
Context-Sensitive Domain-Independent
Algorithm Composition and Selection∗

Troy A. Johnson Rudolf Eigenmann
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907-2035

troyj@purdue.edu eigenman@purdue.edu

Abstract
Progressing beyond the productivity of present-day languages ap-
pears to require using domain-specific knowledge. Domain-specific
languages and libraries (DSLs) proliferate, but most optimizations
and language features have limited portability because each lan-
guage’s semantics are related closely to its domain. We explain
how any DSL compiler can use adomain-independentAI planner
to implement algorithm compositionas a language feature. Our
notion of composition addresses a common DSL problem: good
library designers tend to minimize redundancy by includingonly
fundamental procedures that users must chain together intocall
sequences. Novice users are confounded by not knowing an ap-
propriate sequence to achieve their goal. Composition allows the
programmer to define and call an abstract algorithm (AA) likea
procedure. The compiler replaces an AA call with a sequence of li-
brary calls, while considering the calling context. Because AI plan-
ners compute a sequence of operations to reach a goal state, the
compiler can implement composition by analyzing the calling con-
text to provide the planner’s initial state. Nevertheless,mapping
composition onto planning is not straightforward because applying
planning to software requires extensions to classical planning, and
procedure specifications may be incomplete when expressed in a
planning language. Compositions may not be provably correct, so
our approach mitigates semantic incompleteness with unobtrusive
programmer-compiler interaction. This tradeoff is key to making
composition a practical and natural feature of otherwise impera-
tive languages, whose users eschew complex logical specifications.
Compositions satisfying an AA may not be equal in performance,
memory usage, or precision and require selection of a preferred
solution. We examine language design and implementation issues,
and we perform a case study on the BioPerl bioinformatics library.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization; I.2.8 [Artificial In-
telligence]: Problem Solving and Search—plan formation

∗This work was supported, in part, by the National Science Foundation
under Grants No. 0103582-EIA, 0429535-CCF, and by a U.S. Department
of Education GAANN fellowship for computational science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

General Terms Algorithms, Languages, Performance

Keywords domain-specific languages, algorithm composition, al-
gorithm selection, automated planning, bioinformatics

1. Introduction
Successively higher-level programming languages have increased
programmer productivity [25] throughout the last several decades.
Higher-level languages increase the abstraction level [27] such that
less code is necessary to achieve a goal. The abstraction level di-
rectly impacts software development and maintenance costs, in-
cluding the number of programming errors [38], because experi-
ence shows that they are roughly proportional [8] to the amount
of code written. Progressing beyond the productivity of present-
day languages appears to require using domain-specific knowl-
edge to increase expressivity at the expense of generality.Creating
much higher-level languages without domain knowledge is unreal-
istic [40] because allowing a programmer to express a statement
using significantly less code requires a context under whichthe
compiler can infer the omitted information. Domain-specific lan-
guages and libraries (DSLs) proliferate [24] as the more viable op-
tion for satisfying the demand for greater productivity. Generally,
very high-level languages are thought to perform poorly [24, 25]
because compilers must bridge wide semantic gaps. Compileropti-
mizations and powerful language features are therefore crucial [32,
33], but often have limited portability because each language’s se-
mantics are related closely to its domain.

We explain how a DSL compiler can use adomain-independent
AI planner [11, 13, 14, 37, 49] to implement algorithm composition
as a language feature. Composition addresses a common DSL
problem: a good library designer tends to minimize redundancy and
encourage reuse [27] by including only fundamental procedures
that users must chain together into call sequences. In general, for
each pair of useful library proceduresA and B, the designer is
reluctant to include a redundant procedureC that simply callsA
thenB. C may be convenient, but including onlyC preventsA
and B from being reused separately. Including all three, for all
such procedures (i.e., closure of the set of library procedures),
greatly increases library size and hence complexity. For example,
BioPerl [44] is a DSL for bioinformatics. A common operationis to
download a protein sequence from a remote database and then write
it to disk in a particular format so that it can be studied locally.
The operation requires six calls1 to the BioPerl library, shown in
Figure 1; we use it as one example of many instances where novice
users are confounded by not knowing an appropriate call sequence
to achieve their goal [18]. The problem is neither poor library

1http://www.bioperl.org/wiki/HOWTO:Beginners

http://www.bioperl.org/wiki/HOWTO:Beginners

design nor poor documentation: each call in the sequence is useful
by itself, there is abundant documentation, BioPerl is popular, and
it has been developed actively since 1995. Biologists can describe
what they want to happen (e.g., “the result of querying the remote
database should end up on my local hard disk”), but sometimesdo
not knowhowto achieve it. This situation is not limited to BioPerl;
others have recognized that “most users lack the [programming]
expertise to properly identify and compose the routines appropriate
to their application [45]” and that “a common scenario is that the
programmer knows what type of object he needs, but does not know
how to write the code to get the object [29].” Furthermore, the
best call sequence varies depending on context, so time invested
learning one sequence may not pay off elsewhere.

Query q = b io db query genbank new (‘ ‘ n u c l e o t i d e ’ ’ ,
‘ ‘ A r a b i d o p s i s [ORGN] AND t o p o i s o m e r a s e [TITL]

AND 0:3000 [SLEN] ’ ’) ;
DB db = bio db genbank new () ;
Stream s t ream = g e ts t r e a m b y q u e r y (db , q) ;
SeqIO s e q i o = b i os e q i o n e w (‘ ‘ > sequence . f a s t a ’ ’ ,

‘ ‘ f a s t a ’ ’) ;
Seq seq = n e x ts e q (s t ream) ;
w r i t e s e q (seq io , seq) ;

Figure 1. A sequence of BioPerl library calls: the library is object-
oriented and used Perl syntax, but here we flatten the code and
modify the syntax for a clearer presentation. The programmer must
know the order of calls, six procedure names, five data types (in-
ference can be used, but the programmer must match variablesto
parameters), and adapt the sequence to different contexts.

Composition allows the programmer to define an abstract algo-
rithm (AA) by an unorderedset of properties and then call it like
a procedure; the compiler replaces each call with anorderedse-
quence of library calls, while considering the calling context. AI
planners compute a sequence of operations (a plan) to reach agoal
state. Similarly, a program is a sequence of operations to compute
a result. The compiler can implement composition by providing
the planner’s initial state and merging the planner’s solution into
the program. The calling context is used to compute the initial
state, making the solution context-sensitive. Composition differs
from logic-program synthesis [30] because it combines procedures
rather than primitive arithmetic operations, and it uses abstract se-
mantic specifications that are practical to write. We permitproce-
dure specifications to be incomplete, which allows our approach
to apply beyond the small number of domains whose procedures
can be formally specified. Incomplete specifications do not provide
all information to distinguish among procedures that have similar
effects. A reality of using specifications is that some will be un-
intentionally or unavoidably incomplete [40]. Instead of requiring
programmers to write complete specifications, we embrace incom-
pleteness as a strength. In exchange, the planner may find multiple
solutions – some that do what the application programmer intends
and some that do not. We address this problem with unobtrusive
programmer-compiler interaction, such that the programmer makes
the final selection without being overburdened. This tradeoff is key
to making composition a practical and natural feature of otherwise
imperative languages, whose users eschew complex logical spec-
ifications. For example, the following simple statements (logical
predicates) describe the effects of certain BioPerl procedures:

• query result(result, db, query) -resultis the outcome of sending
queryto the databasedb

• contains(filename, data) - filefilenamecontainsdata

• in format(filename, format) - filefilenameis in formatformat

Do not confuse the predicates with procedure calls. In our ap-
proach, statements like these form part of a glossary that iswritten

by the library programmer. Whereas the set of procedure names is
a set of operations within the domain, this glossary is a set of prop-
erties of domain data.The terms do not need a formal definition.
The library programmer uses the glossary to specify procedures,
and then provides the glossary to the application programmers so
that they may define AAs. For example:

a lgor i thm s a v e q u e r y r e s u l t l o c a l l y
(db name , q u e r ys t r i n g , f i l enam e , fo rm at) =>
{ q u e r y r e s u l t (r e s u l t , db name , q u e r ys t r i n g) ,

c o n t a i n s (f i l enam e , r e s u l t) ,
i n f o r m a t (f i l enam e , fo rm at)}

The specification approximates the English description of the ap-
plication programmer’s goal by specifying what must be trueafter
the AA call. The order of predicates within the braces does not mat-
ter, andresult is a keyword providing a named return value. The
AA is easier to write than Figure 1 because the programmer does
not need to know the order of calls, the names of the procedures,
or the types of intermediate variables. Writing an AA is different
than writing a clause in a logic programming language because the
predicates do not have definitions within the program. Each AA is
written once and can be called many times. For example:

Seq seq = s a v eq u e r y r e s u l t l o c a l l y (‘ ‘ n u c l e o t i d e ’ ’ ,
‘ ‘ A r a b i d o p s i s [ORGN] AND t o p o i s o m e r a s e [TITL]

AND 0:3000 [SLEN] ’ ’ , ‘ ‘ > sequence . f a s t a ’ ’ ,
‘ ‘ f a s t a ’ ’) ;

The compiler substitutes the code in Figure 1, found by the planner,
for this AA call. The planner tailors its solution for the calling
context. For example, if a database object already exists, then the
plan does not include the second call in Figure 1, which creates a
database object. The AA is semantically incomplete becauseit does
not imply the use of GenBank instead of various other biological
databases (e.g., SwissProt, GenPept, EMBL, SeqHound, RefSeq).
We return to this example in Section 6.

