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Abstract

Progressing beyond the productivity of present-day laggsap-
pears to require using domain-specific knowledge. Dompétific
languages and libraries (DSLs) proliferate, but most ojttions
and language features have limited portability becaust &ac
guage’s semantics are related closely to its domain. Weagxpl
how any DSL compiler can usedomain-independeril planner
to implement algorithm compositioas a language featureOur
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1. Introduction

Successively higher-level programming languages haveased
programmer productivity [25] throughout the last seveedatles.

notion of composition addresses a common DSL problem: good Higher-level languages increase the abstraction |1Bvélq2ah that

library designers tend to minimize redundancy by includimdy
fundamental procedures that users must chain togethercaito

less code is necessary to achieve a goal. The abstractieindiev
rectly impacts software development and maintenance ,cimsts

sequences. Novice users are confounded by not knowing an ap-cluding the number of programming errofs][38], because réxpe

propriate sequence to achieve their goal. Compositiorwalline
programmer to define and call an abstract algorithm (AA) Bke
procedure. The compiler replaces an AA call with a sequehbe o
brary calls, while considering the calling context. BeeAsplan-
ners compute a sequence of operations to reach a goal state, t
compiler can implement composition by analyzing the cglton-
text to provide the planner’s initial state. Neverthelasspping
composition onto planning is not straightforward becays#yéng
planning to software requires extensions to classicalrtay; and
procedure specifications may be incomplete when expressad i
planning language. Compositions may not be provably cgrsec
our approach mitigates semantic incompleteness with ansitse
programmer-compiler interaction. This tradeoff is key takimg
composition a practical and natural feature of otherwispera-
tive languages, whose users eschew complex logical sptmfis.
Compositions satisfying an AA may not be equal in perforneanc
memory usage, or precision and require selection of a peafer
solution. We examine language design and implementattuess
and we perform a case study on the BioPerl bioinformaticaitip

Categories and Subject Descriptors  D.1.2 [Programming Tech-
nique§: Automatic Programming; D.3.4 Hrogramming Lan-
guage§ Processors—compilers, optimization; 1.2/ fificial In-
telligencd: Problem Solving and Search—plan formation
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ence shows that they are roughly proportional [8] to the arhou
of code written. Progressing beyond the productivity ofspre-
day languages appears to require using domain-specific lknow
edge to increase expressivity at the expense of genel@tiating
much higher-level languages without domain knowledge isaln
istic [40] because allowing a programmer to express a statem
using significantly less code requires a context under wktieh
compiler can infer the omitted information. Domain-specléin-
guages and libraries (DSLs) proliferatel[24] as the morbleiap-
tion for satisfying the demand for greater productivity.n8eally,
very high-level languages are thought to perform podrly; 2%]
because compilers must bridge wide semantic gaps. Conopiter
mizations and powerful language features are therefo@ati32,
343], but often have limited portability because each laggisase-
mantics are related closely to its domain.

We explain how a DSL compiler can usel@main-independent
Al planner [11[18, 14, 37.49] to implement algorithm comipoa
as a language featureComposition addresses a common DSL
problem: a good library designer tends to minimize redungdamd
encourage reusé_[27] by including only fundamental prooesiu
that users must chain together into call sequences. In aeffier
each pair of useful library procedures and B, the designer is
reluctant to include a redundant proceddrahat simply callsA
then B. C' may be convenient, but including only preventsA
and B from being reused separately. Including all three, for all
such procedures (i.e., closure of the set of library procegjy
greatly increases library size and hence complexity. Fampte,
BioPerl [44] is a DSL for bioinformatics. A common operatiisrio
download a protein sequence from a remote database and tiien w
it to disk in a particular format so that it can be studied Iyca
The operation requires six clito the BioPerl library, shown in
Figure[d; we use it as one example of many instances whereaovi
users are confounded by not knowing an appropriate callesegu
to achieve their goal[18]. The problem is neither poor lipra

Thttp://www.bioperl.org/wiki/HOWTIO:Beginners
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design nor poor documentation: each call in the sequencsefsiiu
by itself, there is abundant documentation, BioPerl is fepand

it has been developed actively since 1995. Biologists cardee
whatthey want to happen (e.g., “the result of querying the remote
database should end up on my local hard disk”), but sometitoes
not knowhowto achieve it. This situation is not limited to BioPerl;
others have recognized that “most users lack the [progragimi
expertise to properly identify and compose the routines@piate
to their application[[45]" and that “a common scenario ist tie
programmer knows what type of object he needs, but does ot kn
how to write the code to get the object]29].” Furthermores th
best call sequence varies depending on context, so timstewe
learning one sequence may not pay off elsewhere.

Query q = biadb_query.genbanknew (‘‘nucleotide’'’,
‘“Arabidopsis [ORGN] AND topoisomerase[TITL]
AND 0:3000[SLEN]"");

DB db = bio.db_genbanknew ();

Stream stream = gestreamby_query (db, q);

SeqlO seqio = bioseqgio.new('‘>sequence . fasta’’,
‘‘fasta’’);

Seq seq = nexiseq(stream);

write_seq(seqio, seq);

Figure 1. A sequence of BioPerl library calls: the library is object-

oriented and used Perl syntax, but here we flatten the code and

modify the syntax for a clearer presentation. The programmuest
know the order of calls, six procedure names, five data tyimes (
ference can be used, but the programmer must match variables
parameters), and adapt the sequence to different contexts.

Composition allows the programmer to define an abstract algo-
rithm (AA) by anunorderedset of properties and then call it like
a procedure; the compiler replaces each call wittoatered se-
qguence of library calls, while considering the calling @t Al
planners compute a sequence of operations (a plan) to regadl a
state. Similarly, a program is a sequence of operationsrtgpate
a result. The compiler can implement composition by pragdi
the planner’s initial state and merging the planner’s sofutnto
the program. The calling context is used to compute theainiti
state, making the solution context-sensitive. Compasitidfers
from logic-program synthesis [80] because it combines gulaces
rather than primitive arithmetic operations, and it usestraiot se-
mantic specifications that are practical to write. We pepnitce-
dure specifications to be incomplete, which allows our apgho

by the library programmer. Whereas the set of procedure adsne
a set of operations within the domain, this glossary is afgetap-
erties of domain datal'he terms do not need a formal definition.
The library programmer uses the glossary to specify praesiu
and then provides the glossary to the application prograsis@
that they may define AAs. For example:

algorithm savequery.resultlocally

(db_.name, querystring , filename, format) >

{ query.result(result, db_.name, querystring),
contains (filename ,result),
in_format(filename, format)}

The specification approximates the English descriptiorhefap-
plication programmer’s goal by specifying what must be tfter

the AA call. The order of predicates within the braces doasmai-

ter, andresult is a keyword providing a named return value. The
AA is easier to write than Figuld 1 because the programmes doe
not need to know the order of calls, the names of the procedure
or the types of intermediate variables. Writing an AA is elifint
than writing a clause in a logic programming language bez s
predicates do not have definitions within the program. Ea8hsA
written once and can be called many times. For example:

Seq seq = saveuery_result.locally(‘‘nucleotide’’,
‘“Arabidopsis [ORGN] AND topoisomerase[TITL]
AND 0:3000[SLEN]"", ‘*>sequence.fasta’’,
‘‘fasta’’);

The compiler substitutes the code in Figire 1, found by thamr,
for this AA call. The planner tailors its solution for the kag
context. For example, if a database object already extsts, the
plan does not include the second call in Figidre 1, which emeat
database object. The AA is semantically incomplete becadses
not imply the use of GenBank instead of various other biadali
databases (e.g., SwissProt, GenPept, EMBL, SeqHoundeRefS
We return to this example in Sectibh 6.

