an actual suite
of four applications, each of which is called
a component. They perform the seismic pro-
cesses named data generation, data stacking,

time migration, and depth migration, respec-
tively. The entire code contains 20,000 lines of
Fortran and C, which can execute in parallel
on a shared- or distributed-memory system. A
Seismic execution involves intensive communi-
cation as well as intensive disk I/O.

Seismic integrates multiple capabilities into
a single code, as is typical for large compu-
tational applications. Program input data se-
lects the speci�c functionality that is to be per-
formed in a particular run. A typical seis-
mic processing run executes all four compo-
nents. Hence, it activates the Seismic code
four times. There is a partial order among the
components, i.e., some of them have to run se-
quentially while others can run concurrently.
The components have distinct characteristics,
which will become important for exploiting po-
tentially heterogeneous, distributed compute

resources. For example, data generation is a
highly parallel seismic process, while depth mi-

gration is very communication-intensive.
The communication between the component

executions is via disk �les. Each component
reads the input data from a �le, processes it,
and writes its results to disk again. This is a
practical way of coupling several program ex-
ecutions in a traditional, sequential environ-
ment, because it does not require any special
support for communication between di�erent
programs. However, it puts high demands on
the performance of the disk IO subsystem, and
it requires each application phases to complete
before the next one can start.

There are three areas where the Seismic pro-
cessing suite can take advantage of a parallel
and distributed information infrastructure.

1. Parallel execution of Seismic compo-

nents: In the current con�guration, the Phases
data generation and data stacking must be run
sequentially, while depth migration and time

migration can be performed concurrently. Ex-
ploiting such component parallelism can lead to
signi�cant performance improvements.

2. Exploiting heterogeneous machines: the
di�erent communication characteristics of the
individual components call for di�erent target
machines. Data generation could be run on
a highly-parallel distributed-memory architec-
ture, while the intense communication of depth
migration necessitates a tightly-coupled ma-
chine. These characteristics can be taken ad-
vantage of in a system that manages a global
information infrastructure with di�erent types
of compute nodes.

3. Component communication: currently,
the four components of Seismic communicate
through disk IO, as described above. More ad-
vanced forms of inter-program communication
could lead to signi�cant performance improve-
ments. Conceptually, the phases communicate
in a form similar to UNIX pipes, where the
intermediate data can take the form of a disk
�le, a memory bu�er, or a message transmitted
from producer to consumer component. The
concrete form of this medium could be de�ned
dynamically by the global runtime system.

A number of issues arise in these scenar-
ios. A language needs to be available that

allows the developer to de�ne the parallelism
structure, the component attributes, and in-
terconnections. For example, in Seismic one
would specify that Component 1 is followed by
Component 2, which is followed by a possibly
concurrent execution of Component 3 and 4.
The attributes of the phases will be given (e.g.,
weak communication in Component 1, strong
communication in Component 2) and the com-
ponent interconnection is speci�ed (e.g., com-
munication through �les or \network pipes").
The attributes have to be understood by an op-
erating system that is aware of the global in-
formation infrastructure. This operating sys-
tem will map the application components to
the appropriate compute nodes and establish
the necessary communication links. The at-
tributes can be generated by hand or via au-
tomatic tools. In both cases, performance pre-
diction capabilities will be important, which
can determine the characteristics of the appli-
cations and how they impact the runtime be-
havior.

4 A Web-based Operating

System for Parallel and

Distributed Multi-Program
Applications

We have begun the development of a soft-
ware infrastructure for the execution of con-
current metaprograms and network applica-
tions. This system is an extension of the
Purdue University Network-Computing Hubs
(PUNCH) [6, 7, 8], which has been opera-
tional for over four years, and has been widely
used for running individual (sequential) appli-
cations. PUNCH is a Perl-based infrastructure
(with about 13,000 lines of code) that can be
viewed as an operating-system for the World-
Wide Web. It provides: (1) transparent and
universal access to remote programs and re-
sources, (2) access-control (privacy and secu-
rity) and job-control (run, abort, and program-
status) functionality in a multi-user, multi-
process environment, and (3) support for logi-
cal organization and management of resources.
PUNCH allows users to: (a) upload and ma-
nipulate input-�les, (b) run programs, and (c)

. . .

Physical Location ‘n’Physical Location ‘1’

SCION

(Network Desktop)Front End

. . .

S
of

tw
ar

e
S

C
IO

N

Tool (Application) Workstation Cluster

Parallel Machine

Compute-Server

Parallel Machine.

Tool (Application)

Tool (Application) Tool (Application)

S
of

tw
ar

e

CA

Tool (Application)

ESES RT

Workstation Cluster

Toolkit

The

Compute-Server

The

Simulation
Hub

Semiconductor . . .