Selection is necessary, in our approach, primarily to filter out
undesirable compositions that arise from incompleteness;although
novice programmers are not able to list every valid composition,
they may be able to choose from a list of likely solutions. Se-
lection also, in the more traditional sense [39], chooses among
semantically-equivalent sequences that are not equal in perfor-
mance, memory usage, or precision. Because automated selection
methods have been studied extensively, we focus on composition
and suggest a simple selection method. The library programmer can
provide formulas that each estimate a procedure’s utility in terms of
some metric. The application programmer specifies as a compiler
option the most important metric (e.g., time) for comparison. The
compiler selects the best composition by evaluating the formulas,
either automatically, or interactively by prompting for typical val-
ues of variables. The interaction is kept unobtrusive by caching the
responses for future compilations and by a compiler option control-
ling to what extent decisions are made autonomously.

Our approach is unique; although some compilers have used
theorem provers to validate optimizations [28, 36], our compiler is
the first to use an AI planner to generate code. Software composi-
tion typically is performed as a meta-operation above the program-
ming language level, using separate composition languages[23]
or workflow diagrams [26, 45], whereas we propose that the pro-
grammer initiate it with inline code similar to a function call. Other
algorithm-selection and automatic-specialization systems require
at least one procedure that implements the most general (i.e., non-
specialized) case of each algorithm [42, 47]. Our system allows
AAs that have no single-call implementation and supports one-to-
many replacement. Existing systems that retrieve softwarecompo-
nents by semantic matching [52] do not try to satisfy a match using
multiple components, and other compilers [20] require explicit di-
rectives to perform optimizations.

Scope of Paper (i) Our system is not intended to prove that
the library programmer’s specifications are correct. Correctness is
a separate issue from completeness; an incorrect specification says
that a procedure does something that it does not do. The library pro-
grammer, as an expert in the library’s domain, is assumed to pro-
vide correct specifications and is at fault for any incorrectspecifi-
cation, just as they would be for a bug in the library’s code. (ii) Our
system is not intended to automatically compose an entire applica-
tion; although full automation probably is impossible [40], partial
automation achieves partial benefits.

Our main contributions are:

• We design a language,DIPACS2, and its compiler to demon-
strate how context-sensitive composition of domain-specific li-
brary procedures can be implemented as a language feature.

• From a compiler perspective,DIPACS is the first to use an AI
planner to replace the call of a programmer-defined abstractal-
gorithm (AA) with a sequence of library calls, while consid-
ering the calling context. We explain how to overcome several
challenges of mapping composition onto planning.

• From a planning perspective, our work is a novel application
of planning that is directly comparable to only [16]. We incor-
porate many advanced features, such as object creation and re-
turning multiple plans, into the same planner. New application
areas motivate research in planning theory.

• We support incomplete, abstract procedure specifications that
can be written for many domains. We use programmer-compiler
interaction to clarify ambiguity. A decision cache and a notion
of trust-levels keeps interaction unobtrusive.

Section 2 discusses related work, Section 3 introduces domain-
independent planning, and Section 4 explains how we map compo-
sition onto a planning problem. We use simple examples through-
out Section 5 to explain our programming language and to prepare
the reader for the larger BioPerl case study, to which we return in
Section 6. Section 7 concludes and provides a glimpse of future
work.

2. Related Work
Jungloids [29] compose call sequences from the data types of an
input (τin) and an output (τout) without considering the semantic
relationship between them. The approach is similar to oursonly
in that it suggests a sequence, obtains the programmer’s approval,
and inserts the sequence into the program; there are numerous dif-
ferences. A jungloid graph has an edge fromτa to τb if there is a
procedure (or typecast) that has a parameter of typeτa and a return
value of typeτb. Call sequences are discovered by searching the
graph for thek-shortest paths fromτin to τout. The case of syn-
thesizing an output from multiple inputs is addressed by perform-
ing a separate search from each type of variable accessible from
the call site. The authors of [29] do not require a planner to find a
sequence because they do not attempt to satisfy any semanticrela-
tionship, nor do they attempt to bind procedure parameters during
their search. They find a potentially huge number of call sequences
(consider querying a string manipulation library forτin = string,
τout = string), many of which have an inappropriate semantic
relationship, and then use a heuristic to order the sequences from
most useful to least useful. A jungloid call sequence is inserted
permanently by the Eclipse IDE; if a library is upgraded or proce-
dures are otherwise added to or removed from the program, or if
the surrounding context changes, then the sequence may no longer
be appropriate. By contrast,DIPACS attempts to rule out semanti-

2 Domain-Independent Planned Algorithm Composition and Selection

cally inappropriate sequences during planning, does not require an
advanced editor like Eclipse, and can adapt to changes in context
or library upgrades because the sequence is inserted duringcompi-
lation instead of in the original source code.

Broadway [20] uses library annotations by a domain expert to
perform source-to-source transformations. Instead of specifying the
semantics of procedures, the annotations provide data-flowinfor-
mation that may be difficult to infer using static compiler analy-
sis. Advanced annotations provide explicit directions to the com-
piler for determining when a library call should be inlined,replaced
with a specialized call, or eliminated altogether. One problem with
Broadway is that specialization is indicated with explicitdirectives;
adding a new procedure to a library requires the domain expert
to review the annotations for all existing procedures to determine
if any could benefit by directives referring to the new procedure.
DIPACS does not encounter that problem because there are no ex-
plicit optimization directives. The planner discovers specializations
on its own by using the initial state and the semantic specifications
of procedures, which do not explicitly refer to other procedures.
Instead, they describe each procedure’s effects using a consistent
domain vocabulary, which serves as a level of indirection. Adding
a new procedure does not require modifying existing specifications
unless the vocabulary changes, which should be rare.

Speckle[47] makes specifications part of the programming lan-
guage such that the compiler can use them to perform optimiza-
tions. Speckle is a statically-typed subset of theCLU language that
uses “primitive, automated theorem-proving technology [47]” to
determine if the preconditions of a specialized procedure are satis-
fied such that it may replace the call of a general procedure. Speckle
contains many features of Larch [19], a tool for formally specify-
ing computer programs. Instead of Larch,DIPACS uses a planner,
which provides greater flexibility in replacement, but means that
specifications are not as detailed, so we cannot prove correctness.
We believe this tradeoff is adequate; in practice, specifications that
seem “complete enough” are used instead of attempting to write
more complex specifications. Speckle, by design, does not allow a
programmer to directly call a specialized procedure because doing
so might circumvent the compiler’s proof mechanism. By contrast,
DIPACS treats an AA call as an explicit request that the compiler
assist the programmer; if a procedure is called directly, then the
programmer retains all responsibility.

Domain-independent planners[11, 13, 14, 37, 49] gradually
have added abilities of general-purpose programming languages,
but remain planning languages with extra features [35]. A pro-
grammer would use such a language to solve only planning prob-
lems. By contrast,DIPACS is a mostly imperative language where
the planner has a supporting role. Our approach is similar toplan-
ning for grid computing [6], but integrated with a programming
language. Golden’sDPADL [16] is the planning language most sim-
ilar to DIPACS. Golden makes planning usable by software devel-
opers by loosely basing its syntax on Java, whereasDIPACS is a
programming language whose compiler happens to use a planner
to implement one language feature.

Automatic programming “allows a computationally naive user
to describe problems using the natural terms and concepts ofa do-
main with informality, imprecision, and omission of details [3].” A
goal of automatic programming [2, 3, 4, 5] is to write a program by
writing a specification that is more abstract and concise than, for
example, C or Fortran code. The term “semi-automatic” is more
accurate because there is interaction between the programmer and
the system after writing the specification. One of the myths [40]
about automatic programming is that interaction can be eliminated
completely. By focusing automation on parts of an application, we
are intentionally less ambitious; most code is written in animper-
ative style, allowing for incremental progress towards a full spec-

ification. It is important to allow for both programming styles in
a realistic development environment, lest difficulty specifying one
part of an application impede development elsewhere. Likewise, “it
is not acceptable for the compiler to ignore specifications until all
parts of the program are specified in full because this may never
happen [47, p.17].”

Program synthesis[30] is one of several approaches [5] to au-
tomatic programming. Synthesis uses a theorem prover to gener-
ate a constructive proof from which a program is extracted. Pro-
grams often are as simple as swapping the values of two variables,
but more complicated syntheses are possible [45]. Traditional syn-
thesis is not practical in a real programming environment because
“synthesized programs are often wantonly wasteful of time and
space [30].” By contrast, algorithm composition combines proce-
dures written in an imperative language by a knowledgeable library
programmer; therefore, each part of the composed algorithmis not
“wantonly wasteful.” Certain compositions of library procedures
may be less efficient than others, but they can be compared us-
ing formulas bundled with the library or by consulting the applica-
tion programmer. Synthesis requires that primitive operations have
complete semantics, whereas our approach does not. We use a plan-
ner, similar to [9], but use procedures for the primitive operations
and use an interactive process to deal with incomplete semantics.
It is reasonable for synthesis to require complete semantics when
most components have complexity similar to machine instructions,
but it is not reasonable to expect all larger components (e.g., proce-
dures, applications) to have complete semantics.

