
Performance Forecasting: Characterization of Applications

on Current and Future Architectures

Brian Armstrong Rudolf Eigenmann

Purdue University

January 20, 1997

Abstract

A common approach to studying future computer systems is to build simulators that

accurately model the behavior of applications and architectures. While this approach can

lead to quantitative information about the systems performance it has one serious drawback:

simulating large applications with large data sets can be prohibitively time-consuming. In

this paper we propose an alternative approach. We model the performance of an applica-

tion with \Resource Usage Equations," verify these equations with acual program runs on

current systems and current data sets, and then extrapolate the system behavior, scaling

up architectural components and data set parameters.

1 Introduction

Issues in Characterizing the Performance of Current and Future Computer Systems

Loads placed on the system's resources must be quanti�ed in order to determine the performance
at which a given computer architecture executes an application program. Such loads include
the demands on the disk IO, the communication network, the CPUs, etc.. Expressing such
loads in terms of the applications' input and architecture's parameters enables us to describe
the performance scalability with respect to these parameters. Of speci�c interest in our work
is the study of very large data sets, very large numbers of processors and the impact of various
interconnection topologies. This will allow us to look ahead at architectures and application
problems of future computer systems.

Our approach is related to other work that provides tools and methodologies for the analysis
of current and future computer systems through simulation and performance characterization.
A wide range of contributions deal with issues of performance analysis and prediction for in-
dividual aspects and components of computer architecture and software. Several approaches
model overall system performance. In both [SSRV95] and [AD96], the communication of realis-
tic applications and systems is characterized, which is a basis for the performance predictability
of future systems. [EP94] uses templates that reect the control structure of parallel algorithms.
Combined with hardware characteristics of synchronization and other critical operations, one
can estimate the performance on an application. [GS95] uses a hardware description and a
software \signature" that can be combined to describe the behavior of an application on a par-
ticular system. Our work di�ers in that we analyze and extract equations that describe resource

1

usage directly from the given applications. Both communication and disk IO are included. We
put emphasis on the use of realistic applications, large data sets, and processor con�gurations
as they may become available in the medium-term future.

An important issue is the choice of applications for such a study. The use of realistic applica-
tions is crucial for any study of software and architectures but is of even greater importance for
extrapolating from currently measurable systems onto future ones. our study will consider ap-
plications that are established as industrially signi�cant representatives of a high-performance
computer workload. In doing so, we will leverage o� of an e�ort that has already identi�ed a
suite of industrially relevant applications. This suite is called SPEChpc96 and is maintained
by the SPEC/High-Performance Group [EH96] for both machine benchmarking and scienti�c
study.

The Seismic Application

In this paper we concentrate on the seismic processing suite SPECseis96, or short \Seismic."
It is a code used in the seismic processing industry for the search of oil and gas. The code
consists of four applications, referred to as four \phases," which perform the seismic processes:
\Data generation," \Stacking of data," \Time Migration," and \Depth migration." The entire
code contains 20,000 lines of Fortran and C and includes intensive communication as well as
intensive disk IO.

Several data sets are available, ranging from a very small test set to sizes that are larger
than current machines can handle. The data space consists of seismic samples in traces along a
number of so-called lines [MH93]. Temporary disk space is required for the �le of traces, which
are records of signal amplitudes at speci�c 3D coordinates. When executed on more than one
processor, the lines are allocated into groups of traces for each processor. Thus, the data size
depends on the number of samples in a trace, the number of traces in a group, the number of
groups in a line, and the number of lines.

Each of the four phases of the overall application have distinct computation, communication,
and disk IO characteristics. The phases are designed to execute sequentially, though the third
and fourth phases can be executed simultaneously. Within each phase, a main-loop performs
a series of functions on each trace. Phases 2, 3, and 4 require data to be processed and passed
across the processors. However, Phase 1 requires communication only to decompose at the
start of the phase and join the data at the phase's completion. Each processor writes a disjoint
segment of the data �le allowing for non-blocking writing.

Communication is implemented using a PVM layer and is easily captured by time-stamping
the send and receive functions. Likewise, disk IO is captured using time-stamps at the begin-
ning and end of the read and write functions. Instrumentation as described above gives the
information we use to produce the runtime pro�les below for the di�erent data sizes and varying
number of processors used. All time spent outside of the disk IO and communication routines
is considered time spent in computation.