Selection is necessary, in our approach, primarily to filter out
undesirable compositions that arise from incompleterasugh
novice programmers are not able to list every valid compsit
they may be able to choose from a list of likely solutions. Se-
lection also, in the more traditional sen$el[39], choosesram
semantically-equivalent sequences that are not equal riforpe
mance, memory usage, or precision. Because automatedicelec
methods have been studied extensively, we focus on cormposit
and suggest a simple selection method. The library progerman

can be formally specified. Incomplete specifications do notige
all information to distinguish among procedures that haxelar
effects. A reality of using specifications is that some w#l in-
intentionally or unavoidably incomplet2_[40]. Instead efjuiring
programmers to write complete specifications, we embramanin
pleteness as a strength. In exchange, the planner may firighi@ul
solutions — some that do what the application programmenitg
and some that do not. We address this problem with unobg&usiv
programmer-compiler interaction, such that the progranmakes
the final selection without being overburdened. This tréfdedey
to making composition a practical and natural feature ofntfise
imperative languages, whose users eschew complex logeat s
ifications. For example, the following simple statementgigal
predicates) describe the effects of certain BioPerl promsi

e queryresult(result, db, query)resultis the outcome of sending
queryto the databaseb

o contains(filename, data) - fifdenamecontainsdata
¢ in_format(filename, format) - fillenameis in formatformat

Do not confuse the predicates with procedure calls. In our ap
proach, statements like these form part of a glossary thatiiten

some metric. The application programmer specifies as a ¢empi
option the most important metric (e.g., time) for companisthe
compiler selects the best composition by evaluating thendides,
either automatically, or interactively by prompting foptgal val-
ues of variables. The interaction is kept unobtrusive byicarthe
responses for future compilations and by a compiler optamirol-
ling to what extent decisions are made autonomously.

Our approach is unique; although some compilers have used
theorem provers to validate optimizationsI[28, 36], our pien is
the first to use an Al planner to generate code. Software ceimpo
tion typically is performed as a meta-operation above tlogmam-
ming language level, using separate composition langufitiis
or workflow diagramsl[[2€, 45], whereas we propose that the pro
grammer initiate it with inline code similar to a functionlic®ther
algorithm-selection and automatic-specialization systeequire
at least one procedure that implements the most generaln@e-
specialized) case of each algorithmI[£2] 47]. Our systemwall
AAs that have no single-call implementation and suppores-toa
many replacement. Existing systems that retrieve softeangpo-
nents by semantic matchirig]52] do not try to satisfy a masthgu
multiple components, and other compilersi[20] require iexdi-
rectives to perform optimizations.



Scope of Paper (i) Our system is not intended to prove that
the library programmer’s specifications are correct. Guness is
a separate issue from completeness; an incorrect speoificatys
that a procedure does something that it does not do. Theyipra-
grammer, as an expert in the library’s domain, is assumeddo p
vide correct specifications and is at fault for any incorsgmcifi-
cation, just as they would be for a bug in the library’s codeQur
system is not intended to automatically compose an entjpkcap
tion; although full automation probably is impossikiel[4partial
automation achieves partial benefits.

Our main contributions are:

¢ We design a languag®IPAcs, and its compiler to demon-
strate how context-sensitive composition of domain-djelti
brary procedures can be implemented as a language feature.

From a compiler perspectivBIPACS is the first to use an Al
planner to replace the call of a programmer-defined absifact
gorithm (AA) with a sequence of library calls, while consid-
ering the calling context. We explain how to overcome sdvera
challenges of mapping composition onto planning.

From a planning perspective, our work is a novel application
of planning that is directly comparable to only16]. We inco
porate many advanced features, such as object creatioreand r
turning multiple plans, into the same planner. New applcat
areas motivate research in planning theory.

We support incomplete, abstract procedure specificatiogis t
can be written for many domains. We use programmer-compiler
interaction to clarify ambiguity. A decision cache and aiomt

of trust-levels keeps interaction unobtrusive.

Sectior® discusses related work, Secibn 3 introduces idema
independent planning, and Sectidn 4 explains how we map eomp
sition onto a planning problem. We use simple examples titrou
out Sectiorlb to explain our programming language and togueep
the reader for the larger BioPerl case study, to which wermetu
Section[®. Sectiohl 7 concludes and provides a glimpse ofeutu
work.

2. Related Work

Jungloids [29] compose call sequences from the data types of an
input (r;,) and an output,,,.) without considering the semantic
relationship between them. The approach is similar to ooty

in that it suggests a sequence, obtains the programmens\ap
and inserts the sequence into the program; there are nuséifeu
ferences. A jungloid graph has an edge fregto 7, if there is a
procedure (or typecast) that has a parameter of ty@nd a return
value of typer,. Call sequences are discovered by searching the
graph for thek-shortest paths from;,, to 7,.:. The case of syn-
thesizing an output from multiple inputs is addressed byoper-

ing a separate search from each type of variable accessdte f
the call site. The authors di [29] do not require a plannerrtd &
sequence because they do not attempt to satisfy any semealatic
tionship, nor do they attempt to bind procedure parametertisgl
their search. They find a potentially huge number of call seqas
(consider querying a string manipulation library foy, = string,

Tout = string), many of which have an inappropriate semantic
relationship, and then use a heuristic to order the seqadnom
most useful to least useful. A jungloid call sequence isriese
permanently by the Eclipse IDE; if a library is upgraded ayqar-
dures are otherwise added to or removed from the progran, or i
the surrounding context changes, then the sequence mayngerlo
be appropriate. By contragiTPACS attempts to rule out semanti-
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cally inappropriate sequences during planning, does mpiire an
advanced editor like Eclipse, and can adapt to changes itexton
or library upgrades because the sequence is inserted dimingi-
lation instead of in the original source code.

Broadway [20] uses library annotations by a domain expert to
perform source-to-source transformations. Instead afigpeg the
semantics of procedures, the annotations provide datakfifos-
mation that may be difficult to infer using static compilerabn
sis. Advanced annotations provide explicit directionsh® tom-
piler for determining when a library call should be inlineelplaced
with a specialized call, or eliminated altogether. One fabwith
Broadway is that specialization is indicated with expléirectives;
adding a new procedure to a library requires the domain éxper
to review the annotations for all existing procedures tedeine
if any could benefit by directives referring to the new praged
DIPACS does not encounter that problem because there are no ex-
plicit optimization directives. The planner discoversapbzations
on its own by using the initial state and the semantic spetifins
of procedures, which do not explicitly refer to other promess.
Instead, they describe each procedure’s effects using sistent
domain vocabulary, which serves as a level of indirectiotdiAg
a new procedure does not require modifying existing spetifins
unless the vocabulary changes, which should be rare.

Speckle[47] makes specifications part of the programming lan-
guage such that the compiler can use them to perform optimiza
tions. Speckle is a statically-typed subset of ¢h& language that
uses “primitive, automated theorem-proving technoldgyj]'T4o
determine if the preconditions of a specialized procedtegesatis-
fied such that it may replace the call of a general procedyneciSe
contains many features of Lardh [19], a tool for formally cphe
ing computer programs. Instead of Lar®&fIPACS uses a planner,
which provides greater flexibility in replacement, but meamat
specifications are not as detailed, so we cannot prove ¢toes
We believe this tradeoff is adequate; in practice, spetifina that
seem “complete enough” are used instead of attempting te wri
more complex specifications. Speckle, by design, does lmt al
programmer to directly call a specialized procedure bezdoing
so might circumvent the compiler’s proof mechanism. By casit
DIPACS treats an AA call as an explicit request that the compiler
assist the programmer; if a procedure is called directigntthe
programmer retains all responsibility.