Prolog and other logic (declarative) languages allow program-
mers to write goal-oriented programs, but cannotdirectly provide
the behavior we seek for several reasons. First, a Prolog inter-
preter responds to queries by providing a yes or no answer, or
by enumerating values that satisfy the goal. For example, the
query reverse([1,2,3],X) asks if there is such a listX and
the Prolog interpreter replies that yes there is one such list, X
= [3,2,1]. The interpreter is not able to answer queries like
X([1,2,3],[3,2,1]), which asks how that relationship could
be achieved; the desired answer would beX = reverse. Second,
the interpreter does not show the list of steps that it takes to pro-
duce its answers. If print statements or debug traces are used to
reveal the steps without modifying the interpreter, then unsuccess-
ful search paths are also printed. Third, Prolog Horn clauses are
not sufficient for AA and procedure specifications. Horn clauses
are of the formhead ⊢ body1, . . . , bodyn where the “head” of
the clause is implied by the conjunction of terms in the right-hand
“body.” Although an AA can be written in this fashion, with the
AA’s name on the left and its effects on the right, writing procedure
specifications in the same way does not allow the interpreterto find
a solution. A procedure’s effects would need to be on the left-hand
side, which does not permit multiple heads. Splitting a multi-head
clause into multiple clauses does not work because that causes
plans to include multiple calls to the same procedure when only
one call is needed. Finally, glossary terms are not defined within
our programs, whereas every term in a Prolog program appearsas
a head somewhere. Therefore, instead of using a Prolog interpreter
directly to plan compositions, one would use the Prolog language
to write a planner, as can be done using any Turing-complete lan-
guage. The use of Prolog is then an implementation choice, and we
choose not to use it.

Algorithm recognition and replacement [34] are similar to al-
gorithm composition and selection because both affect a program
at the algorithmic level. Algorithm recognition seeks to understand
multiple statements of imperative code (e.g., C, Fortran) before re-
placing them with a better implementation. By contrast, forcom-
position and selection, the abstract algorithm written by the pro-
grammer cannot be executed directly. Algorithm recognition and

replacement have not been very successful. The primary roadblock
is that algorithm equivalence testing is a variation of the graph
isomorphism problem, for which neither a polynomial-time algo-
rithm nor an NP-completeness proof is known. In practice, rec-
ognizers are slightly less ambitious and make simplifications to
reach the subgraph isomorphism problem, which is known to be
NP-complete. Still, the heuristic approaches [31, 34, 50] to solv-
ing this problem are complicated and have not been implemented
widely in commercial compilers. We avoid the recognition problem
with explicit semantics and concentrate on replacement.

Adaptive algorithm selection [51] dynamically replaces com-
putation patterns, such as reductions, with different implementa-
tions. It derives cost expressions for various implementations based
on actual runs and predicts which implementations will be most ef-
ficient in the future. TheSTAPL [46] library internally performs
algorithm selection. The Pythia [22, 48] systems recommendalgo-
rithms for solving scientific problems.

Commercial Software:Mathematica employs a proprietary al-
gorithm selection system3 to provide faster and more precise re-
sults to users. Although their math library is extensive, the pro-
grammer cannot expand the automated selection process to include
their own functions.MATLAB commonly is used as an advanced pro-
totyping and programming environment for scientific computing. It
provides many application-oriented modules that can be viewed as
a higher-level, domain-specific programming environment.Recent
work [32, 33] focuses on high-level compiler optimizations.

3. Domain-Independent Planning Background
Figure 2 shows a conceptual model of domain-independent plan-
ning [14, p.5]. A domain-independent planner uses an initial state,
a goal state, and operators to find a sequence of actions (instanti-
ated operators) that, if executed by the plan user, will transform the
world from the initial state to the goal state. The physical world
is composed of a static set ofobjectswith various properties and
relationships that are changed by the actions; likewise, the planner
manipulates a symbolic representation of that world where opera-
tors affect a corresponding symbolic state. For domain-dependent
planners, the set of operators is implied (i.e., the operators are hard-
coded into the planner) and not provided as input. The advantage
of a domain-independent planner is that it can be used for many
different types of problems without rewriting the planner’s code.

Figure 2. A conceptual model of domain-independent planning

The set of operators defines a state-transition system. Operators
are applied to states, beginning with the initial state, to reach suc-
cessor states. An operator may have apreconditionthat determines
if it can be applied to a particular state. A precondition is alogical
statement that must be true about the objects the operator will af-
fect. If the current state satisfies the precondition, then the operator
can be applied to the state. Applying an operator to a stateα results
in a new stateβ where the properties ofβ are a function ofα and
the operator’seffects. The planner’s job is to find a path through the
state-transition system from the initial state to the goal state.

The state-transition systems considered by planners are typi-
cally so large that it is not feasible to enumerate all statesand
transitions. A planner must search intelligently, using reasonable

3 http://www.wolfram.com/technology/guide/algorithmselection.html

http://www.wolfram.com/technology/guide/algorithmselection.html

amounts of time and memory, to find a solution. A naive depth-
first search requires excessive backtracking and may be thwarted
by infinite branches of the search space; breadth-first search re-
quires large amounts of memory when the branching factor is high.
Using an appropriate search method, the planner should output a
solution and terminate, if a solution exists. When no solution ex-
ists, an output of “no solution” is helpful, but many planners will
not terminate. Fortunately, for most planning applications with ap-
propriate search methods, a solution is returned quickly ifit exists;
if the planner runs for an unusually long time, then it is normally
assumed that there is no solution.

The first planning system [11] was created because traditional
theorem provers were too inefficient at solving planning problems.
In addition to specifying the effects of an operator, it was often
necessary to specify what the operator didnot affect in order to
solve a problem using a theorem prover – a difficulty known as the
frame problem. A planner separates the theorem-proving aspect of
the problem from the search aspect, such that separate strategies
can be used for each, yielding a more efficient approach.

There are several possible representation schemes that are
equally powerful in terms of problem solving [14, p.19]. We use a
variation of the classical representation where preconditions and
effects are characterized by logical predicates. Figure 3 shows
the canonical planning example, block stacking. The actionmove
changes the location of a block that has nothing on top of it.

Figure 3. A planning example: a planner uses the initial state, the
goal state, and operator descriptions (not shown) to find a plan that
will arrange the blocks according to the goal.

4. Planned Algorithm Composition
Using a planner to form plans that affect program values instead of
physical objects is unusual. A straightforward mapping of compo-
sition onto planning presents challenges to the library programmer,
the compiler, and the planner. This section provides an overview of
the mapping and then identifies four challenges that we overcome
using a combination of compiler techniques (e.g., live-variable
analysis, SSA [10]) and extensions to classical planning.

4.1 Mapping Composition onto a Planning Problem

We map algorithm composition onto a planning problem as in Fig-
ure 4. When the compiler encounters an AA call in the application
code (e.g.,save query result locally from Section 1), it in-
vokes a planner to find sequences of library calls (e.g., Figure 1)
that achieve the AA’s effects. The compiler uses the callingcon-
text to determine the initial state for each planning problem. The
library procedures and the procedures in the application code are
the operators available to the planner.

Due to the large search spaces of these problems, which we
describe in Section 5.4, planning techniques are more appropriate
than simple breadth-first or depth-first searches. Nevertheless, ex-
isting planners are not helpful because planning research tends to
focus on scalability without using advanced features such as ax-
ioms, equality, object creation, and returning multiple plans. We
require these features, as we explain below.

Figure 4. Using a planner for algorithm composition: the compiler
creates the planner’s input in a format similar to PDDL [13],merges
the resulting plan into the program at the call site of the AA,and
generates a binary. The compiler becomes the plan user from Fig-
ure 2. Executing the binary causes the plan to affect the program’s
run-time state, which is essentially the world from Figure 2.

4.2 Ontological Engineering

The first challenge of the approach in Figure 4 is for the library pro-
grammer to specify appropriately the behavior of the library proce-
dures and for the application programmer to specify the desired
effects of AAs. In Sections 1 and 2, we observe that attempts to
specify precise semantics have not had significant success.Such
approaches often require programmers to become experts in logic
programming and have proven feasible only on small code kernels.
Also, we observe that precise, formal semantics are often unneces-
sary for adequately describing software behavior because the most
common form of specification is English comments.

In our approach, the library programmer defines a glossary of
abstractions for describing the preconditions and effectsof library
routines. Choosing adequate abstractions is called ontological en-
gineering – the process of deciding on a vocabulary for a domain
and how to best represent information. Ontological engineering is a
complex issue [17], and a full discussion is outside the scope of this
paper. We assume that the library programmer knows the precondi-
tions and effects for the individual procedures, and writesthe speci-
fications after choosing the abstractions; we do not attemptto solve
the problem of automatically determining the preconditions and ef-
fects, which may be possible for low-level abstractions [1,12, 15].

