
Compiler Techniques for Energy Saving in Instruction Caches

of Speculative Parallel Microarchitectures�

Seon Wook Kim Rudolf Eigenmann

School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907-1285

fseon,eigenmang@ecn.purdue.edu

Abstract

We present a new software scheme, called compiler-
assisted I-cache prediction (CIP) for energy reduc-
tion in instruction caches. With the help of compiler-
supplied information, the processor is able to turn o�
substantial portions of the I-cache. The necessary
cache sets are only turned on during the execution of in-
dividual code sections. The CIP scheme is based on the
processor's ability to predict code sections that are about
to execute and on the compiler's ability to precisely in-
form the hardware about the size of these code sections.
Our techniques grew out of work with optimizing com-
pilers for speculative parallel microarchitectures. The
use of this target machine class is further motivated by
the fact that speculative processors have the potential to
overcome limitations in the compiler parallelization of
many applications, especially non-numerical programs.
Speculative microarchitectures are also among the most
promising emerging architectures that can take advan-
tage of the ever-increasing levels of chip integration.
We will show that our new techniques can lead up to
90% I-cache energy savings in general-purpose applica-
tions without signi�cant execution overhead. We be-
lieve that this is a substantial step towards the goal
of making such chips integral parts of mobile comput-
ing devices, such as laptops, palm tops, and cellular
phones.
Keywords: energy saving, speculative microarchitec-
ture, compiler, instruction cache, branch prediction

�This work was supported in part by NSF grants #9703180-

CCR and #9872516-EIA. This work is not necessarily represen-

tative of the positions or policies of the U. S. Government.

1 Introduction

In most modern high performance processors caches
consume a major portion of the chip's power. Caches
are typically implemented with SRAM cells and often
occupy a large portion of the chip area. Power reduc-
tion in caches can be achieved through several tech-
niques: semiconductor process improvements, memory
cell redesign, voltage reduction, optimized cache struc-
tures, and software assistance. Our research focuses
on software-assisted techniques for energy reduction in
caches, which have great promise, but have not yet
been explored extensively. Both instruction and data
cache energy reduction need to be performed in order
to reduce the power consumption of a processor chip to
a very low level. In this paper we concentrate on the
�rst one of these issues, I-cache energy reduction.

The proposed techniques are based on our previ-
ous work in parallel processing technology. Speci�cally,
we have developed optimizing compiler techniques and,
most recently, we have focused on the interface be-
tween compilers and speculative parallel microarchi-
tectures [6]. We have found that these techniques
lend themselves to power reduction methods, which we
present in this paper.

We have chosen speculative parallel microarchitec-
tures as the target machine class. This has several rea-
sons. Speculative architectures have been proposed in
order to overcome the limited success in automatically
parallelizing non-numeric applications [9, 5, 10, 12, 13].
The ability to speculatively execute code sections in
parallel relieves the compiler from the burden of pro-
viding absolute guarantees about program data depen-
dences between sections of code believed to be parallel.
When compiling for speculative microarchitectures, the
compiler will explicitly identify parallel code sections.
The remaining sections are considered as speculative
regions because the compiler is not certain that these
sections can be executed in parallel. It is then left to



the speculative hardware to determine whether or not
the parallelism among the speculative regions can be
exploited.

Another motivation for our focus on speculative mi-
croarchitectures is that improvements in fabrication
technology are resulting in ever-increasing levels of chip
integration. Microarchitectures take advantage of these
trends by distributing the execution resources into mul-
tiple processor cores, resembling conventional multi-
processors, and also provide hardware support for spec-
ulative execution [9, 5, 10]. The idea of speculative
execution has been used in research and practice for
several years. State-of-the-art processors primarily use
control speculation in the form of branch prediction as
an essential means to sustain today's processor speeds.

The speci�c architecture used in our work is the Wis-
consin Multiscalar [9]. We will briey introduce this
architecture in Section 3. The main feature of this pro-
cessor that our scheme exploits is its ability to predict
executing tasks with high accuracy. We have extended
the Multiscalar simulator to include small hardware
extensions that complement our software energy-saving
techniques. Speci�cally, they switch on and o� individ-
ual sets of the instruction cache. While our techniques
currently rely on speci�c features of the Multiscalar ar-
chitecture, this is not a substantial restriction. We are
developing extensions of our scheme to more general
machine classes in ongoing work.

Our new power-saving scheme is called compiler-
assisted I-cache prediction (CIP). The compiler anno-
tates each task in a programwith its number of instruc-
tions. Tasks are the basic units of parallel speculative
execution on the Multiscalar architecture. At runtime,
the processor predicts with high accuracy the task that
will execute next. This information plus the compiler-
generated task size allows the processor to predict the
I-cache sections that will be used next and turn on
their power. When a section is no longer used, the
power is again turned o�. A distinguishing feature of
this scheme is that we do not make any assumptions
about the structure of the application program. Task
prediction in our architecture works well in loop-based
programs as well as in those with irregular control ow.
This is one of the main aspects in which our work dif-
fers from related approaches, which focus on loop-based
program structures [2, 1].