Domain-independent planners[L1}, [13,[ 14 37I"49] gradually
have added abilities of general-purpose programming ages
but remain planning languages with extra featufes [35]. &- pr
grammer would use such a language to solve only planning prob
lems. By contrastDIPACS is a mostly imperative language where
the planner has a supporting role. Our approach is similptaio-
ning for grid computing(lB], but integrated with a progranmai
language. GoldenBPADL [[1§] is the planning language most sim-
ilar to DIPACS. Golden makes planning usable by software devel-
opers by loosely basing its syntax on Java, whebE®CS is a
programming language whose compiler happens to use a planne
to implement one language feature.

Automatic programming “allows a computationally naive user
to describe problems using the natural terms and conceptsiof
main with informality, imprecision, and omission of detg[€].” A
goal of automatic programminfl[2,[3,[4, 5] is to write a pragray
writing a specification that is more abstract and concise,tfa
example, C or Fortran code. The term “semi-automatic” isemor
accurate because there is interaction between the prograamd
the system after writing the specification. One of the my#§ [
about automatic programming is that interaction can beieéited
completely. By focusing automation on parts of an applirative
are intentionally less ambitious; most code is written inraper-
ative style, allowing for incremental progress towards ladpec-



ification. It is important to allow for both programming gl in

a realistic development environment, lest difficulty spgng one
part of an application impede development elsewhere. Lidewit

is not acceptable for the compiler to ignore specificationtsl all
parts of the program are specified in full because this magmev
happenll4’7, p.17]."

Program synthesis[30] is one of several approaché&s$ [5] to au-
tomatic programming. Synthesis uses a theorem prover tergen
ate a constructive proof from which a program is extractad- P
grams often are as simple as swapping the values of two Vesiab
but more complicated syntheses are possibl: [45]. Trauditisyn-
thesis is not practical in a real programming environmerwghbse
“synthesized programs are often wantonly wasteful of timd a
spacel[30].” By contrast, algorithm composition combinescp-
dures written in an imperative language by a knowledgeitiarly
programmer; therefore, each part of the composed algoighrat
“wantonly wasteful.” Certain compositions of library pemures

may be less efficient than others, but they can be compared us-

ing formulas bundled with the library or by consulting thepbga-
tion programmer. Synthesis requires that primitive openathave
complete semantics, whereas our approach does not. We lzse a p
ner, similar to[[9], but use procedures for the primitive igi®ns
and use an interactive process to deal with incomplete s@caan
It is reasonable for synthesis to require complete semsantien
most components have complexity similar to machine intivos,
but it is not reasonable to expect all larger components, (eroce-
dures, applications) to have complete semantics.

Prolog and other logic (declarative) languages allow program-

mers to write goal-oriented programs, but candioéctly provide
the behavior we seek for several reasons. First, a Prolag-int

replacement have not been very successful. The primarplocid

is that algorithm equivalence testing is a variation of thepd
isomorphism problem, for which neither a polynomial-timgaa
rithm nor an NP-completeness proof is known. In practice; re
ognizers are slightly less ambitious and make simplificegtito
reach the subgraph isomorphism problem, which is known to be
NP-complete. Still, the heuristic approachksl [31,[34, 50§dlv-

ing this problem are complicated and have not been implezdent
widely in commercial compilers. We avoid the recognitionlgem

with explicit semantics and concentrate on replacement.

Adaptive algorithm selection [51]] dynamically replaces com-
putation patterns, such as reductions, with different engnta-
tions. It derives cost expressions for various impleméomatbased
on actual runs and predicts which implementations will beted-
ficient in the future. ThesTAPL [4§] library internally performs
algorithm selection. The Pythia]22.148] systems recomnzgd-
rithms for solving scientific problems.

Commercial Software: Mathematica employs a proprietary al-
gorithm selection systdirto provide faster and more precise re-
sults to users. Although their math library is extensives fno-
grammer cannot expand the automated selection processudén
their own functionsMATLAB commonly is used as an advanced pro-
totyping and programming environment for scientific conipit|t
provides many application-oriented modules that can beedeas
a higher-level, domain-specific programming environmBeicent
work [32,[33] focuses on high-level compiler optimizations

3. Domain-Independent Planning Background
Figure[2 shows a conceptual model of domain-independent pla

preter responds to queries by providing a yes or no answer, orNing [14, p.5]. A domain-independent planner uses an Irstite,
by enumerating values that satisfy the goal. For example, th & goal state, and operators to find a sequence of actionar(tiast

query reverse([1,2,3],X) asks if there is such a lisk and
the Prolog interpreter replies that yes there is one suthXis

= [3,2,1]. The interpreter is not able to answer queries like

X([1,2,3],[3,2,1]), which asks how that relationship could
be achieved; the desired answer wouldtbe reverse. Second,
the interpreter does not show the list of steps that it tatigza-
duce its answers. If print statements or debug traces anktose
reveal the steps without modifying the interpreter, thesuagess-
ful search paths are also printed. Third, Prolog Horn clause
not sufficient for AA and procedure specifications. Horn sksi
are of the formhead + bodys, ..., body, where the “head” of
the clause is implied by the conjunction of terms in the rigahd
“body.” Although an AA can be written in this fashion, witheth
AAs name on the left and its effects on the right, writing pedure
specifications in the same way does not allow the interptetiénd

a solution. A procedure’s effects would need to be on thetiaftd
side, which does not permit multiple heads. Splitting a irhagad

clause into multiple clauses does not work because thatsaus

plans to include multiple calls to the same procedure whep on
one call is needed. Finally, glossary terms are not defindkirwi
our programs, whereas every term in a Prolog program appsars
a head somewhere. Therefore, instead of using a Prologister
directly to plan compositions, one would use the Prolog laug

to write a planner, as can be done using any Turing-compdeie |
guage. The use of Prolog is then an implementation choicewan
choose not to use it.

Algorithm recognition and replacement [34]] are similar to al-
gorithm composition and selection because both affect grano
at the algorithmic level. Algorithm recognition seeks taarstand
multiple statements of imperative code (e.g., C, Fortrafipite re-
placing them with a better implementation. By contrast,dom-
position and selection, the abstract algorithm written ty pro-
grammer cannot be executed directly. Algorithm recognitmd

ated operators) that, if executed by the plan user, willdfiegim the
world from the initial state to the goal state. The physicakid

is composed of a static set objectswith various properties and
relationships that are changed by the actions; likewiseptanner
manipulates a symbolic representation of that world wheera
tors affect a corresponding symbolic state. For donaiEipendent
planners, the set of operators is implied (i.e., the opesati® hard-
coded into the planner) and not provided as input. The adgant
of a domain-independent planner is that it can be used folyman
different types of problems without rewriting the planisezbde.