As a running example, we consider sort procedures, which are
well-known and concise while still demonstrating important con-
cepts; the larger BioPerl case study is covered in Section 6.Suppose
that a library procedureP returns an array that issorted. If the
application programmer writes an AA that must produce asorted
result, then the planner might chooseP as a step of the plan. To do
so, the plannerdoes not need to know the precise semantics of the
term sorted. A formal specification involves a definition like (1).

∀i ∈ {0 . . . result.length− 2} result[i] ≤ result[i + 1] (1)

Using such a low abstraction level results in lengthy specifications
that are cumbersome to write and a greater chance that there is
more than one way to write the same specification. We believe that
such a definition is not as programmer-friendly as the commonly
understood termsorted. The English definition in the glossary can
clarify any ambiguities (e.g., increasing versus decreasing order,
sorting alphabetically versus numerically). Using a high abstraction
level, such assorted(result), avoids the above problems. A
disadvantage appears to be thatsorted is not defined such that
it can be proven or validated, but our approach requires neither.

In addition tosorted(result), permutation(result,
input) is a useful abstraction because otherwise any sorted re-
sult could be returned, even one that was not related to the input.
Furthermore, it is useful for the planner to know that a permuta-
tion is reflexive, symmetric, and transitive. For example, if the in-

put array was already sorted (i.e.,sorted(input)), then it could
not satisfy the goalsorted(result) ∧ permutation(result,
input), unlesspermutation(input, input) was known to be
true via the reflexive property. As another example, transitive prop-
erties are useful to transfer semantic information from input to
output through a series of intermediate operations. Axiomssup-
ply these properties to a planner. Many planners, particularly those
that do not maintain a current state (i.e., plan-space planners), do
not support axioms [14]. As we discuss in Section 5.4, our planner
is a state-space planner that supports axioms. We expect thelibrary
programmer to use keywords to indicate which predicates arere-
flexive, symmetric, and transitive, but do not expect them towrite
general axioms. General axioms can introduce synonyms intothe
glossary, which confuse both application programmers and plan-
ners. An important relationship that cannot be expressed with ax-
ioms is equality; i.e., that two objects have the same properties and
are interchangeable. An assignment statement introduces that rela-
tionship. Traditional planners do not need to deal with assignment,
but our planner supports equality.

A related issue is the frame problem: whether and how to spec-
ify what a proceduredoes notdo [7]. For example, the programmer
should not have to specify that a sort procedure does not overwrite
unrelated variables, calculateπ, or format a disk. In general, the
truth value of an unspecified property is unknown. Because weper-
mit incomplete specifications, it is convenient to assume a default
value of false [14, p.47], while remembering that it may be true.

Expressive Power Planning languages (e.g., [13]) have limited
expressiveness. Because we do not require complete specifications,
such languages are sufficient to specify the effects of procedures in
real libraries such as BioPerl (see Section 6). Note that providing a
theoretical bound on the power of our specifications is difficult for
the same reason; how complete a procedure’s specification must
be to place it in the class of procedures that can be usefully speci-
fied is subjective. Any specifications that allow the compiler to sug-
gest or select compositions that please the application programmer
while not providing an annoying number of irrelevant compositions
would be considered useful.

4.3 Determining the Initial and Goal States

The second challenge of implementing the mapping in Figure 4is
that the compiler must determine the initial state and clarify the
goal state for each AA call in the program.

Initial State First, the compiler must determine which variables
are in scope because the “physical” objects available to theplan-
ner are the values accessible from the call site. Next, all-paths flow
analysis is used to discover the properties of the values, asin Fig-
ure 5. The compiler determines if a value has a semantic property as
a result of the effects of a previous call, if two variables are equal,
and if a variable has a particular value. The list of objects and their
properties are provided to the planner as the initial state.

Goal State The AA’s effects are the goal state of the plan. The
goal is to create new values with certain properties. In planning
terms, the goal is existential because it is satisfied by any variable
containing a value with those properties (i.e., the name of the value
does not matter). Because AAs are not typed, the compiler must
restrict the existential to the type of variables receivingthe return
values of the AA call. For example, if an integer array receives the
result of sort(input), the goal is:∃ int[] result such that
sorted(result) ∧ permutation(result, input).

4.4 Object Creation

The third challenge of implementing the mapping in Figure 4 is
for the planner to use the operators because procedures behave dif-
ferently than traditional planning operators. In classical planning,

Figure 5. Calculating the initial state: in each of the three exam-
ples, we show the initial objects and state for the AA call. The
sorted property comes from the effects ofsort. An assignment
to a variable along any path wipes out its properties.

the world consists of a static set of objects. Operators modify the
properties of and relations among those objects, but never create
or destroy objects; the initial state, goal state, and all intermediate
states contain the same objects. Permitting object creation makes
it more difficult to ensure that a planner will terminate because it
dynamically changes the size of the search space.

A static set of objects does not model the state of most pro-
grams. A program’s run-time state consists of the values of vari-
ables. Procedure calls often use different variables for input and
output, such that some are read-only, while others are overwritten.
Intermediate steps require temporary values not present atthe be-
ginning or end of a computation. Requiring all procedures touse
the same variables for input and output is not practical. In fact, a
purely destructive language corresponds to a restricted Turing ma-
chine that permits writes to only storage locations that already con-
tain values. Such a machine never uses an amount of storage greater
than the size of its input and is known as a linear bounded automata,
which is computationally less powerful than a Turing machine [21].

Therefore, extending classical planners to the programming
world requires object creation (also observed by [16]). Object cre-
ation can be added in two ways. The first method simulates creation
by starting with a large number of extra objects that are blank; the
objects are untyped and have no properties. When a new objectis
needed, one of these extra objects is given a type and some proper-
ties. The advantage of this method is that it maintains a static set of
objects and thus fits the classical paradigm. The disadvantages are
analogous to using a fixed-size data structure when a dynamically-
sized structure is more appropriate. For example, when using a
table of lengthN , one could chooseN very large so that most
problems fit; however, the disadvantages are wasting memory, hav-
ing to search a large table even when solving small problems,and
sometimes failing to choose a large enoughN .

We employ the second method, which breaks the classical plan-
ning assumption by creating new objects on demand. Breakingthe
assumption does not raise termination issues because our planner
does not create redundant objects; if a value exists that satisfies an
existential goal, then the plan uses that value instead of calling a
procedure to create a new value to satisfy it. Return values are as-
signed unique names, similar to how a compiler assigns temporary
values unique names for intermediate code. We also use a renaming
scheme for modified values, such that we can specify relationships
between a variable’s previous and current values:

x → x@1 , x@1→ x@2 , . . .

Whenx is modified by a procedure, we createx@1, which is read
as “x after the first modification.” A before-after relationp would

be writtenp(x, x@1). These techniques are very similar to static
single-assignment (SSA) [10], but inside a planner.

4.5 Merging the Plan into the Program

The fourth challenge of implementing the mapping in Figure 4is
to insert the plan into the call site. Although this challenge is not
as difficult as the others, it must be handled correctly. It ispossible
that a destructive plan is found, but only a nondestructive version
is allowed in the calling context, or vice versa. If a destructive call
sequence is inserted where the application programmer expects a
nondestructive sequence, then they will be surprised to findtheir
data overwritten; likewise, if a nondestructive sequence is inserted
where a destructive sequence is expected, they will wonder why
their data did not change. In Section 5.2, we explain a language-
design choice to always define an AA as if it were nondestructive,
although some implementations of it may be destructive. Thecom-
piler knows whether it can use a nondestructive or a destructive
implementation of an AA by using live-variable analysis. For ex-
ample, assume thatsort is an AA.

i n t [] a , b , c ; /∗ t h r e e i n t e g e r a r rays ∗ /
. . .
a = s o r t (a) ; /∗ r e q u e s t a d e s t r u c t i v e p lan∗ /
c = s o r t (b) ; /∗ r e q u e s t a n o n d e s t r u c t i v e p lan∗ /
. . .
. . . = a ;
. . . = b ;

The first assignment permits a destructive plan becausea is
killed. If only a nondestructive plan is available, then thecompiler
uses it and adds an assignment on the end. Either is permissible:

d e s t r u c t i v e s o r t (a) ; /∗ o p t i o n 1 ∗ /
a = n o n d e s t r u c t i v es o r t (a) ; /∗ o p t i o n 2 ∗ /

The assignment toc does not permitb to be modified because it
is used later. If only a destructive plan is available, then the com-
piler prepends code to copy the arguments, changes the planned call
sequence to apply to the copies, and then copies the result into the
output variables. For example, a nondestructive sort can becreated
from a destructive sort:
i n t [] t = b ;
d e s t r u c t i v e s o r t (t) ;
c = t ;

If c is not used by the plan, then one assignment can be elimi-
nated. Other situations may permit more elimination [41].

i n t [] c = b ;
d e s t r u c t i v e s o r t (c) ;

Note that it is not normally advisable for the application pro-
grammer to permanently replace an AA call with the planner’sso-
lution because the surrounding context may change or new proce-
dures may become available, which can invalidate the solution or
make it less optimal. Keeping AAs allows programs to evolve as
libraries improve.