2 Characterization of Seismic on Current Machines

In a �rst step of our project we have studied the application in-depth on several architectures.
In this paper we report the results obtained on a Silicon Graphics Power Challenge machine.

2

Phase
P Total 1 2 3 4

4 795 156 28.8 0.640 609

8 410 76.6 16.7 0.638 316

16 215 41.3 12.2 0.632 161

Table 1: Execution Time (in seconds) for the Small Data Set on 4, 8, & 16 Processors.

This machine includes MIPS R10000 processors and runs under the IRIX 6.2 operating system.
The R10000 processors each have a peak performance of 390 MFLOPs. Up to 16 of these
processors are used simultaneously in single-user mode.

We have time-stamped every message and every read to and write from the disk, thereby
tracing all messages and disk IO operations that the code explicitly implements. The result is a
quantitative description of the loads placed on the communication network, disk IO, and CPUs,
which is the basis for accurately describing the measured performance and locating bottlenecks
in the application and the architecture.

Communication Scaling with the Number of Processors

The �rst �gure (Figure 1) displays the communication pro�les for the small data set as the
number of processors is increased from 4 to 16 processors. The pro�les indicate the number
of active processors, that is, processors that are not doing communication at each point in the
program's runtime. (Disk IO was accounted for in later runs.)

The phases are distinguished from each other using di�erent shadings. The x-axis time scale
was chosen as 960 seconds for the 4-processor case, 480 seconds for 8 processors, and 240 for 16
processors. In each pro�le, the smallest tick-mark on the x-axis indicates 10 seconds. Numeric
values for the execution times of each phase as the number of processors is increased can be
found in Table 1.

The speedups of the 8 and 16-processor versions over the 4-processor execution are 1.92
and 3.7, respectively. The cause for the slightly less-than-ideal speedups becomes more evident
when observing each phase separately. The speedups of the phase 1 alone are 2 and 3.84 for
the 8 and 16-processor runs, respectively, which is a characteristic of a parallel program with
very small overhead. This is to be expected since there is communication only at the start and
completion of phase 1.

The second phase, however, gives corresponding speedups of 1.2 and 2.38. Parallelization
is less e�ective for phase 2 since the execution time of phase 2 is much less than that of phase
1 for the small data set, making the communication overhead more signi�cant in comparison
to the computation time. Seismic is parallelized for large granularity message-passing systems
which is also evident in the fourth phase.

Phase 3 has reached the point (at only four processors) where running it in parallel across
more processors is not e�cient, that is, it does not reduce the execution time signi�cantly. This
phase is not as signi�cant in terms of execution time as the other three phases and is therefore
not critical in terms of �nding opportunities for overall performance improvement.

Most of the execution time of Seismic is spent in phase 4. It is more e�ciently parallelized

3

tim
e (seconds)

of Active Processors (Not Busy in Communication) F
igu

re
1
:
C
om

m
u
n
ication

P
ro
�
les

fo
r
th
e
S
m
all

D
ata

S
et

E
x
ecu

ted
on

4,
8,

&
16

P
ro
cessors,

S
h
ow

in
g
H
ow

C
om

m
u
n
ication

S
ca
les

w
ith

P
.

4

Data Phase
Set Total 1 2 3 4

Test 42 6.95 3.6 0.574 31.2

Small 215 41.3 12.2 0.632 161

Medium 6,084 664 134 1.45 5,285

Table 2: Execution Time (in seconds) for the Test, Small, &Medium Data Sets on 16 Processors.

Component of Phase
Execution Time Total 1 2 3 4

TComp 25.1 5.530 2.92 0.283 16.4

TComm 3.37 0.470 0.98 0.283 1.63

TIO 0.76 0.042 0.33 0.011 0.29

Table 3: Computation, Communication, & Disk IO Components of the Execution Time (in
seconds) for the Test Data Set on 16 Processors.

than phase 2 with speedups over the 4-processor run of 1.92 and 3.84 for the 8 and 16-processor
run, respectively. This indicates that phase 4 is a nearly perfectly parallel program, yet it is
expected that the communication throughout the phase will have a more signi�cant impact on
the execution time than with phase 1, which has communication at only two points.

Communication Scaling with Data Set Size

The communication pro�les of Figure 2 compare three runs of the benchmark for three di�erent
data sets: test (0.011 GB trace data �le), small (0.22 GB trace data �le), and medium (1.73
GB trace data �le.) This pro�le exhibits how the benchmark's performance scales as the data
set size is increased. Again, the phases are distinguished with di�erent shadings. All runs were
done using the Silicon Graphics Power Challenge with 16 processors.