Plan User World

Plan g Actions .
—» —>

Figure 2. A conceptual model of domain-independent planning

Operators —p»|
Initial State —
Goal State —»|

Planner

The set of operators defines a state-transition system atpsr
are applied to states, beginning with the initial stateei@ch suc-
cessor states. An operator may hayeconditionthat determines
if it can be applied to a particular state. A precondition Isgical
statement that must be true about the objects the operaiafwi
fect. If the current state satisfies the precondition, theroperator
can be applied to the state. Applying an operator to a staésults
in a new state? where the properties gf are a function ofx and
the operator'effects The planner’s job is to find a path through the
state-transition system from the initial state to the gteaties

The state-transition systems considered by planners aie ty
cally so large that it is not feasible to enumerate all stated
transitions. A planner must search intelligently, usings@nable

3Ihttp://www.wolfram.com/technology/guide/algorithresetion. htm
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amounts of time and memory, to find a solution. A naive depth-
first search requires excessive backtracking and may bertduva
by infinite branches of the search space; breadth-first seac
quires large amounts of memory when the branching factagts h
Using an appropriate search method, the planner shouldibatp
solution and terminate, if a solution exists. When no solugx-
ists, an output of “no solution” is helpful, but many plarmevill
not terminate. Fortunately, for most planning applicatiarnth ap-
propriate search methods, a solution is returned quickheifists;
if the planner runs for an unusually long time, then it is nalisn
assumed that there is no solution.

The first planning systeni [1L1] was created because tradition
theorem provers were too inefficient at solving planningofems.
In addition to specifying the effects of an operator, it witemm
necessary to specify what the operator dat affect in order to
solve a problem using a theorem prover — a difficulty knowrhas t
frame problem. A planner separates the theorem-provingcasi
the problem from the search aspect, such that separategstisit
can be used for each, yielding a more efficient approach.

Plan

- - Procedure (see Section 4.5)
Domi!g—Spemﬁc Specifications ‘ Operators
ibrary : A~ g
(see Section4.2) | DIPACS | initial State | DIPACS
icati _ | Compiler Planner
Application Code = = Socgon 4.3)| 502! S1ate | (soe Section 4.4)
C or C++ Code Run-Time

Program State
(World)
00101010
01000010

Binary (Actions

Figure 4. Using a planner for algorithm composition: the compiler
creates the planner’s input in a format similar to PDDL [18&rges
the resulting plan into the program at the call site of the AAd
generates a binary. The compiler becomes the plan user figm F
ure[2. Executing the binary causes the plan to affect therano'g
run-time state, which is essentially the world from Fididre 2

4.2 Ontological Engineering

There are several possible representation schemes that arerpe first challenge of the approach in Figlre 4 is for the fippao-

equally powerful in terms of problem solving 14, p.19]. Weela
variation of the classical representation where precanditand
effects are characterized by logical predicates. Fifilirdh@vs
the canonical planning example, block stacking. The aatiore
changes the location of a block that has nothing on top of it.

B e

Initial State Plan Goal State
on(B,table) move(A,table) on(C,table)
on(C,table) —* move(B,C) — on(B,C)
on(A,C) move(A,B) on(A,B)

Figure 3. A planning example: a planner uses the initial state, the
goal state, and operator descriptions (not shown) to finda thlat
will arrange the blocks according to the goal.

4. Planned Algorithm Composition

Using a planner to form plans that affect program valuesatsbf
physical objects is unusual. A straightforward mappingahpo-
sition onto planning presents challenges to the librarggmmer,
the compiler, and the planner. This section provides arvigwrof
the mapping and then identifies four challenges that we onegc
using a combination of compiler techniques (e.g., liveéalde
analysis, SSA[10]) and extensions to classical planning.

4.1 Mapping Composition onto a Planning Problem

We map algorithm composition onto a planning problem asgn Fi
ure[4. When the compiler encounters an AA call in the appboat
code (e.g.save_query_result_locally from Sectiorll), it in-
vokes a planner to find sequences of library calls (e.g.,Eid)
that achieve the AA’s effects. The compiler uses the caltiog-
text to determine the initial state for each planning probl&he
library procedures and the procedures in the applicatiale @e
the operators available to the planner.

grammer to specify appropriately the behavior of the lipraoce-
dures and for the application programmer to specify theredsi
effects of AAs. In SectionEl1 ard 2, we observe that attenpts t
specify precise semantics have not had significant sucGegsh
approaches often require programmers to become expeugim |
programming and have proven feasible only on small codegkgrn
Also, we observe that precise, formal semantics are ofterces-
sary for adequately describing software behavior becaesebst
common form of specification is English comments.

In our approach, the library programmer defines a glossary of
abstractions for describing the preconditions and effettibrary
routines. Choosing adequate abstractions is called agitalben-
gineering — the process of deciding on a vocabulary for a doma
and how to best represent information. Ontological engingés a
complex issu€e]17], and a full discussion is outside the s@dphis
paper. We assume that the library programmer knows the pdéco
tions and effects for the individual procedures, and wiiesspeci-
fications after choosing the abstractions; we do not attéongtlve
the problem of automatically determining the precondgiand ef-
fects, which may be possible for low-level abstractionsIg,[15].

As a running example, we consider sort procedures, which are
well-known and concise while still demonstrating impottaon-
cepts; the larger BioPerl case study is covered in SediSnpose
that a library proceduré returns an array that isorted. If the
application programmer writes an AA that must produeesated
result, then the planner might choaBeas a step of the plan. To do
so, the plannedoes not need to know the precise semantics of the
term sorted A formal specification involves a definition likEl(1).

1)

Using such a low abstraction level results in lengthy speatibns
that are cumbersome to write and a greater chance that there i
more than one way to write the same specification. We belleae t
such a definition is not as programmer-friendly as the comynon
understood termorted. The English definition in the glossary can
clarify any ambiguities (e.g., increasing versus decrepsirder,
sorting alphabetically versus numerically). Using a highteaction
level, such asorted(result), avoids the above problems. A

Vi € {0...result.length — 2} result[i] < result[i + 1]

Due to the large search spaces of these problems, which wedisadvantage appears to be tkatted is not defined such that

describe in Sectiof 3.4, planning techniques are more pppte
than simple breadth-first or depth-first searches. Nevesheex-
isting planners are not helpful because planning reseeraffstto
focus on scalability without using advanced features suchxa
ioms, equality, object creation, and returning multiplang. We
require these features, as we explain below.

it can be proven or validated, but our approach requirebaeit

In addition tosorted (result), permutation(result,
input) is a useful abstraction because otherwise any sorted re-
sult could be returned, even one that was not related to the.in
Furthermore, it is useful for the planner to know that a paanu
tion is reflexive, symmetric, and transitive. For examplehé in-



put array was already sorted (i.eqrted(input)), then it could
not satisfy the goatorted (result) A permutation(result,
input), unlesspermutation(input, input) was known to be
true via the reflexive property. As another example, trawgsfirop-
erties are useful to transfer semantic information fromutnio
output through a series of intermediate operations. Axicons
ply these properties to a planner. Many planners, partigulaose
that do not maintain a current state (i.e., plan-space plajndo
not support axiomg[14]. As we discuss in Secfiod 5.4, ounmea
is a state-space planner that supports axioms. We expdtriduey
programmer to use keywords to indicate which predicateseare
flexive, symmetric, and transitive, but do not expect therwtibe
general axioms. General axioms can introduce synonymstieto
glossary, which confuse both application programmers dad-p
ners. An important relationship that cannot be expresséu ax-
ioms is equality; i.e., that two objects have the same pt@zeand
are interchangeable. An assignment statement introdheeseia-
tionship. Traditional planners do not need to deal withgrgsient,
but our planner supports equality.