5. Language Design and Implementation
We have discussed the general principles behind our approach. In
this section, we apply those principles in a language of our own
design. We considered modifying an existing domain-specific lan-
guage, but we wanted to be able to experiment with examples from
multiple domains. We also considered modifying a compiler for an
existing general-purpose language because they are often used to
call domain-specific libraries. That approach became less attractive
after considering that we would need to force specificationsinto an
existing grammar and deal with many language features that were
not directly related to our work. Therefore, we createdDIPACS to
try our ideas. We are not proposing wide acceptance of the lan-
guage; it is a proof of concept only. We believe that our techniques

could be integrated into existing languages, and certainlyinto new
languages that considered all of the design issues up front.

We chose a traditional imperative programming model because
many DSLs perform mathematical computations (e.g., linearalge-
bra, game physics, Fourier transforms). These libraries often are
written in C, Fortran, or even assembly language because they are
intended to be reused many times, and their authors want complete
control over the implementation to emphasize efficiency. Matching
the programming model of these libraries makes it easier to test our
ideas. Other kinds of libraries (e.g., object-oriented libraries written
in C++ or Java) could benefit from our techniques, but we consider
it future work.DIPACS is an integrated specification and program-
ming language, which avoids the problems that occur with separate
languages, as in Broadway [20]. It is convenient for programmers to
define and use AAs from within their source code instead of using
a separate file, which avoids extra writing and consistency prob-
lems. The integrated language enables the compiler to allowpro-
gram constants and “sizeof” calculations in specifications. Separate
specifications are still necessary when libraries are not distributed
with their source code. In that case, we suggest the compilerof the
library emit a specification-only header file and binary, both based
on integrated source code.

5.1 Library Procedures and Their Informal Specifications

The general form of a procedure definition is

procedure ([t ype r e t u r n v a l u e n a m e]+)
name ([t ype parametername]∗)

[<= { p r e c o n d i t i o n∗ }] [=> { e f f e c t∗ }]
[met r ic name fo rm u la]∗

{ [e x e c u t a b l e s t a t e m e n t]∗ }

Multiple return values are allowed and each must be given a
name, unless there is only one return value, in which case paren-
theses are omitted and the name defaults toresult. Parameters
are typed. Preconditions specify n-ary relations on the parameters
that must be true to call the procedure, and they may not refer
to return values. Effects inform the compiler of relations that are
true immediately after calling the procedure, and they may refer
to return values. An effect can be a predicate, an equality relation-
ship, a universal quantifier, or a conditional effect – all ofwhich
have appeared in planning languages. Theforall keyword quan-
tifies over all objects of a specific type that are in scope whenthe
procedure is called. Thewhen keyword indicates a conditional ef-
fect; its condition must be true for the effect of its body to apply.
The return values themselves contain the implied effect of creat-
ing new objects. If used, metric names must be declared previously
in a metric declaration; typical metric names aretime andspace,
representing performance and memory usage. A formula must be a
single mathematical expression containing constants and parameter
names that predicts the utility of the procedure in terms of the met-
ric. The expressions are provided by the library programmer, and
may include calls to typical math functions and “sizeof” calcula-
tions. The intent is for the formulas to be evaluated at compile time
to provide some guidance in comparing alternative call sequences;
another way would be to heuristically order the sequences from
shortest to longest [29]. The executable statements are similar to
C or Java. A nondestructive and a destructive sort procedureare
shown below. Note that pass-by-value is the default.

metr ic t ime , space ;
axiom r e f l e x i v e symmetric t r a n s i t i v e p e r m u t a t i o n ;

procedure i n t []
n o n d e s t r u c t i v es o r t (i n t [] a r r a y)

=> { s o r t e d (r e s u l t) , p e r m u t a t i o n (r e s u l t , a r r a y) }
t ime pow (a r r a y . leng th , 2)
space 2 ∗ a r r a y . l e n g t h

{ /∗ i m p l e m e n t a t i o n ∗ / }

procedure vo id
d e s t r u c t i v e s o r t (i n t []& a r r a y)

=> { s o r t e d (array@) , p e r m u t a t i o n (array@ , a r r a y)}
t ime 3 ∗ pow (a r r a y . leng th , 2)
space a r r a y . l e n g t h

{ /∗ i m p l e m e n t a t i o n ∗ / }

Limited axioms are supported as described in Section 4.2. For
the destructive procedure, the return type isvoid and the array
is passed by reference so that the procedure can sort it in place.
The@ operator, as in Section 4.4, refers to a parameter’s modified,
post-call version. The procedures have different time and space for-
mulas, such that the first is faster, but the second is more space-
efficient. The formulas are only crude estimates and do not consider
the number of inversions, cache behavior, etc. The compilercan
evaluate the formulas and select an implementation based oncom-
piler flags to optimize for time or space, but may need to prompt
the programmer or use profiling information to obtain the typical
size of the array. More advanced selection techniques are possible,
but beyond the scope of this paper.

5.2 Defining Abstract Algorithms (AAs)

The general form of an AA definition is

a lgor i thm [(r e t u r n v a l u e n a m e∗)]
name ([parametername]∗) [=> { e f f e c t∗ }]

An AA has a name and parameters, similar to a procedure, but
instead of a body it has only effects. For now, these effects can
only be predicates. A composition satisfies an AA if it causesall of
the predicates to be true; it may cause other predicates to betrue.
Preconditions do not appear in the algorithm definition because
they would specify under what circumstances the algorithm may
be applied, instead of what it does. Parameters are not typedfor
exactly the same reason that preconditions are omitted: a parameter
type can be thought of as a precondition (e.g., a unary predicate
int(x) to indicate thatx is an integer).

An AA always is described as a nondestructive operation, re-
gardless of whether most implementations of it would be destruc-
tive. Nondestructive specifications are the default for tworeasons:
(i) the specification is simpler because there is no confusion over
whether a variable name refers to a value before or after it ismodi-
fied, and (ii) a nondestructive call more easily blends into acalling
context (see Section 4.5). The name of another AA can be used
as shorthand to include its effects. For example, here are the AA
definitions forsort andstable sort.
a lgor i thm s o r t (x)

=> { s o r t e d (r e s u l t) , p e r m u t a t i o n (r e s u l t , x) }

a lgor i thm s t a b l e s o r t (y)
=> { s o r t (y) , s t a b l e (r e s u l t , y) }

The effects ofsort are shared bystable sort. Note that the
predicatespermutation and stable illustrate the convenience
of the abstract approach; neither the application programmer nor
the library programmer had to figure out how to formally define
the predicates using logic. Although formally defining asorted
predicate is not very difficult, bothpermutation andstable are
more complicated.

5.3 Calling AAs and Generating the Planner’s Input

Suppose that the following procedures are available:

axiom r e f l e x i v e symmetric t r a n s i t i v e p e r m u t a t i o n ;

procedure vo id i n s e r t i o n s o r t (i n t []& a r r a y)
=> { s o r t e d (array@) ,

p e r m u t a t i o n (array@ , a r r a y)}
{ /∗ i m p l e m e n t a t i o n ∗ / }

procedure i n t [] bu i l d m ax heap (i n t [] a r r a y)
=> { max heap (r e s u l t) ,

p e r m u t a t i o n (r e s u l t , a r r a y) }
{ /∗ i m p l e m e n t a t i o n ∗ / }

procedure i n t [] s o r t h e a p (i n t [] a r r a y)
<= { max heap (a r r a y) }
=> { s o r t e d (r e s u l t) ,

p e r m u t a t i o n (r e s u l t , a r r a y) }
{ /∗ i m p l e m e n t a t i o n ∗ / }

Furthermore, suppose that the programmer makes this AA call:

i n t [] o u t p u t a r r a y = s o r t (i n p u t a r r a y) ;

The call can be implemented as a composition ofbuild max
heap and sort heap, or by copying theinput array to the
output array and runninginsertion sort on theoutput array.
The compiler generatesPDDL [13] code to use the planner to find
the compositions.PDDL is the planning language used for competi-
tions within the planning community. For illustration, we show the
code below.