Scaling the data size is important for forecasting performance, which is discussed below.
The four phases vary in their signi�cance with respect to execution time for the di�erent data
sets. (See Table 2 for numeric values from the pro�le graphs.) For the test data set, phase 1,
2, 3, and 4 account for 17%, 9%, 1%, and 74% of the execution time respectively. Similarly,
the small data set consists of phases which account for 19%, 6%, 1%, and 75% of the total
execution time. However, phase 4 is more signi�cant in the medium data set, where the phases
contribute 11%, 2%, 1%, and 87% of the execution time, respectively. The signi�cance of
a phase is determined by the input parameters to the application which are consistent with
realistic seismic processing needs. Phase 4 is more signi�cant in the medium data set than in
the test and small data sets since it depends on di�erent aspects of the data than phases 1, 2,
and 3 do. Thus, the scaling of the input parameters is a deciding factor in how Seismic will
perform for di�erent data sets.

5

tim
e (seconds)

of Active Processors (Not Busy in Communication) F
igu

re
2
:
C
om

m
u
n
ication

P
ro
�
les

fo
r
th
e
T
est,

S
m
all,

&
M
ediu

m
D
ata

S
ets

E
x
ecu

ted
on

16
P
ro
cessors,

S
h
ow

in
g
H
ow

C
om

m
u
n
ication

V
aries

w
ith

th
e
D
ata

S
et

S
ize.

6

phase 1 phase 2 phase 4

SGI Power Challenge, R 10000 CPU’s

C
om

pu
ta

tio
n

C
om

m
un

ic
at

io
n

D
is

k
IO

P
ro

ce
ss

or
s

B
us

y
in

time (seconds)

Figure 3: Computation, Communication, & IO Pro�les for the Test Data Set Executed on 16
Processors, Separating the Components of Execution Time During the Application's Runtime.

7

Computation, Communication, and Disk IO Pro�les

Instrumenting the disk accesses as well as the communication commands reveals how the disk
IO varies across the four seismic phases. The characteristics of disk IO are unique within each
phase since data is accessed across di�erent dimensions of the trace data �le (such as accessing
a certain trace from every group instead of sequentially accessing all traces in a single group.)
An example of results from such instrumentation is contained in Figure 3 which contains graphs
for the test data set run on 16 processors of the Silicon Graphics Power Challenge machine.

Though disk IO for the test data set does not contribute much in terms of execution time
for Seismic, it is interesting since the phases use signi�cantly di�erent types of disk IO. In
the pro�le graphs of Figure 3, the shaded areas indicate \activity," de�ned as the number of
processors active doing computations, communication, or disk IO at each point in the runtime
of Seismic. When the number of processors doing disk IO is higher, as in phases 2 and 4 where
nearly 15 processors do disk IO simultaneously throughout the phase, there is a much higher
risk of contention. In contrast to the disk IO characteristics of phases 2 and 4, usually no
more than three processors are active doing disk IO in phase 1. Thus, the disk IO system is a
signi�cant aspect of the execution times of phases 2 and 4, though, with the test data set run
on a Silicon Graphics Power Challenge machine, the disk IO does not contribute signi�cantly
to the execution time of Seismic.

3 Performance Forecasting: Extrapolating to Future Computer

Systems

In order to study the performance of Seismic on future architectures we have modeled the
computation, communication, and disk IO amounts in terms of \Resource Usage Equations."
These equations compute the program performance from computation, communication, and
disk IO parts. The parts are expressed in terms of program input variables and architectural
parameters. The Resource Usage Equations are the basis for our performance forecasting
models. They allow us to observe the performance behavior as we vary (scale up according to
seismic processing needs) the input and architectural parameters. In this section we will �rst
introduce the Resource Usage Equations and show how we verify their coe�cients with actual
program runs. Then we will present several \Forecast diagrams" that discuss the behaviors of
the Seismic application on very large data sets and highly-parallel architectures.

3.1 Resource Usage Equations

The total execution time of an application is divided into several parts, representing the time
taken by actual computation, communication, and disk IO. We can express this as follows.
(Refer to Table 4 for de�nitions of the variables used in the following equations.)

TExec = TComp+ TComm + TIO (1)

These terms are discussed in the following paragraphs.