Network -Desktop Interface

Tool (Application)

The
Computer

Hub
Architecture

S
C

IO
N

The
Parallel

Programming
Hub

D

The
VLSI

Design
Hub

Internet / Intranet

Network -Desktop Interface

The Purdue University Network-Computing Hubs (PUNCH)

Figure 2: The PUNCH infrastructure is made
up of two parts: the front-end (network desk-
top) and SCION. Content and resources can be
\plugged" into the infrastructure, as shown.

view and download output | all via standard
WWW browsers.

Figure 2 shows a simpli�ed view of
PUNCH's organization. PUNCH consists of
the front-end, called the network desktop, and
the back-end, called SCION for Scalable Infras-
tructure for On-demand Network computing.
The network desktop consists of one or more
logical groupings of programs. Each grouping
is called a \hub". SCION manages the ac-
cess and control of distributed resources and
tools (i.e., programs) to serve requests from
the front-end. A resource can be an arbitrary
platform, and can be added incrementally by
specifying its architecture (make, model, OS,
etc.) and starting a server on it. A new pro-
gram can be added by providing to PUNCH
information about the locations where the pro-
gram resides, input/output behavior, machines
where it can run, and its logical classi�cation
in the hub. PUNCH can be \experienced" at
http://www.ecn.purdue.edu/labs/punch.

The issues described earlier can be addressed
by building a Web-based operating system
on top of systems that provide low-level dis-
tributed computing services for heterogeneous
computing environments (e.g., Globus [9, 10],
Legion [11, 12]). For example, Globus consists
of a collection of layered services that can be
utilized by vertically integrated solutions such
as PUNCH to address key technical issues that
arise in a network computing environment. In
the proposed Web-based operating system, an
application will be de�ned as a set of logi-

cally grouped programs. These applications
are speci�ed using scripts. The operating sys-
tem will manage and execute each component
of the application independently using macro-
dataow semantics. These components can po-
tentially reside and execute on di�erent sys-
tems across geographical distances, while ap-
pearing as a single entity to the user and to
higher-level software.

The script will be processed by an inter-
preter. Each component in the application
is essentially a program that accepts some in-
put and generates some output; some compo-
nents process data, while others simply serve
as translators for incompatible data-formats.
The work of the interpreter will be performed
in three phases, as described below.

In the �rst phase, the interpreter will
analyze the data-dependences between the
application components, and will generate
the component-graph, an annotated macro-
dataow task-graph. The annotations will
contain meta-information that will be used
for run-speci�c resource analyses that allow
the network-computing infrastructure to best
match the requirements of each task with the
underlying network-accessible resources. For
example, an annotation corresponding to CPU
usage prediction could contain: (1) an analyt-
ical (complexity) expression that would be ex-
ploited to compute a CPU-time estimate on
the basis of speci�ed parameters (e.g., ma-
trix sizes, in the case of matrix manipulation
codes), or (2) a list of parameters whose values
would be used by a machine learning system to
observe and learn the behavior of the compo-
nent. The annotations will also include infor-
mation about the relationship between the dif-
ferent components in the task-graph. For ex-
ample, they could indicate that a collection of
components within the component graph make
up a concurrent program of communicating se-
quential processes (e.g., a collection of MPI-
based programs). They will also include at-
tributes of the communication between com-
ponents (e.g. synchronous, asynchronous or
pipelined) This process makes up the resource-
resolution phase of the on-demand network-
computing technology.

In the second phase, the network comput-

ing infrastructure will invoke the resource-

allocation phase. This phase will involve the
run-time selection of physical resources. The
resource-allocation and management module
will maintain dynamic, parameter-keyed pools
of managed resources which are periodically
updated by an on-line resource-monitoring
sub-system. For scalability reasons, these
pools are used as resource-caches that consist
of a relatively small number of resources (the
current working-set); new resources (from the
list of available resources) are asynchronously
added to the pools as the working-set is de-
pleted.

Finally, in the third phase, the network-
computing infrastructure will dispatch each
component of the application to the allo-
cated resource; any existing parallelism be-
tween tasks will be automatically exploited by
the component-graph. As tasks complete, the
associated dispatcher module will retrieve the
generated output and dispatch any tasks that
are dependent on that output. For the pur-
poses of the network-computing infrastructure,
each allocatable resource consists of a network-
accessible daemon that accepts requests for
program execution. Depending on the local
system con�guration, a daemon may indepen-
dently execute the request on the same ma-
chine, or it may translate and submit the re-
quest to an independent resource-management
system (e.g., Condor [13]) for execution. This
ability to support independent, recursive repli-
cation of each sub-system translates to a highly
scalable and partitionable network-computing
infrastructure.