A related issue is the frame problem: whether and how to spec-
ify what a procedureloes notdo [4]. For example, the programmer
should not have to specify that a sort procedure does nowoiter
unrelated variables, calculate or format a disk. In general, the
truth value of an unspecified property is unknown. Becauspete
mit incomplete specifications, it is convenient to assumefaudt
value of false[[14, p.47], while remembering that it may heetr

Expressive Power Planning languages (e.gl._[13]) have limited
expressiveness. Because we do not require complete sp#oifis,
such languages are sufficient to specify the effects of pluess in
real libraries such as BioPerl (see Secfibn 6). Note thatigireg a
theoretical bound on the power of our specifications is diffifor
the same reason; how complete a procedure’s specificatia mu
be to place it in the class of procedures that can be usefodlgis
fied is subjective. Any specifications that allow the compibesug-
gest or select compositions that please the applicatiogrgnomer
while not providing an annoying number of irrelevant corifoss
would be considered useful.

4.3 Determining the Initial and Goal States

The second challenge of implementing the mapping in Filliee 4
that the compiler must determine the initial state and fglatie
goal state for each AA call in the program.

Initial State First, the compiler must determine which variables
are in scope because the “physical” objects available tgliue-
ner are the values accessible from the call site. Next,athgpflow
analysis is used to discover the properties of the valueis, Big-
ure[d. The compiler determines if a value has a semantic fyope

a result of the effects of a previous call, if two variables aqual,
and if a variable has a particular value. The list of objeats their
properties are provided to the planner as the initial state.

Goal State The AA's effects are the goal state of the plan. The
goal is to create new values with certain properties. In mtag
terms, the goal is existential because it is satisfied by aniable
containing a value with those properties (i.e., the namaefalue
does not matter). Because AAs are not typed, the compilet mus
restrict the existential to the type of variables receiving return
values of the AA call. For example, if an integer array reesithe
result of sort (input), the goal is:3 int[] result such that
sorted(result) A permutation(result, input).

4.4 Object Creation

The third challenge of implementing the mapping in Figikes 4 i
for the planner to use the operators because proceduregehdifia
ferently than traditional planning operators. In clasisptanning,

| y=sontfoy |

soded(’}/\ sorted(y)

inta, b, c;

; b;
c=AA(.);

(:objects a b ¢ —int)
(init (equal a b))

(:objects x y z — int_array)
(cinit (sorted y))

(:objects x y z — int_array)
(:init )

Figure 5. Calculating the initial state: in each of the three exam-
ples, we show the initial objects and state for the AA calleTh
sorted property comes from the effects sért. An assignment
to a variable along any path wipes out its properties.

the world consists of a static set of objects. Operators fndde

properties of and relations among those objects, but neeate
or destroy objects; the initial state, goal state, and adirmediate
states contain the same objects. Permitting object creatiakes
it more difficult to ensure that a planner will terminate hesm it

dynamically changes the size of the search space.

A static set of objects does not model the state of most pro-
grams. A program’s run-time state consists of the valuesadf v
ables. Procedure calls often use different variables fputirand
output, such that some are read-only, while others are @itezn
Intermediate steps require temporary values not presehedie-
ginning or end of a computation. Requiring all proceduresge
the same variables for input and output is not practicalabt,fa
purely destructive language corresponds to a restricteiddma-
chine that permits writes to only storage locations thaaay con-
tain values. Such a machine never uses an amount of storeafegr
than the size of its input and is known as a linear boundedzatin,
which is computationally less powerful than a Turing maeHiil].

Therefore, extending classical planners to the programmin
world requires object creation (also observedby [16]).60bgre-
ation can be added in two ways. The first method simulatesicrea
by starting with a large number of extra objects that arelglére
objects are untyped and have no properties. When a new abject
needed, one of these extra objects is given a type and somerpro
ties. The advantage of this method is that it maintains &stat of
objects and thus fits the classical paradigm. The disadyastare
analogous to using a fixed-size data structure when a dyadynic
sized structure is more appropriate. For example, whenguain
table of lengthN, one could chooséV very large so that most
problems fit; however, the disadvantages are wasting memavy
ing to search a large table even when solving small problamd,
sometimes failing to choose a large enough

We employ the second method, which breaks the classical plan
ning assumption by creating new objects on demand. Breaking
assumption does not raise termination issues because anrgpl
does not create redundant objects; if a value exists thiafisatan
existential goal, then the plan uses that value instead Ibhga
procedure to create a new value to satisfy it. Return valteas
signed unique names, similar to how a compiler assigns teampo
values unique names for intermediate code. We also use mi@ma
scheme for modified values, such that we can specify rektips
between a variable’s previous and current values:

X — x@1 , x@1— x@2 , ...

Whenz is modified by a procedure, we creat@1, which is read
as “r after the first modification.” A before-after relatignwould



be writtenp(z,z@1). These techniques are very similar to static
single-assignment (SSALI10], but inside a planner.

4.5 Merging the Plan into the Program

The fourth challenge of implementing the mapping in Fidilie 4
to insert the plan into the call site. Although this challerig not
as difficult as the others, it must be handled correctly. fassible
that a destructive plan is found, but only a nondestructiesion

is allowed in the calling context, or vice versa. If a destingccall
sequence is inserted where the application programmercexpe
nondestructive sequence, then they will be surprised totfied
data overwritten; likewise, if a nondestructive sequesdaserted
where a destructive sequence is expected, they will wondwer w
their data did not change. In Sectibnl5.2, we explain a laggua
design choice to always define an AA as if it were nondestreti
although some implementations of it may be destructive.ctime-
piler knows whether it can use a nondestructive or a destauct
implementation of an AA by using live-variable analysisr Ea-
ample, assume thabrt is an AA.

int[] a, b, c; /x three

integer arrays */

= sort(a); /x
= sort(b); /x*
. a:
b;
The first assignment permits a destructive plan becauge

killed. If only a nondestructive plan is available, then tmpiler
uses it and adds an assignment on the end. Either is perhaissib

request a destructive plan/
request a nondestructive plam/

destructivesort(a); I/« option 1 */
a = nondestructivesort(a); /x option 2 x/

The assignment to does not permib to be modified because it
is used later. If only a destructive plan is available, tHem ¢om-
piler prepends code to copy the arguments, changes thespl@ai
sequence to apply to the copies, and then copies the reguthim
output variables. For example, a nondestructive sort camested
from a destructive sort:

int[] t = b;
desttructivesort(t);
c =t

If ¢ is not used by the plan, then one assignment can be elimi-

nated. Other situations may permit more eliminatlor [41].

int[] ¢ = b;
destructivesort(c);

Note that it is not normally advisable for the applicatiom-pr
grammer to permanently replace an AA call with the plannso's
lution because the surrounding context may change or negepro
dures may become available, which can invalidate the solwdr
make it less optimal. Keeping AAs allows programs to evolge a
libraries improve.

5. Language Design and Implementation

We have discussed the general principles behind our appréac
this section, we apply those principles in a language of eun o
design. We considered modifying an existing domain-spelzfi-
guage, but we wanted to be able to experiment with examples fr
multiple domains. We also considered modifying a compiterain
existing general-purpose language because they are afezhta
call domain-specific libraries. That approach became lkixsctive
after considering that we would need to force specificatiottsan
existing grammar and deal with many language features taeg w
not directly related to our work. Therefore, we creabd®ACS to
try our ideas. We are not proposing wide acceptance of the lan
guage,; it is a proof of concept only. We believe that our tépies

could be integrated into existing languages, and certaid/new
languages that considered all of the design issues up front.