8

Variables Descriptions

P: number of processors

TExec: total execution time including time spent in communication,
disk IO, and etc.

TComp: time spent in computation per processor for an entire seismic phase
TComm: time spent communicating per processor for an entire seismic phase
TIO: time spent reading and writing to disk per processor

for an entire seismic phase

ItsMain�Loop: number of iterations of a phase's main-loop
TIt�Comp: Time to do all computations required by the seismic processing

functions during one iteration of a phase's main-loop
Tloopi: percentage of a phase's total amount of computation spent in

loopi (these are nested loops within a phase's
main-loop; the values for the amount of computation
come from the number of operations per iteration or from
uniprocessor timings)

parami: value of an input parameter to the seismic application,
the size of the data and the number of iterations of a phase's
main-loop are also determined by these parameters

�i: constant coe�cients indicating the proportion with which
the loop range (of loopi) depends on parameter i,

XMsgs: number of messages sent per processor during one iteration
of a phase's main-loop

SzMsgs: size of each message in bytes
CComm�Start: communication startup latency per message in seconds per message
CComm�Trans: communication transmission latency in seconds per byte

XRds: number of reads done per processor during
one iteration of a phase's main-loop

SzRds: size of each read access in bytes
CRd�Start: startup latency per each disk read access

SzWrs: size of each write access in bytes
CWr�Start: startup latency per each disk write access
CMem�Trans: disk access transmission latency per byte

(for both reads and writes)

Table 4: Glossary of Variables Used in Performance Modeling Equations.

9

Loop Amount of Computation
Phase Subroutine ID Loop Range per Iteration

1 dgenb 1 traces/group 97,011 operations
1.1 samples=trace� traces=group 5 operations

nmocb 1 groups/line 13,676 operations
1.1 samples=trace� groups=line 8 operations

...

2 dmocb 1 groups/line 1,280 operations
1.1 groups=line� samples=trace 5 operations
2 groups/line 23,068 operations
3 samples/trace 256 operations
3.1 groups=line� samples=trace 8 operations

dmocapr 1 samples/trace 15 operations
dmocint 1 groups=line� samples=trace 90 operations
stak-add 2 groups/line 2,466 operations

2.1 groups=line� samples=trace 10 operations
stak-save 1 groups/line 1,536 operations

1.1 groups=line� samples=trace 6 operations
pfrdc 1 groups/line 48 operations

...

Table 5: Loop-Level Components Used in the Model Computation Time.

Modeling Computation

Ideally the computation time, TComp, can be modeled by a formula whose variables are the
application's input parameters. To develop such a formula, the components that make up the
computation load are de�ned. The number of computations required by the phases of Seismic is
relatively the same for each iteration of the phase's main-loop. Consequently, the computation
time can be modeled as the number of iterations for the main-loop multiplied by the time spent
in computation within one of the main-loop's iterations. An iteration of the main-loop consists
of a sequence of subroutine calls, where each subroutine includes a set of loops.

Each loop iterates over a range of data which is determined from some of the input parame-
ters of Seismic. Values for the average number of operations performed within a single iteration
of each loop are obtained through a combination of hand analysis and a simple operation count
tool.

The number of operations for each loop provides the relative importance of the loop with
respect to computation time. The computation time of the entire phase is approximately
proportional to the number of operations within a loop iteration multiplied by the number of
iterations of the loop multiplied by the number of times each loop is executed. Table 5 contains
some examples of the variables used in determining the computation time of the di�erent phases.

TComp = ItsMain�Loop� TIt�Comp (2)

10

TIt�Comp = Tloop1 � (�11 � param1 + �12 � param2 + � � �)

+ Tloop2 � (�21 � param1 + �22 � param2 + � � �)

+ � � �

Modeling Communication

A simple model consisting of startup and transmission latencies is used to de�ne the time
each processor spends in communication. Enhancements to the communication time equation
can be made to investigate the e�ects of di�erent types of network systems. To allow for
networks such as the hypercube or binary tree, the average latency per message for any two
communicating nodes is proportional the the log of the number of processors. Networks like
2D-meshes have average latencies per message which are proportional to the square-root of
the number of processors. Network contention is not included in the current model, yet more
re�nement and enhancements are easy to make for obtaining more accurate approximations.