The speci�c tasks needed to accomplish the
described goals include designing a coordina-
tion language, the associated translator (to
convert the speci�cation into an e�cient in-
ternal format), and the interpreter (to pro-
cess the meta-application at run time). In
addition, middleware and methods will need
to be developed to co-schedule (e.g., gang-
scheduling) modules of a module-graph, inter-
face with resource schedulers (e.g., the internal
scheduler of a multiprocessor machine), aggre-
gate resources (e.g., for an MPI program mod-
ule), and incorporate virtual resources (e.g.,
a PVM-based cluster of geographically dis-

tributed workstations). The underlying on-
demand computing infrastructure provided by
PUNCH remains largely una�ected, except for
the addition of a meta-application interpreter;
because each component of a meta-application
is itself an application (or a meta-application),
the added functionality can be elegantly sup-
ported by a simple recursive use of the basic
on-demand computing infrastructure.

5 Conclusions

An \Information Power Grid" is currently
emerging in the form of a new world-wide in-
frastructure that can be used to collaborate
remotely, develop complex computer applica-
tions, and execute these applications in a glob-
ally distributed organization. Today, we are
in the concept stages of exploring the poten-
tial o�ered by this vast infrastructure. The
present paper has contributed to this process
by identifying opportunities of two large com-
putational applications to exploit this poten-
tial, and by presenting a new \operating sys-
tem for the Web" that can exploit these op-
portunities. It builds on an operational sys-
tem, called the Purdue University Network
Computing Hubs (PUNCH). Extensions that
provide more support for developing and run-
ning multi-component applications across \the
Grid" and facilitate remote collaboration are
planned.

References

[1] J. McFadden, et al.. RETRAN-03: A program
for transient thermal-hydraulic analysis of com-
plex uid ow systems. EPRI NP-7450, 1992.

[2] T. Downar, J. Y. Wu, J. Steill, and R. Ja-
nardhan. Parallel and serial applications of the
RETRAN-03 power plant simulation code us-
ing domain decomposition and Krylov subspace
methods. Nuclear Technology, Vol. 117, Febru-
ary 1997.

[3] A. Geist et al.. PVM: Parallel Virtual Machine
MIT Press, Massachusetts, 1994.

[4] C. C. Mosher and S. Hassanzadeh. ARCO seis-
mic processing performance evaluation suite,

user's guide. Technical report, ARCO, Plano,
TX., 1993.

[5] Rudolf Eigenmann and Siamak Hassanzadeh.
Benchmarking with real industrial applica-
tions: The SPEC High-Performance Group.
IEEE Computational Science & Engineering,
3(1):18{23, Spring 1996.

[6] Nirav H. Kapadia, Mark S. Lundstrom, and
Jos�e A. B. Fortes. A network-based simula-
tion laboratory for collaborative research and
technology transfer. In Proceedings of the 1996
Semiconductor Research Corporation's Techni-
cal Conference (TECHCON'96), Phoenix, Ari-
zona, September 1996.

[7] Nirav H. Kapadia, Jos�e A. B. Fortes, and
Mark S. Lundstrom. The Semiconductor Sim-
ulation Hub: A network-based microelectron-
ics simulation laboratory. In Proceedings of the
12th Biennial University Government Industry
Microelectronics Symposium, pages 72{77, July
1997.

[8] Nirav H. Kapadia and Jos�e A. B. Fortes. On the
design of a demand-based network-computing
system: The Purdue University Network-
Computing Hubs. In Proceedings of the 7th
IEEE International Symposium on High Per-
formance Distributed Computing (HPDC'98),
pages 71{80, Chicago, Illinois, July 1998.

[9] Ian Foster and Carl Kesselman. Globus: A
metacomputing infrastructure toolkit. Interna-
tional Journal of Supercomputer Applications,
11(2), 1997.

[10] Ian Foster and Carl Kesselman. The Globus
project: A status report. In Proceedings of
the 1998 Heterogeneous Computing Workshop
(HCW'98), pages 4{18, 1998.

[11] Andrew S. Grimshaw, Anh Nguyen-Tuong,
andWilliamA.Wulf. Campus-wide computing:
Early results using Legion at the university of
virginia. Technical Report CS-95-19, Depart-
ment of Computer Science, University of Vir-
ginia, March 1995.

[12] Andrew S. Grimshaw, William A. Wulf, et al.
The Legion vision of a worldwide virtual com-
puter. Communications of the ACM, 40(1),
January 1997.

[13] M. Litzkow, M. Livny, and M. W. Mutka.
Condor - a hunter of idle workstations. In
Proceedings of the 8th International Conference
on Distributed Computing Systems, pages 104{
111, June 1988.