We chose a traditional imperative programming model bezaus
many DSLs perform mathematical computations (e.qg., lintge-
bra, game physics, Fourier transforms). These libraritencdre
written in C, Fortran, or even assembly language becauseatiee
intended to be reused many times, and their authors wantletanp
control over the implementation to emphasize efficiencytddiag
the programming model of these libraries makes it easiestioour
ideas. Other kinds of libraries (e.g., object-orienteddites written
in C++ or Java) could benefit from our techniques, but we carsi
it future work.DIPACS is an integrated specification and program-
ming language, which avoids the problems that occur witlausgp
languages, as in Broadwey [20]. Itis convenient for progrears to
define and use AAs from within their source code instead afgusi
a separate file, which avoids extra writing and consistemop-p
lems. The integrated language enables the compiler to gdtow
gram constants and “sizeof” calculations in specificati@eparate
specifications are still necessary when libraries are rgitiduted
with their source code. In that case, we suggest the conyditbe
library emit a specification-only header file and binaryhbioased
on integrated source code.

5.1 Library Procedures and Their Informal Specifications
The general form of a procedure definition is

procedure ([type returnvalue_name]+)
name ([type parametename k)
[<= { preconditionx }] [=> { effectx }]
[metric_cname formulak
{ [executablestatement} }

Multiple return values are allowed and each must be given a
name, unless there is only one return value, in which casnpar
theses are omitted and the name defaultedeult. Parameters
are typed. Preconditions specify n-ary relations on thampaters
that must be true to call the procedure, and they may not refer
to return values. Effects inform the compiler of relatiohattare
true immediately after calling the procedure, and they nefgrr
to return values. An effect can be a predicate, an equali&yioe-
ship, a universal quantifier, or a conditional effect — alldfich
have appeared in planning languages. Tteall keyword quan-
tifies over all objects of a specific type that are in scope wthen
procedure is called. Thehen keyword indicates a conditional ef-
fect; its condition must be true for the effect of its body tipby.
The return values themselves contain the implied effectrefte
ing new objects. If used, metric names must be declaredqurslyi
in a metric declaration; typical metric names ateée andspace,
representing performance and memory usage. A formula neust b
single mathematical expression containing constants araheter
names that predicts the utility of the procedure in term$efrhet-
ric. The expressions are provided by the library programiaed
may include calls to typical math functions and “sizeof” axdh-
tions. The intent is for the formulas to be evaluated at ctertpne
to provide some guidance in comparing alternative call eeges;
another way would be to heuristically order the sequencaw fr
shortest to longesi_[29]. The executable statements ariéasitn
C or Java. A nondestructive and a destructive sort proceaitge
shown below. Note that pass-by-value is the default.

metric time, space;
axiom reflexive symmetric transitive permutation;

procedure int[]

nondestructivesort(int[] array)
=> { sorted (result), permutationfesult,
time pow(array.length, 2)
space 2x array.length

{ /+ implementation =/ }

array) }



procedure void

destructivesort(int[]& array)
=> { sorted (array@), permutation(array@ ,
time 3 x pow(array.length, 2)
space array.length

{ I+ implementation*/ }

Limited axioms are supported as described in Sefioch 4.2. Fo
the destructive procedure, the return typerésd and the array
is passed by reference so that the procedure can sort it ¢e.pla
The @ operator, as in Sectidn 3.4, refers to a parameter’s modified
post-call version. The procedures have different time pade for-
mulas, such that the first is faster, but the second is moreespa
efficient. The formulas are only crude estimates and do ndider
the number of inversions, cache behavior, etc. The compder
evaluate the formulas and select an implementation basedron
piler flags to optimize for time or space, but may need to piiomp
the programmer or use profiling information to obtain theidgp
size of the array. More advanced selection techniques ashge,
but beyond the scope of this paper.

array)

5.2 Defining Abstract Algorithms (AAS)
The general form of an AA definition is

algorithm [(return_value_namesx)]
name ([ parametemame k) [=> { effectx }]

An AA has a name and parameters, similar to a procedure, but
instead of a body it has only effects. For now, these effeats c
only be predicates. A composition satisfies an AA if it caualesf
the predicates to be true; it may cause other predicates taubée
Preconditions do not appear in the algorithm definition heea
they would specify under what circumstances the algorithay m
be applied, instead of what it does. Parameters are not tigred
exactly the same reason that preconditions are omittedaangger
type can be thought of as a precondition (e.g., a unary patslic
int (x) to indicate thak is an integer).

An AA always is described as a nondestructive operation, re-
gardless of whether most implementations of it would berdest
tive. Nondestructive specifications are the default for teasons:

(i) the specification is simpler because there is no confusiger
whether a variable name refers to a value before or afteniodi-

fied, and (ii) a nondestructive call more easily blends intaléing
context (see Sectidn4.5). The name of another AA can be used
as shorthand to include its effects. For example, here aé\th
definitions forsort andstable_sort.

algorithm sort(x)

=> { sorted (result), permutationfesult, x) }

algorithm stablesort(y)
=> { sort(y), stable¢esult, y) }

The effects ofort are shared bgtable_sort. Note that the
predicatespermutation and stable illustrate the convenience
of the abstract approach; neither the application progranmor
the library programmer had to figure out how to formally define
the predicates using logic. Although formally defining@rted
predicate is not very difficult, bothermutation andstable are
more complicated.

5.3 Calling AAs and Generating the Planner’s Input
Suppose that the following procedures are available:
axiom reflexive symmetric transitive permutation;

procedure void insertion.sort(int[]& array)
=> { sorted(array@),
permutation (array@ ,

implementation %/ }

array )}
{ I«

procedure int[] build_max_heap(int[] array)
=> { maxheap(result),
permutation fesult ,

implementation =/ }

array) }
{ I«

procedure int[] sort_heap(int[] array)
<= { maxheap(array)}
=> { sorted (result),
permutation fesult ,

implementation x/ }

array) }
{ I«

Furthermore, suppose that the programmer makes this AA call

int[] output_array sort(inputarray);

The call can be implemented as a compositiorb@f1d max
_heap and sort_heap, or by copying theinput_array to the
output_array and runninginsertion_sort ontheoutput_array.
The compiler generateBDDL [13] code to use the planner to find
the compositionsPDDL is the planning language used for competi-
tions within the planning community. For illustration, wecsv the
code below.

(define (domain isort)

(:axiom ; reflexive

rvars (?x)

:context ()

;implies (permutation ?x ?x))

;axiom ; symmetric

cvars (?x ?y)

:context (permutation ?x ?y)

cimplies (permutation ?y ?x))

;axiom ; transitive

cvars (?x ?y ?z)

:context (and (permutation ?x ?y)
(permutation ?y ?z))

cimplies (permutation ?x ?z))

;action insertion.sort

:parameters (? array — int_array)

:creates (?array@— int_array)

.effect (and (sorted ?array@)
(permutation ?array@ ?array)))

;action build_max_heap

:parameters (? array — int_array)

:creates (?result— int_array)

:effect (and (maxheap ?result)
(permutation ?result ?array)))

(:action sort_heap

:parameters (? array — int_array)
:precondition (maxheap ?array)
:creates (?result— int_array)

.effect (and (sorted ?result)
(permutation ?result ?array))))

(define (problem sort)

(:objects input_.array — int_array)

(:init ) ;null initial state

(:goal (exists (?result— int_array)
(and (sorted ?result)

(permutation ?result inpufrray)))))

PDDL uses a Lisp-like syntax, with a question mark to denote
a planning variable that can be bound to an object. dteates
clause is not standa®DDL. When the planner applies an operator
(an action irPDDL), the variables in thereates clause are bound
to unique names (e.g., tmp0, tmpl, inputay@1) and added to
the list of known objects, as in Sectibnl.4. In this examtiie,
initial state is empty, so the planner finds two plans. Whiitean
imperative syntax, they are:

insertion_sort(inputarray);
bind ?result to input.array@1

tmpl
tmpO
bind

buildmax_heap (inputarray);
sortheap (tmpl);
?result to tmpO



solve_problem (domaindef, problemdef)
parse definitions

II — all_values backwardsearch (..)