The method used in the seismic application to communicate data is an all-to-all broadcast
where each processor sends to and receives from every other processor a uniformly sized message.
The number of messages sent per processor is one less than the number of processors times the
number of all-to-all broadcasts executed within the phase, which depends on the number of
iterations in the main-loop of the phase. Therefore, the number of messages sent per processor
is dependent on the number of processors and the input parameters of the application which
determine the number of iterations within the phase. (The sizes of both sends and receives are
consistent throughout each phase.)

TComm = ItsMain�Loop � (P � 1)�XMsgs

� (CComm�Startup+ CComm�Trans� SzMsgs) (3)

Modeling Disk IO

The model of disk IO is similar to the communication model for a bus. We have included
the possibility where reads and writes di�er in their access times per message, though the
transmission latency per byte is considered the same for both reads and writes. The seismic
code reads processed seismic traces, which were written by a previous phase, and writes to a new
�le. As mentioned earlier, the third and fourth phases read from the same �le, which was written
in the second phase. So, the third and fourth phases can be executed simultaneously. However,
the reordering the phases in any other way or chaining the processing across subsequent phases
is not accounted for in the design of the code. The sizes of the reads and writes are consistent
throughout each phase, excluding a constant number of reads at the beginning of each phase.
The size and number of the disk accesses depends on the data size, the number of processors,
and whether an entire group of traces are accessed or a single trace in each group is accessed
(a \transposed" read/write) each time.

TIO = ItsMain�Loop(Xreads� (CRead�Startup+ CMem�Trans� SzReads)

+ Xwrites� (CWrite�Startup+ CMem�Trans� SzWrites)) (4)

11

Value in Phase
Constants units 1 2 4

CComm�Start s 0 3.18e-4 1.04e-4

CComm�Trans s/B 0 6.62e-7 2.17e-6

CRd�Start s 4.32e-5 8.58e-5 1.48e-4

CWr�Start s 1.53e-3 3.04e-3 5.25e-3

CMem�Trans s/B 2.22e-8 4.40e-8 7.60e-8

Table 6: Values for Constants in Model Equations for Communication and Disk IO.

3.2 Determining the Coe�cients

The coe�cients included in the Resource Usage Equations are found by �tting the values
given by the model formulas with the computation, communication, and disk IO times from
experimental runs. The modeled performance was compared with actual measured performance.
Table 6 contains values for the communication and disk IO latencies which result from matching
the formula values to experimental results. The model formulas are approximations and the
constants in the formulas hide some of the actual complexity of the architecture, operating
system, message-passing interface, and etc., such as the aspects of the cache which a�ect the
disk IO and the portion of the communication latencies due to overhead of the PVM manager.
The constants

are averages of the measured throughputs (messages per second, bytes per second, reads
per second, writes per second, and bytes read or written per second) from actual runs of
Seismic. Values for the constants are di�erent for the di�erent phases because the amount
of computation, the types of communication and disk IO di�er from phase to phase. Having
higher penalties for the number of messages in phase 2 than in phase 4 is compatible with the
concept of Seismic's performance on real architectures.

3.3 Performance Extrapolations

The formulas described above along with the calculated coe�cients provide the tools to make
approximations of the Seismic Benchmark's performance when executed with very large data
sets and numbers of processors. The approximations accurately predicted the performance
measurements of the experimental runs for the test, small, and medium data-sets. for data-sets
of industrial magnitude, such as the large data-set (requiring nearly 20 GB of disk space for
the �le of traces) and the ultra data-set (requiring nearly 4 TB of disk space for the �le of
traces), we must use the formulas. The graphs of Figure 4 represent how the computation,
communication, and disk IO times in phase 2 and phase 4 scale as the number of processors is
increased for each of the six data sets included with the Seismic Benchmark: the test, small,
medium, large, xlarge, and ultra data sets. The data set size ranges from 17 MB to 3.9 TB and
the numbers of processors ranged from 1 to 2,048. The graphs give time in seconds and the
shaded regions are the order of magnitude of the time (shaded region of value 2 means 1� 102

seconds.) The darker shades are where combinations of data size and number of processors
result in faster times than in the lighter shades. For example, communication time increases as
the number of processors is increased for a given data size.

12

Phase 2 Extrapolations Phase 4 Extrapolations

D
at

a
S

et
 S

iz
e

(G
B

)

P

Communication Time (TComm)

P

D
at

a
S

et
 S

iz
e

(G
B

)
D

at
a

S
et

 S
iz

e
(G

B
)

Disk IO Time (TIO)

(10 seconds)
z

(10 seconds)
z

(10 seconds)
z

(10 seconds)
z

(10 seconds)
z

(10 seconds)
z

Computation Time (TComp)

Figure 4: Extrapolations of Seismic Phases 2 & 4 for Larger Data Sets on Large Numbers of
Processors.