(de f ine (domain i s o r t)
(: axiom ; r e f l e x i v e

: vars (? x)
: con tex t ()
: imp l ies (p e r m u t a t i o n ?x ?x))

(: axiom ; s ymmet r i c
: vars (? x ?y)
: con tex t (p e r m u t a t i o n ?x ?y)
: imp l ies (p e r m u t a t i o n ?y ?x))

(: axiom ; t r a n s i t i v e
: vars (? x ?y ? z)
: con tex t (and (p e r m u t a t i o n ?x ?y)

(p e r m u t a t i o n ?y ? z))
: imp l ies (p e r m u t a t i o n ?x ? z))

(: ac t ion i n s e r t i o n s o r t
: parameters (? a r r a y − i n t a r r a y)
: c r e a t e s (? array@− i n t a r r a y)
: e f f e c t (and (s o r t e d ? array@)

(p e r m u t a t i o n ? array@ ? a r r a y)))
(: ac t ion bu i ld m ax heap

: parameters (? a r r a y − i n t a r r a y)
: c r e a t e s (? r e s u l t − i n t a r r a y)
: e f f e c t (and (max heap ? r e s u l t)

(p e r m u t a t i o n ? r e s u l t ? a r r a y)))
(: ac t ion s o r t h e a p

: parameters (? a r r a y − i n t a r r a y)
: p recond i t i on (max heap ? a r r a y)
: c r e a t e s (? r e s u l t − i n t a r r a y)
: e f f e c t (and (s o r t e d ? r e s u l t)

(p e r m u t a t i o n ? r e s u l t ? a r r a y))))

(de f ine (problem s o r t)
(: o b j e c t s i n p u t a r r a y − i n t a r r a y)
(: i n i t) ; n u l l i n i t i a l s t a t e
(: goa l (e x i s t s (? r e s u l t− i n t a r r a y)

(and (s o r t e d ? r e s u l t)
(p e r m u t a t i o n ? r e s u l t i n p u ta r r a y)))))

PDDL uses a Lisp-like syntax, with a question mark to denote
a planning variable that can be bound to an object. Thecreates
clause is not standardPDDL. When the planner applies an operator
(an action inPDDL), the variables in thecreates clause are bound
to unique names (e.g., tmp0, tmp1, inputarray@1) and added to
the list of known objects, as in Section 4.4. In this example,the
initial state is empty, so the planner finds two plans. Written in an
imperative syntax, they are:

i n s e r t i o n s o r t (i n p u t a r r a y) ;
b ind ?r e s u l t t o inpu t a r ray@1

tmp1 = bu i ld m ax heap (i n p u t a r r a y) ;
tmp0 = s o r t h e a p (tmp1) ;
b ind ?r e s u l t t o tmp0

so lve p rob lem (domaindef , p rob lem def)
p a r s e d e f i n i t i o n s
Π← a l l v a l u e s backward search (. . .)

backward search (s0 , goa l , o p e r a t o r s ,
i n i t i a l o b j e c t s , axioms)

l e t loop (s← s0 , g ← goal ,
Γ← nu l l , ; p r e v i o u s goa ls
π ← nu l l , ; t h e p lan
o b j e c t s ← i n i t i a l o b j e c t s)

i f g ∈ Γ t hen f a i l ; avo id ∞ pa ths
s← app ly ax iom s (s , o b j e c t s , axioms)
s← a p p l y e q u a l i t i e s (s , i n i t i a l o b j e c t s)
i f s s a t i s f i e s g t hen r e t u r n π . b i n d i n g s
R← r e l e v a n t s e t (s , o p e r a t o r s , o b j e c t s)
i f R i s n u l l t hen f a i l
a← a member of (R)
i f a has unbound p a r a m e t e r s then

s u b g o a l p l a n s ← a l l v a l u e s
loop (s , p r e c o n d i t i o n [a] , g . Γ , nu l l , o b j e c t s)

i f s u b g o a l p l a n s i s n u l l t hen f a i l
sp← a member of (s u b g o a l p l a n s)
s , o b j e c t s ← a p p l y p l a n (sp , s , o b j e c t s)
π ← π . sp
b ind a c t i o n a us ing t h e b ind ing in sp

s , o b j e c t s ← a p p l y a c t i o n (a , s , o b j e c t s)
g ’ ← u n s a t i s f i e d p a r t (g , s)
loop (s , g ’ , g .Γ , π .a , o b j e c t s)

Figure 6. Pseudocode for the planner: the dot operator (.) indicates
list concatenation and a← indicates assignment.a member of is a
“nondeterministic [43]” choice point to which thefail statements
return.all values safely catches the top-levelfail and collects
the results in a list.

The compiler converts the first plan to be nondestructive and
eliminates temporary variables in the second plan to produce:

o u t p u t a r r a y = i n p u t a r r a y ;
i n s e r t i o n s o r t (o u t p u t a r r a y) ;

o u t p u t a r r a y =
s o r t h e a p (bu i l d m ax heap (i n p u t a r r a y)) ;

If input array already was sorted due to the effects of an ear-
lier call, then the initial state is(:init (sorted input array))
and the planner finds what is effectively a null plan:

b ind ?r e s u l t t o i n p u t a r r a y

This plan contains no calls, so the compiler can eliminate the
AA call and replace it with an array assignment. Therefore,the
same AA call can result in different plans depending on the calling
context, which makes our approach context-sensitive.

5.4 The Planner

Our planner is written in Guile4, which implements the R5RS
Scheme standard and provides an interpreter to C code through
a library. Instead of usingexec to start a new process each time
it needs the planner, the compiler calls a Guile procedure that
initiates the planner, directly passes information through the call,
and receives a list of plans as a return value. We implement a
backtracking mechanism using continuations similar to [43] to
provide “nondeterministic” choice points, which make it easier to
write a planner.

Although, by planning standards, the call sequences that we
seek are short (frequently fewer than ten steps), the branching factor
of the search space is very high. It is common to have libraries with
tens to hundreds of procedures (operators), each with numerous
parameters, called from contexts with tens to hundreds of values
(objects) in scope. At each step of the plan, there are many possible

4http://www.gnu.org/software/guile

actions because for each operator there are many ways to bindits
parameters to the values. Consider a modest example where the
library has 128 procedures with 2 parameters each, there are8 live
values at the AA call site, and we are trying to find a sequence of
4 calls. To simplify the math, we will assume that any live value
can be bound to any parameter (i.e., that there is only a single data
type). The following formula yields the number of potentialplans:

(128 ∗ 82)4 = (27 ∗ 26)4 = 2(13∗4) = 252 ≈ 4.5 x 1015 (2)

Therefore, an exhaustive search for each AA call is not feasi-
ble. Our initial planner used a forward planning algorithm that be-
gan at the initial state and tried to reach the goal state. Unfortu-
nately, using a forward planning algorithm in a search spacewith a
high branching factor requires a very good heuristic to guide the
search. Most planners are concerned with finding a single solu-
tion and so their heuristics can focus on identifying the path that
is most likely to succeed. Because we are interested in returning
multiple solutions, a good heuristic must identify multiple likely
paths. We had great difficulty with the forward approach, so we
switched to a backward planning algorithm that turned out tobe
more successful. Although searching backwards from the goal to-
wards the initial state is counterintuitive, it can be more efficient
than a forward search; a forward search tends to try many operators
that are irrelevant to the goal and may backtrack more frequently
than a backward search, which can more accurately determinethe
set of relevant operators. Both strategies are common in modern
planners and we do not claim that a backward planner is necessary.

High-level pseudocode for our planner is shown in Figure 6.
The main procedure issolve-problem, which accepts a definition
of the problem and its domain. The definitions are parsed, andthe
extracted information is passed tobackward-search, which per-
forms the planning.backward-search is a heavily-modified ver-
sion of the algorithm normally associated with earlySTRIPS [11]
planners. We add axioms, equality, object creation, and a check for
previously-considered subgoals to avoid infinite recursion.

The planner finds an operator that is relevant to satisfying the
goal, and then recursively attempts to satisfy its precondition. An
action is relevant if it helps satisfy an existential goal bycreating
an object of the desired type, or if it helps satisfy a regulargoal by
making one of the conjuncts true. The relevant set must include all
relevant actions, otherwise the planner will fail to find allsolutions.
The set may safely include actions that are later discoveredto be
irrelevant because the check for repeated goals will detectthat
an action did nothing useful; however, including many irrelevant
actions will reduce performance.

Normal STRIPS planners have two limitations [14, p.76] that
do not affect our implementation. The first limitation is that they
attempt to satisfy only subgoals relevant to the precondition of
the most recently considered operator. If an operator has negative
effects (i.e., causes a true property of a value to become false),
then that artificial ordering can cause “deleted-conditioninterac-
tions [14, p.77],” where a previously satisfied subgoal is undone.
Because we rename modified values similar to SSA, as discussed
in Section 4.4, there are no negative effects; there is simply a new
value created that lacks properties of the original value. The second
limitation is thatSTRIPS planners do not backtrack once they com-
mit to applying an operator. Our implementation backtracksover
applied operators because we wish to return multiple plans.