backwardsearch g6y, goal, operators ,
initial_objects , axioms)
let loop (s« so , g+« goal,
I"— null, ; previous goals
m «— null, the plan

objects «— initial_objects)
if gel' then fail avoid oo paths
s« apply.axioms (s, objects , axioms)
s« apply_-equalities, initial_objects)
if s satisfies g then return=.bindings
R~ relevantset(s, operators, objects)
if R is null then fail
a «— a_.member_of (R)
if a has unbound parameters then

subgoalplans — all_values

loop (s, preconditiong], ¢g.I", null, objects)
if subgoalplans is null thenfail
sp — a-member_of(subgoalplans)
s, objects — apply_plan(sp, s, objects)
T < T.Sp
bind action a using the binding insp
s, objects «— apply.action(@, s, objects)

g' <« unsatisfiedpart(g, s)
loop(s, g', g.T', m.a, objects)

Figure 6. Pseudocode for the planner: the dot operator (.) indicates
list concatenation and<- indicates assignmerd.member _of is a
“nondeterministicl[43]” choice point to which thail statements
return.all_values safely catches the top-levehil and collects

the results in a list.

The compiler converts the first plan to be nondestructive and
eliminates temporary variables in the second plan to preduc

output.array = inputarray;
insertion_sort(outputarray);

output.array =
sort_heap (buildmax_heap (inputarray));

If input_array already was sorted due to the effects of an ear-
lier call, then the initial state i6: init (sorted input_array))
and the planner finds what is effectively a null plan:

bind ?result to input.array

This plan contains no calls, so the compiler can eliminage th
AA call and replace it with an array assignment. Therefohe,
same AA call can result in different plans depending on thinca
context, which makes our approach context-sensitive.

5.4 The Planner

Our planner is written in Guifle which implements the R5RS
Scheme standard and provides an interpreter to C code throug
a library. Instead of usingxzec to start a new process each time
it needs the planner, the compiler calls a Guile procedua¢ th
initiates the planner, directly passes information thiotige call,

actions because for each operator there are many ways tatbind
parameters to the values. Consider a modest example where th
library has 128 procedures with 2 parameters each, thei@ lase
values at the AA call site, and we are trying to find a sequeffice o
4 calls. To simplify the math, we will assume that any liveual
can be bound to any parameter (i.e., that there is only aesttagh
type). The following formula yields the number of potentidns:

(128 % 8%)* = (27 % 26)* = 213D — 252 x4 5% 10"°  (2)

Therefore, an exhaustive search for each AA call is not feasi
ble. Our initial planner used a forward planning algorithmattbe-
gan at the initial state and tried to reach the goal stateottinf
nately, using a forward planning algorithm in a search spéttea
high branching factor requires a very good heuristic to gulte
search. Most planners are concerned with finding a single- sol
tion and so their heuristics can focus on identifying thehpghat
is most likely to succeed. Because we are interested innietyr
multiple solutions, a good heuristic must identify muléigikely
paths. We had great difficulty with the forward approach, s w
switched to a backward planning algorithm that turned oubeo
more successful. Although searching backwards from thétgea
wards the initial state is counterintuitive, it can be moffecient
than a forward search; a forward search tends to try manytqusr
that are irrelevant to the goal and may backtrack more frettye
than a backward search, which can more accurately detetiméne
set of relevant operators. Both strategies are common iremod
planners and we do not claim that a backward planner is n@gess

High-level pseudocode for our planner is shown in Fiddre 6.
The main procedure solve-problem, which accepts a definition
of the problem and its domain. The definitions are parsedttzad
extracted information is passedtackward-search, which per-
forms the planningbackward-search is a heavily-modified ver-
sion of the algorithm normally associated with ea8t§RIPS [L1]
planners. We add axioms, equality, object creation, anceakcfor
previously-considered subgoals to avoid infinite recursio

The planner finds an operator that is relevant to satisfylreg t
goal, and then recursively attempts to satisfy its predardi An
action is relevant if it helps satisfy an existential goaldmgating
an object of the desired type, or if it helps satisfy a regglzal by
making one of the conjuncts true. The relevant set must dechll
relevant actions, otherwise the planner will fail to findsalutions.
The set may safely include actions that are later discoverdm:
irrelevant because the check for repeated goals will detedt
an action did nothing useful; however, including many eweint
actions will reduce performance.

Normal STRIPS planners have two limitation§[lL4, p.76] that
do not affect our implementation. The first limitation is thiaey
attempt to satisfy only subgoals relevant to the precaolitf
the most recently considered operator. If an operator hgative
effects (i.e., causes a true property of a value to beconse)fal
then that artificial ordering can cause “deleted-condifinterac-
tions [14, p.77],” where a previously satisfied subgoal idame.

and receives a list of plans as a return value. We implement a Because we rename modified values similar to SSA, as distusse

backtracking mechanism using continuations similar[fd] [#3
provide “nondeterministic” choice points, which make i to
write a planner.

in Sectior[Z}, there are no negative effects; there is simplew
value created that lacks properties of the original valie Jecond
limitation is thatSTRIPS planners do not backtrack once they com-

Although, by planning standards, the call sequences that we mit to applying an operator. Our implementation backtraoker

seek are short (frequently fewer than ten steps), the biragp&dactor
of the search space is very high. It is common to have litsaviéh
tens to hundreds of procedures (operators), each with rauser
parameters, called from contexts with tens to hundreds loksa
(objects) in scope. At each step of the plan, there are massilge

4http://www.gnu.org/software/guile

applied operators because we wish to return multiple plans.

6. Composition Using the BioPerl DSL

In Sectiorl, we used an example from the BioPerl library auith
explaining its implementation; we return to that case study


http://www.gnu.org/software/guile

6.1 The BioPerl Domain

We show specifications for only the procedures relevanted\ths

that we discuss in this paper. We consulted the BioPerl decten
tiorl to learn the purpose of each procedure. Although we are not
biologists, we were able to understand enough of the doctanen
tion to specify the procedures shown below. After we readitie
umentation, writing these specifications took less thanlfehioar;
specifying the entire library certainly would require mdéirae and

a greater understanding of the biology domain. We wrote ths A
after writing the procedure specifications because that is therord
in which it would occur in practice.

procedure Query
bio_db_query_.genbanknew (char[] db_name,
char[] query)
=> { result.db == dhname,
result.query query };

procedure Stream
get_streamby_query (DB db, Query q)
=> { streamfor_query(result, q) };

procedure SeqlO
bio_seqianew (char[] filename , char[] format)
=> { result.file == filename ,
result. format format };

procedure Seq nextseq(Stream stream)

=> { forall (Query Q)
when (streamfor_query (stream, q))

{ query.result(result, gq.db, q.query)} };

procedure void write_seq(SeqlO io, Seq s)
=> { in_format(io.file , io.format),
contains (io.file, s)};

procedure DB bio_db_genbanknew ();

procedure Seq biaseqgnew (char[] id,
=> { result.id id, result.seq

char[] seq)
seq};

procedure Factory
bio_tools_.run_standaloneblasmnew (char[] program,
char[] db_name)
=> { result.program == program,
result.db_.name dhname };

procedure Report blastall(Factory blast,
=> { report_for_blasting (result,
blast.program, blast.dbame, s)};

All glossary terms are defined in Sect[dn 1, excefateam_for
_query and report_for_blasting. The former means that a
stream supplies the results of a particular database qaedythe
latter means that a report is from “blasfiig particular protein
sequence. These predicates, along with structure fieldpagate
semantic information throughout plans. For planning \@es that
represent structure fields, the planner only substitutgscbbhames
for the part before the dot (.) operator. None of the procesiur
have explicit preconditions, but the parameter types plevin-

plicit preconditions. A== denotes equality. These specifications are
translated by the compiler inBDDL, which we omit for brevity.