In Section 2 we discuss related research in energy
saving technology; in Section 3, we describe our new
compiler technique for energy saving. In Section 4 we
analyze the performance, comparing with a state-of-
the-art scheme in terms of the power reduction and
the execution time overhead. Section 5 concludes the
paper.

2. Related Work

The area of power minimization in caches at the ar-
chitectural and software levels is relatively new. Sev-
eral architectural approaches have been proposed and
some are implemented in commercial microprocessors
to reduce cache power dissipation by limiting switching
activity. For example, instead of tag lookup in parallel
with the access to the L2 cache, Alpha 21164 proces-
sors placed the tag lookup and data access in series. By
looking up the tag �rst, the chip can use power only
for the bank that contains the requested data, reduc-
ing cache power by roughly two-thirds [4]. However,
this strategy gains major power reduction at the cost
of two cycles in cache access.

There have been research e�orts on techniques to re-
duce the power consumption in the memory hierarchy
[2, 1, 3]. The impact of memory hierarchy in mini-
mizing power consumption and the data-reuse for the
power reduction in memory accesses are addressed in
[3].

An small extra cache is added between the CPU
and the L1 cache, called �lter cache [7] to trade perfor-
mance for power consumption. The �lter cache delivers
large energy gains at the expense of decreased hit ratio
and, hence, longer average memory access time. Be-
cause �lter caches incur a large execution time penalty,
they are not suited for high performance processors.

In order to overcome the problems with �lter caches,
techniques were proposed in [2] that use an additional
mini cache, called a loop cache (L-cache). It is lo-
cated between the instruction cache and the CPU core,
and it bu�ers instructions that are nested within loops
and otherwise fetched from the instruction cache. The
authors showed that the loop cache is much less and
simpler than the instruction cache, and they proposed
compiler techniques to allocate instructions into the L-
cache. However, its bene�ts are limited in the case of
large loops that do not �t in the L-cache.

The same authors in [1] use a branch prediction
scheme for dynamically allocating instructions in an
additional mini cache, called L0-cache, instead of rely-
ing on the compiler capability. They capture the most
frequently executed basic blocks by inspecting branch
frequencies. Only frequently executed code sections are
then copied into the L0-cache. This scheme does not
require code modi�cations by the compiler. One disad-
vantage is that non-loop regions and large loops cannot
bene�t from the L0-cache.

The performance of most power minimization tech-
niques for memory hierarchies highly depend on the
structure of the applications. These approaches have
two major problems: One is that the allocated instruc-

2



tions �t in the mini cache. This is a problem for appli-
cations with large loops. Another one is that integer
applications that have signi�cant non-loop regions can-
not bene�t from this scheme.

In addition to the research in memory hierarchies,
power minimization techniques have been proposed for
speculative high-performance processors. The work in
[8] focuses on the excessive energy dissipation of high
performance speculative processors that execute more
instructions than are actually needed in a program.
The processor stops execution in the pipeline when
there is a large probability of wrong path execution,
and it resumes only when the actual execution path is
detected.

In [11] several compiler techniques that are useful
in power minimization are reviewed. It is shown that
compiler optimizations, such as instruction reordering,
code generation through pattern matching, and reduc-
tion of memory operands, are bene�cial for the reduc-
tion of energy, because they reduce the running time
of the code.

There is little research in generalized schemes to re-
duce the power dissipation in caches without excessive
execution penalty. In the next section, we propose low-
overhead compiler techniques for power reduction in an
instruction cache on a speci�c architecture. We chose
speculative microarchitectures for our work. Specula-
tive processors are not only among the most interest-
ing emerging architectures, they also already provide
some of the capabilities that assist our power-saving
compiler techniques. The extension of our scheme for
conventional processors is straightforward.

3 Compiler Techniques for Energy Sav-
ing in Instruction Caches

A major concern in implementing speculative mi-
croarchitectures is their high complexity and power
consumption. We propose a new scheme, called
compiler-assisted I-cache prediction (CIP), to reduce
power consumption in an instruction cache using com-
piler techniques and the built-in branch predictor on
speculative processors, such as the Wisconsin Multi-
scalar architecture [9].

A basic understanding of the Multiscalar compila-
tion scheme is useful to understand our energy saving
mechanism. The Multiscalar code generator divides a
single program into a collection of tasks, and the pro-
cessor walks through the control ow graph (CFG) task
by task as shown in Figure 1. A task is a portion of
the CFG whose execution corresponds to a contiguous
region of the dynamic instruction sequence. A program
is statically partitioned into tasks, which are annotated

N = 3
DO I = 1, N

A(I) = 0
ENDDO
K = 200

N = 3
I = 1

A(I) = 0

I = I + 1
I <= N?