13

The computation diagrams exhibit ideal behavior. That is, time decreases with an increase
in the number of processors. This is expected, as the model describes the actual computation
only, where the overhead components of communication and IO are separated out.

The communication graphs show that communication time increases with increasing pro-
cessor numbers for both phases, even when the data set is held constant. This is because the
application uses all-to-all broadcasts, which increase the communication volume as processors
scale up. The communication overhead starts out lower for phase 4 than for phase 2 (which
agrees with the better speedups that we have measured for phase 4), but then increases more
quickly for increasing processor numbers in the larger data sets. This is due to the way in
which computation is partitioned in the two phases. With increasing processor numbers, phase
4 reduces the message sizes but leaves the number of broadcasts per processor unchanged. In
contrast, phase 2 reduces the number of broadcasts as well as the message sizes. As a conse-
quence, for very large numbers of processors the large number of messages of phase 4 become
small and hence latency-dominated, which increases the overall communication overhead much
more signi�cantly than in phase 2.

The same data partitioning characteristics of the two phases a�ect the disk IO overhead.
Phase 2 shows \good" behavior of the IO time. It is similar to the computation part, which
speeds up as the number of processors increase. However, as the number of processors is
increased in phase 4, the static number of increasingly smaller IO requests limit any speedup
with respect to disk IO time. After a certain point, the disk IO time remains constant for a
given data size. This point is higher for larger data sets.

4 Conclusions

We have developed \performance forecast models" that can show the behavior of an application
on very large numbers of processors and data sets. The models are based on \resource usage
equations". They describe computation, communication, and disk IO in terms of numbers
of processors and input data size. Based on these models we have shown and discussed the
behavior of an industrial seismic processing application as processors and data scale to high
numbers. The same tools can exhibit the performance behavior of di�erent network topologies
and parameters.

Our forecast models represent a methodology of evaluating future applications on future
computer systems. They complement the more common simulation methods of analyzing the
detailed behavior of a proposed architecture. For example, in our application analysis we
have found high overheads in the communication and disk IO behavior for large numbers of
processors. Neither simulation nor running the application on available machines could have
feasibly investigated these situations. However, our forecast models are more abstract than
simulation methods. The accuracy of simulators is traded for the ability to look ahead at future
systems that may be built in generations to come. The re�nement of our models (e.g., including
cache resource equations) and the combination with actual simulators is an ongoing project.
This will allow us to combine the advantages of detailed system analysis and performance
predictability of large systems. Speci�cally, we will use these methods in the design of a
\petaop" architecture [MEFT96].

14

References

[AD96] Gheith A. Abandah and Edward S. Davidson. Modeling the communication perfor-
mance of the IBM SP2. In Proceedings of the 10th International Parallel Processing
Symposium (IPPS'96), April 1996.

[EH96] Rudolf Eigenmann and Siamak Hassanzadeh. Benchmarking with real industrial
applications: The spec high-performance group. IEEE Computational Science &
Engineering, 3(1):18{23, Spring 1996.

[EP94] G. R. Nudd E. Papaefstathiou, D. J. Kerbyson. A layered approach to parallel
software performance prediction: A case study. Technical Report CS-RR-262, De-
partment of Computer Science, University of Warwick, Coventry, UK, 94.

[GS95] J. Gustafson and Quinn Snell. HINT: A new way to measure computer perfor-
mance. In Proceedings of the Twenty-eight Annual Hawaii International Conference
on System Sciences, volume II, pages 392{401, 95.

[MEFT96] Zina Ben Miled, Rudolf Eigenmann, Jos�e A. B. Fortes, and Valerie Taylor. Hier-
archical processors-and-memory architecture for high performance computing. In
Proc. of Frontiers'96 Conference, Oct 96.

[MH93] C. C. Mosher and S. Hassanzadeh. ARCO seismic processing performance evaluation
suite, user's guide. Technical report, ARCO, Plano, TX., 1993.

[SSRV95] A. Sivasubramanian, A. Sigla, U. Ramachandran, and H. Venkateswaran. On char-
acterizing bandwidth requirements of parallel applications. In Proc. of the ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, may
1995.

15