6. Composition Using the BioPerl DSL
In Section 1, we used an example from the BioPerl library without
explaining its implementation; we return to that case study.

http://www.gnu.org/software/guile

6.1 The BioPerl Domain

We show specifications for only the procedures relevant to the AAs
that we discuss in this paper. We consulted the BioPerl documenta-
tion5 to learn the purpose of each procedure. Although we are not
biologists, we were able to understand enough of the documenta-
tion to specify the procedures shown below. After we read thedoc-
umentation, writing these specifications took less than a half hour;
specifying the entire library certainly would require moretime and
a greater understanding of the biology domain. We wrote the AAs
after writing the procedure specifications because that is the order
in which it would occur in practice.

procedure Query
b io db query genbank new (char [] db name ,

char [] query)
=> { r e s u l t . db == db name ,

r e s u l t . query == query } ;

procedure Stream
g e t s t r e a m b y q u e r y (DB db , Query q)

=> { s t r e a m f o r q u e r y (r e s u l t , q) } ;

procedure SeqIO
b i o s e q i o n e w (char [] f i l enam e , char [] f o rm at)

=> { r e s u l t . f i l e == f i l enam e ,
r e s u l t . f o rm at == fo rm at } ;

procedure Seq n e x t s e q (Stream s t ream)
=> { f o r a l l (Query q)

when (s t r e a m f o r q u e r y (s t ream , q))
{ q u e r y r e s u l t (r e s u l t , q . db , q . query) } } ;

procedure vo id w r i t e s e q (SeqIO io , Seq s)
=> { i n f o r m a t (io . f i l e , i o . f o rm at) ,

c o n t a i n s (io . f i l e , s) } ;

procedure DB bio db genbank new () ;

procedure Seq b io seq new (char [] id , char [] seq)
=> { r e s u l t . i d == id , r e s u l t . seq == seq } ;

procedure F a c t o r y
b i o t o o l s r u n s t a n d a l o n e b l a s tn e w (char [] program ,

char [] db name)
=> { r e s u l t . program == program ,

r e s u l t . db name = dbname } ;

procedure Repor t b l a s t a l l (F a c t o r y b l a s t , Seq s)
=> { r e p o r t f o r b l a s t i n g (r e s u l t ,

b l a s t . program , b l a s t . dbname , s) } ;

All glossary terms are defined in Section 1, exceptstream for
query and report for blasting. The former means that a

stream supplies the results of a particular database query,and the
latter means that a report is from “blasting6” a particular protein
sequence. These predicates, along with structure fields, propagate
semantic information throughout plans. For planning variables that
represent structure fields, the planner only substitutes object names
for the part before the dot (.) operator. None of the procedures
have explicit preconditions, but the parameter types provide im-
plicit preconditions. A== denotes equality. These specifications are
translated by the compiler intoPDDL, which we omit for brevity.

6.2 A Jungloid-like Abstract Algorithm

AAs can be used to implement Jungloids [29]. Suppose that the
application programmer knows only the type of object that they de-
sire. They can generate a large list of plans by defining a “dummy”
AA that has no effects and then calling it:

5http://doc.bioperl.org
6 BLAST = Basic Local Alignment Search Tool

a lgor i thm dummy () ;

Seq s = dummy () ;

That code causes the compiler to produce a planning problem
that has very few constraints:

(de f ine (problem dummy)
(: o b j e c t s . . .) ; whatever v a r i a b l e s are in scope
(: i n i t) ; n u l l
(: goa l (e x i s t s (? r e s u l t− Seq))))

To solve the problem, the planner must find a way of creating
a Seq object. Because it does not matter how the object is created,
many plans are found. If the list of plans is too large from which
to conveniently select a plan, then the programmer can add further
constraints and recompile, as in the next example.

6.3 AA: savequery result locally

In Section 1, we introduced an AA calledsave query result lo-
cally and showed an example of calling it. For that example call,
the compiler generates the following problem:

(de f ine (problem s a v e q u e r y r e s u l t l o c a l l y)
(: o b j e c t s db name q u e r y s t r i n g

f i l e n a m e fo rm at− c h a r a r r a y)
(: i n i t)
(: goa l (e x i s t s (? r e s u l t− Seq)

(and (q u e r y r e s u l t ? r e s u l t dbname q u e r y s t r i n g)
(c o n t a i n s f i l e n a m e ? r e s u l t)
(i n f o r m a t f i l e n a m e fo rm at)))))

The problem and the domain above are given to the plan-
ner. The planner finds the plan in Figure 7 using a backward
search. Nevertheless, the semantics of the BioPerl exampleare
not completely specified. The proceduresbio db genbank new
andbio db query genbank new are from the Bio::DB::GenBank
and Bio::DB::Query::GenBank Perl modules. Nothing in the AA
indicates that GenBank should have been used. There are several
alternative databases: SwissProt, GenPept, EMBL, SeqHound, or
RefSeq. If these modules are made available to the compiler,then
there will be alternative ways of implementing the AA by creating
different DB and Query objects. Presumably, the application pro-
grammer knows which database they want to use, and can respond
to a compiler prompt to select a specific plan.

Figure 7. The state-space for savequery result locally: irrelevant
actions are not shown, and each box shows only what predicates
and objects are added in that state. The operators are considered
relevant by the planner in the direction of the arrows, but they are
applied in the opposite direction to yield Figure 1. Note theorder
in which temporary objects are created.

http://doc.bioperl.org

6.4 AA: blast sequence

We can write another AA for using BLAST.

a lgor i thm (r e p o r t , seq)
b l a s t s e q u e n c e (program , dbname , id , sequence)

=> { r e p o r t f o r b l a s t i n g (r e p o r t , program ,
db name , seq) ,

seq . id == id , seq . seq == sequence} ;

If the AA is called and its return values are assigned to variables
of type Report and Seq, then we have the following problem:

(de f ine (problem b l a s t s e q u e n c e)
(: o b j e c t s program dbname id sequence− c h a r a r r a y)
(: i n i t)
(: goa l
(e x i s t s (? r e p o r t− Repor t ? seq− Seq)

(and (r e p o r t f o r b l a s t i n g ? r e p o r t program
db name ? seq)

(equa l ? seq . id id)
(equa l ? seq . seq sequence)))))

The plan found is:

tmp2 = b io seq new (id , sequence) ;
tmp1 = b i o t o o l s r u n s t a n d a l o n e b l a s tn e w (program ,

db name) ;
tmp0 = b l a s t a l l (tmp1 , tmp2) ;
b ind ? r e p o r t to tmp0 , ? seq to tmp2

6.5 Unobtrusive Interactive Compilation and Optimizations

Trust Levels The compiler can provide an option to customize
the amount of interaction. We call the degrees of interaction “trust
levels” because less interaction implies that the programmer trusts
the compiler to make acceptable choices.Level 0, Very Low:At
this level the compiler never selects a plan without consulting the
programmer, even if there is only one possible plan.Level 1, Low:
If there is only one possible plan, then the compiler will notconsult
the programmer.Level 2, Medium:The compiler will attempt to
choose among multiple plans on its own. If the choice is not clear,
then the compiler will consult the programmer.Level 3, High:At
this level there is no interaction. The compiler always selects a
plan, even if this means choosing one at random when there is
insufficient information.

Decision Cache A decision cache stores the programmer’s choices
to provide the illusion of a normal compilation process. If during a
subsequent compilation the programmer would be presented with
a question that has been answered previously, then the compiler
uses the answer in the cache and does not consult the programmer.
Command-line arguments may be used to clear the cache eitherbe-
fore or after compiling, or to ignore the cache. The decisioncache
is indexed with the question. For example, a particular planning
problem may result in three potential solutions, from whichthe
programmer selects the second. During a subsequent compilation,
the same planning problem is encountered, but instead of asking
the programmer to choose among the three potential solutions, the
compiler automatically uses the second solution.

Performance Planning introduces compile-time overhead, but no
run-time overhead. The compile-time overhead is expected to be
less than the time the programmer saves by not having to learnev-
ery detail of the library. Although we have not done studies with
actual programmers, we show in Table 1 that the overhead per AA
call is small and conclude that it is not likely to be a significant frac-
tion of the total compile time. The planner is interpreted and could
be optimized further by implementing it in a compiled language. If
performance does become an issue, a solution cache can storethe
planner’s output for a given problem. If the same problem is en-
countered again, then the compiler can use the plans in the cache

instead of executing the planner. Plans would need to be evicted
from the cache if they used procedures no longer available tothe
compiler, and the cache would need to be cleared to take advantage
of new procedures that have become available.

Table 1. Performance of our planner on various problems; these
numbers were collected on a 1.6GHz AMD Athlon processor under
Linux by taking the arithmetic mean of three runs. For the runof
the dummy AA, four char[] variables were available at the call site.
The timing resolution was 10ms.

domain abstract algorithm create plans time(ms)
bioperl dummy Seq 32 300
bioperl savequery result locally Seq 1 3270
isort sort int[] 2 800
isort sort float[] 0 30

7. Conclusions and Future Work
We have shown that a novel language feature for DSLs can be
implemented by having the compiler use an AI planner. We have
demonstrated this feature using a real case of composition from
the BioPerl library and explained how the compiler and planner
work together. The case showed that incomplete specifications are
useful. We advocate that developers of new languages and libraries
should support composition. Our planner is fully-implemented and
supports the compositions shown in this paper plus several others.
Our compiler development is in progress; it recognizes AA calls,
starts the planner, and prompts the programmer to make choices,
but the flow analysis is not yet finished. Future work will examine
the interplay of composition with other language features,error
handling, plans with branches (conditional planning) and loops,
the applicability of our technique across more domains, andthe
experiences of programmers using composition.

Acknowledgments
We thank Michael Gribskov and Ying Li for a brief but informative
discussion concerning the use of software libraries in the biological
sciences. We thank Bob Givan for explaining how our work differs
from traditional planning. We thank all of our colleagues atPurdue
– particularly Sam Midkiff, T. N. Vijaykumar, Ethan Schuchman,
Long Fei, Eddie Pettis, and Ayon Basumallik – for improving our
presentation of an interdisciplinary topic.

References
[1] T. Ball et al. Automatic Predicate Abstraction of C Programs. In

Proceedings of the Conference on Programming Language Design
and Implementation, June 2001.

[2] R. Balzer. A 15-year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering, 11(11):1257–1268,
November 1985.