Seq s)

6.2 A Jungloid-like Abstract Algorithm

AAs can be used to implement Jungloidsi[29]. Suppose that the
application programmer knows only the type of object thayttie-

sire. They can generate a large list of plans by defining a fdyin

AA that has no effects and then calling it:
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algorithm dummy ();
Seq s = dummy();

That code causes the compiler to produce a planning problem
that has very few constraints:

(define (problem dummy)

(:objects ...) whatever
(:init ) ; null
(:goal (exists

variables are in scope

(?result— Seq))))

To solve the problem, the planner must find a way of creating
a Seq object. Because it does not matter how the object iteckea
many plans are found. If the list of plans is too large from ahhi
to conveniently select a plan, then the programmer can attluefu
constraints and recompile, as in the next example.

6.3 AA:savequery_result_locally

In Sectiorf1, we introduced an AA calledve_query_result_lo-
cally and showed an example of calling it. For that example call,
the compiler generates the following problem:

(define (problem savequery.result.locally)
(: objects db_.name querystring
filename format— char.array)
(:init )
(:goal (exists (?result— Seq)
(and (queryresult ?result dbmname querystring)
(contains filename ?result)
(in_format filename format)))))

The problem and the domain above are given to the plan-
ner. The planner finds the plan in Figute 7 using a backward
search. Nevertheless, the semantics of the BioPerl exaarple
not completely specified. The procedureso_db_genbank _new
andbio_db_query_genbank _new are from the Bio::DB::GenBank
and Bio::DB::Query::GenBank Perl modules. Nothing in th& A
indicates that GenBank should have been used. There analeve
alternative databases: SwissProt, GenPept, EMBL, SeqHaim
RefSeq. If these modules are made available to the comhikam,
there will be alternative ways of implementing the AA by dieg
different DB and Query objects. Presumably, the applicatiom-
grammer knows which database they want to use, and can gkspon
to a compiler prompt to select a specific plan.

%] 5]
tmp3 = bio_db_query_genbank new(db_name, quer}t@\AZ =bio_db_genbank_new()

tmp3 - Query

tmp2 - DB
equal(tmp3.db, db_name)
equal(tmp3.query, query)

tmpl = get_stream_by_query(tmp2, tmp3)$

tmpl - Stream

(%] stream for query(tmpl, tmp3
tmp4 = bio_seqio_new(filename, fm tmp0 = next_seq(tmpl)

tmp0 - Seq

tmp4 - SeqlO

query_result(tmp0, db_name, query_string)|
equal(tmp4.file, filename)
equal(tmp4.format, format)

write_seq(tmp0, tmp4)
contains(filename, tmp0)
in_format(filename, format

Figure 7. The state-space for saggiery resultlocally: irrelevant
actions are not shown, and each box shows only what predicate
and objects are added in that state. The operators are ecesid
relevant by the planner in the direction of the arrows, baythre
applied in the opposite direction to yield Figlile 1. Note tinder

in which temporary objects are created.

T Planning Order

¢ Call Order
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6.4 AA: blast_sequence
We can write another AA for using BLAST.

algorithm (report, seq)
blastsequence (program, dbame, id, sequence)
=> { report_for_blasting(report, program,
db_name, seq),
seq.id == id, seq.seq

sequenck;

If the AAis called and its return values are assigned to e
of type Report and Seq, then we have the following problem:

(define (problem blast.sequence)
(: objects program dhname id sequence- char_array)
(:init
(: goal
(exists (?report— Report ?seqg— Seq)
(and (reportfor_blasting ?report program
db_name ?seq)
(equal ?seq.id id)
(equal ?seq.seq sequence)))))

The plan found is:

tmp2 bio_segnew (id, sequence);

tmpl bio.tools_.run_standaloneblasthew (program,
db_name);

tmp0 = blastall (tmpl, tmp2);

bind ?report to tmp0O, ?seq to tmp2

6.5 Unobtrusive Interactive Compilation and Optimizations

Trust Levels The compiler can provide an option to customize
the amount of interaction. We call the degrees of interactinist
levels” because less interaction implies that the prograntnusts
the compiler to make acceptable choicesvel 0, Very LowAt
this level the compiler never selects a plan without consgyithe
programmer, even if there is only one possible plasvel 1, Low:

If there is only one possible plan, then the compiler will cotsult
the programmerLevel 2, MediumThe compiler will attempt to
choose among multiple plans on its own. If the choice is nearl
then the compiler will consult the programmeéevel 3, High:At
this level there is no interaction. The compiler always cislex
plan, even if this means choosing one at random when there is
insufficient information.

Decision Cache A decision cache stores the programmer’s choices
to provide the illusion of a normal compilation process.ufidg a
subsequent compilation the programmer would be presenitéd w
a question that has been answered previously, then the empi
uses the answer in the cache and does not consult the programm
Command-line arguments may be used to clear the cache kiher
fore or after compiling, or to ignore the cache. The decisiache

is indexed with the question. For example, a particular mtag
problem may result in three potential solutions, from whibk
programmer selects the second. During a subsequent coiomjla
the same planning problem is encountered, but instead afigask
the programmer to choose among the three potential sofjtiba
compiler automatically uses the second solution.

Performance Planning introduces compile-time overhead, but no
run-time overhead. The compile-time overhead is expeaduet
less than the time the programmer saves by not having to ésarn
ery detalil of the library. Although we have not done studiethw
actual programmers, we show in Table 1 that the overhead fer A
call is small and conclude that it is not likely to be a sigrfitfrac-
tion of the total compile time. The planner is interpreted aould

be optimized further by implementing it in a compiled langealf
performance does become an issue, a solution cache caritstore
planner’s output for a given problem. If the same problemnis e
countered again, then the compiler can use the plans in theca

instead of executing the planner. Plans would need to beegvic
from the cache if they used procedures no longer availabtbeto
compiler, and the cache would need to be cleared to take tay&an
of new procedures that have become available.

Table 1. Performance of our planner on various problems; these
numbers were collected on a 1.6GHz AMD Athlon processor unde
Linux by taking the arithmetic mean of three runs. For the otin
the dummy AA, four char[] variables were available at thé sité.

The timing resolution was 10ms.

domain | abstract algorithm create | plans | time(ms)
bioperl | dummy Seq 32 300
bioperl | savequeryresultlocally | Seq 1 3270
isort sort int[] 2 800
isort sort float(] 0 30

7. Conclusions and Future Work

We have shown that a novel language feature for DSLs can be
implemented by having the compiler use an Al planner. We have
demonstrated this feature using a real case of composit@n f
the BioPerl library and explained how the compiler and p&nn
work together. The case showed that incomplete specificatioe
useful. We advocate that developers of new languages anadiiéib
should support composition. Our planner is fully-implengehand
supports the compositions shown in this paper plus sevérata
Our compiler development is in progress; it recognizes Allsca
starts the planner, and prompts the programmer to make ahoic
but the flow analysis is not yet finished. Future work will exaen

the interplay of composition with other language featuesor
handling, plans with branches (conditional planning) aoopk,

the applicability of our technique across more domains, thed
experiences of programmers using composition.
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