[3] D. R. Barstow. Domain-Specific Automatic Programming.IEEE
Transactions on Software Engineering, 11(11):1321–1336, Novem-
ber 1985.

[4] D. Batory. The Road to Utopia: A Future for Generative Program-
ming. In C. Lengauer et al., editors,Domain-Specific Program
Generation (Dagstuhl), pages 1–18, 2004.

[5] A. W. Biermann. Approaches to Automatic Programming.Advances
in Computers, 15:1–63, 1976.

[6] J. Blythe et al. The Role of Planning in Grid Computing. In
Proceedings of the International Conference on Automated Planning
and Scheduling, June 2003.

[7] A. Borgida, J. Mylopoulos, and R. Reiter. On the Frame Problem
in Procedure Specifications.IEEE Transactions on Software
Engineering, 21(10):785–798, October 1995.

[8] L. C. Briand, T. Langley, and I. Wieczorek. A Replicated Assessment
and Comparison of Common Software Cost Modeling Techniques. In
Proceedings of the International Conference on Software Engineer-
ing, pages 377–386, 2000.

[9] J. R. Buchanan and D. C. Luckham. On Automating the Construction
of Programs. Technical report, Stanford Artificial Intelligence Project,
1974.

[10] R. Cytron et al. Efficiently Computing Static Single Assignment
Form and the Program Dependence Graph.ACM Transactions on
Programming Languages and Systems, 13(4):451–490, October 1991.

[11] R. E. Fikes and N. J. Nilsson. STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving.Artificial
Intelligence, 2(3-4):189–208, 1971.

[12] C. Flanagan and S. Qadeer. Predicate Abstraction for Software
Verification. InProceedings of the ACM Symposium on Principles of
Programming Languages, January 2002.

[13] M. Ghallab et al. PDDL – the Planning Domain Definition Language,
Version 1.2. Technical Report DCS TR-1165, Yale Center for
Computational Vision and Control, 1998.

[14] M. Ghallab, D. Nau, and P. Traverso.Automated Planning Theory
and Practice. Morgan Kaufmann Publishers, 2004.

[15] R. Givan. Inferring Program Specifications in Polynomial-Time. In
Proceedings of the Static Analysis Symposium, 1996.

[16] K. Golden. A Domain Description Language for Data Processing. In
Proceedings of the International Conference on Automated Planning
and Scheduling, Workshop on the Future of PDDL, 2003.

[17] A. Gomez-Perez, O. Corcho, and M. Fernandez-Lopez.Ontological
Engineering: with Examples from the Areas of Knowledge Manage-
ment, e-Commerce and the Semantic Web. Springer, 2004.

[18] M. Gribskov. President, International Society for Computational
Biology; Professor of Biological Sciences and Computer Science,
Purdue University. Personal communication, September 2005.

[19] J. V. Guttag and J. Homing. Larch: Languages and Tools for Formal
Specification.Texts and Monographs in Computer Science, 1993.

[20] S. Z. Guyer and C. Lin. Broadway: A Compiler for Exploiting the
Domain-Specific Semantics of Software Libraries.Proceedings of
the IEEE, 93(2):342–357, February 2005.

[21] J. E. Hopcroft and J. D. Ullman.Formal Languages and Their
Relation to Automata. Addison-Wesley, 1969.

[22] E. N. Houstis et al. PYTHIA-II: a Knowledge/Database System for
Managing Performance Data and Recommending Scientific Software.
ACM Transactions on Mathematical Software, 26(2):227–253, 2000.

[23] N. Jefferson and S. Riddle. Towards a Formal Semantics of
a Composition Language. InProceedings of the Workshop on
Composition Languages at ECOOP, 2003.

[24] K. Kennedy et al. Telescoping Languages: A System for Automatic
Generation of Domain Languages.Proceedings of the IEEE,
93(3):387–408, 2005.

[25] K. Kennedy, C. Koelbel, and R. Schreiber. Defining and Measuring
the Productivity of Programming Languages.International Journal
of High Performance Computing Applications, 18(4):441–448, 2004.

[26] J. Kim, M. Sparagen, and Y. Gil. An Intelligent Assistant for Inter-
active Workflow Composition. InProceedings of the International
Conference on Intelligent User Interfaces, pages 125–131, 2004.

[27] C. W. Krueger. Software Reuse.ACM Computing Surveys, 24(2):131–
183, June 1992.

[28] S. Lerner, T. Millstein, and C. Chambers. Automatically Proving
the Correctness of Compiler Optimizations. InProceedings of the
Conference on Programming Language Design and Implementation,
June 2003.

[29] D. Mandelin et al. Jungloid Mining: Helping to Navigatethe API
Jungle. InProceedings of the Conference on Programming Language
Design and Implementation, June 2005.

[30] Z. Manna and R. Waldinger. Fundamentals of Deductive Program
Synthesis.IEEE Transactions on Software Engineering, 18(8):674–
704, August 1992.

[31] B. D. Martino, G. Iannello, and H. P. Zima. An Automated
Algorithmic Recognition Technique to Support Parallel Software
Development. InProceedings of the International Workshop on
Parallel and Distributed Software Engineering, May 1997.

[32] V. Menon and K. Pingali. A Case for Source-Level Transformations
in MATLAB. In Proceedings of the 2nd USENIX Conference on
Domain-Specific Languages, pages 53–65, October 1999.

[33] V. Menon and K. Pingali. High-Level Semantic Optimization of
Numerical Codes. InInternational Conference on Supercomputing,
pages 434–443, June 1999.

[34] R. Metzger and Z. Wen.Automatic Algorithm Recognition and
Replacement. MIT Press, 2000.

[35] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. The SHOP
planning system.AI Magazine, Fall 2001.

[36] G. C. Necula. Translation Validation for an OptimizingCompiler. In
Proceedings of the Conference on Programming Language Design
and Implementation, June 2000.

[37] E. P. D. Pednault. ADL and the State-Transition Model ofAction.
Journal of Logic and Computation, 4(5):467–512, 1994.

[38] E. S. Raymond. The Art of Unix Programming, chapter 8:
Minilanguages. Addison-Wesley, 2004.

[39] J. R. Rice. The Algorithm Selection Problem.Advances in
Computers, 15:65–118, 1976.

[40] C. Rich and R. C. Waters. Automatic Programming: Myths and
Prospects.IEEE Computer, 21(8):40–51, August 1988.

[41] P. Schnorf, M. Ganapathi, and J. L. Hennessy. Compile-Time Copy
Elimination. Software Practice and Experience, 23(11):1175–1200,
November 1993.

[42] U. P. Schultz, J. L. Lawall, and C. Consel. Automatic Program
Specialization for Java. ACM Transactions on Programming
Languages and Systems, 25(4):452–499, 2003.

[43] J. M. Siskind and D. A. McAllester. Screamer: A PortableEfficient
Implementation of Nondeterministic Common Lisp. Technical Report
IRCS-93-03, Institute for Research in Cognitive Science, University
of Pennsylvania, 1993.

[44] J. E. Stajich et al. The Bioperl Toolkit: Perl Modules for the Life
Sciences.Genome Research, 12(10):1611–1618, October 2002.

[45] M. Stickel et al. Deductive Composition of Astronomical Software
from Subroutine Libraries. InProceedings of the International
Conference on Automated Deduction, pages 341–355, June 1994.

[46] N. Thomas et al. A Framework for Adaptive Algorithm Selection
in STAPL. In Proceedings of the Symposium on the Principles and
Practice of Parallel Programming, June 2005.

[47] M. T. Vandevoorde.Exploiting Specifications to Improve Program
Performance. PhD thesis, MIT, 1994.

[48] S. Weerawarana et al. PYTHIA: a Knowledge-Based Systemto Select
Scientific Algorithms.ACM Transactions on Mathematical Software,
22(4):447–468, 1996.

[49] D. S. Weld. Recent Advances in AI Planning.AI Magazine, pages
93–123, Summer 1999.

[50] S. Woods and Q. Yang. The Program Understanding Problem: Anal-
ysis and a Heuristic Approach. InProceedings of the International
Conference on Software Engineering, pages 6–15, 1996.

[51] H. Yu, D. Zhang, and L. Rauchwerger. An Adaptive Algorithm
Selection Framework. InProceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT),
September 2004.

[52] A. M. Zaremski and J. M. Wing. Specification Matching of Software
Components. ACM Transactions on Software Engineering and
Methodology, 6(4):333–369, October 1997.

	Introduction
	Related Work
	Domain-Independent Planning Background
	Planned Algorithm Composition
	Mapping Composition onto a Planning Problem
	Ontological Engineering
	Determining the Initial and Goal States
	Object Creation
	Merging the Plan into the Program

	Language Design and Implementation
	Library Procedures and Their Informal Specifications
	Defining Abstract Algorithms (AAs)
	Calling AAs and Generating the Planner's Input
	The Planner

	Composition Using the BioPerl DSL
	The BioPerl Domain
	A Jungloid-like Abstract Algorithm
	AA: save_query_result_locally
	AA: blast_sequence
	Unobtrusive Interactive Compilation and Optimizations

	Conclusions and Future Work