K = 200

20

30 L = 0

N = 3
I = 1
A(I) = 0

I = I + 1
I <= N?
A(I) = 0

K = 200

(a) (b) (c)

B1

B2

B3

B4

T1

T2

T3

T1 T2 T2 T2 T2

T1 T2 T2 T2

T3

Processor 0 Processor 1 Processor 2 Processor 3

Task Dispatch Unit

Task Dispatch Queue

(d)

Figure 1. Multiscalar Execution. (a) Example
Code. (b) Basic Blocks with CFG. (c) Task graph.
(d) Execution on Multiscalar. Bn indicates a basic
block, and Tn indicates a task. A single program is
divided into a collection of tasks, and the processor
walks through this structure task by task.

to describe next tasks and register dependences. Fig-
ure 1 (b) shows the basic blocks (B1 to B4) with control
ows. The code generator walks through the CFG and
generates tasks with one or more basic blocks. Figure
1 (c) shows that a task T1 consists of two basic blocks,
B1 and B2, and a task T2 consists of two basic blocks B2
and B3 respectively. And the code generator speci�es
the next tasks inside the task header: A task T1 has one
target T2, and a task T2 has two targets, T2 itself and
T3. At runtime, the tasks are distributed to a number
of processing units by a inter-task predictor which pre-
dicts the next tasks in the task dispatch unit, and the
processor continues to walk from one point to the next
point in the task graph. Figure 1 (d) shows an exam-
ple of executing code on a Multiscalar architecture with
four processors. The task dispatch unit fetches tasks
using an inter-task prediction, and assigns tasks onto
each processor. If the task is mispredicted, then the
assigned task (a task T2 on processor 3) is rolled back,
and the new task is reassigned (a task T3 on processor
3).

3



Table 1. Accuracy of Inter-task Prediction in
SPEC95 Benchmarks. In most benchmarks, the
accuracy of inter-task prediction is very high.

Benchmarks Accuracy

SWIM 99.8%

HYDRO2D 99.8%
FPPPP 98.4%
COMPRESS 97.2%

GO 84.6%

3.1 Power Reduction through Compiler Tech-
niques

As described above, on Multiscalar, a program is
statically partitioned into tasks, and the tasks are dis-
tributed to a number of processing units. The inter-
task predictor in hardware predicts the next task with
high con�dence. Table 1 shows the accuracy of inter-
task prediction in several benchmarks. The prediction
is very accurate except in the GO benchmark. The task
dispatch unit has the responsibility to assign tasks to
each processor.

Our new compiler technique expands a task header
in order to include the task size. To this end the com-
piler analyzes the number of instructions in each task.
At runtime, thanks to the knowledge of the task size
and the (accurately predicted) next task, the processor
knows exactly which sets of an instruction cache will
be used in the near future. This is shown in Figure 2.
Before a task is invoked, the task dispatch unit turns
on the instruction cache from the start address of a task
(An) to the start address of a task (An) + size of the
task (In). The start address is the predicted task ad-
dress given by the inter-task predictor. When the task
is completed or rolled back (because of incorrect inter-
task prediction or the violation of data dependences)
the cache sets for the task are turned o�, unless the
task is still needed. The task is still needed if it is cur-
rently executing on another processor or if it is found
in the task dispatch unit, about to be re-executed. If
the turned-o� cache sets are accessed (i.e., the predic-
tion was wrong), a cache miss results. The switching
latency in this case will be hidden by the cache miss la-
tency. The performance of our scheme depends on the
task generation by the compiler and the accuracy of
the hardware branch prediction. Because the compiler
precisely knows the number of instructions in the task
and the accuracy of the inter-task branch prediction is
high, the performance is high as well. This is true even
in non-loop regions with complex control ow. It is a

Instruction Cache

start address A0
# of inst. I0

task code

task header

start address A1
# of inst. I1

task code

task header

start address A2
# of inst. I2

task code

task header

start address A3
# of inst. I3

task code

task header

tasks

A0

A0+I0

A1
A1+I1

A2

A2+I2

A3

A3+I3

on off

Figure 2. Basic Idea of Power Reduction Using
Compiler Techniques in an Instruction Cache.
The processor knows exactly which sets of an instruc-
tion cache will be used next because (1) the start ad-
dress of a task is accurately predicted and (2) the task
size is described in its header.

distinguishing aspect of our scheme, and contrasts with
other approaches that perform well only in loop-based
programs.

Figure 3 shows an example. Initially all instruction
cache sets are turned o�. When a task j is invoked at
time t0 and a task j+1 is invoked at time t1 from the
task dispatch unit, the addresses from A0 to A0+I3 and
from A2 to A2+I2 in the instruction cache are turned
on. When a task j is completed at time t2, the task
is not active on another processors, and the task will
not be used in the near future (i.e.,the task does not
appear in a task dispatch queue), the instruction cache
sets from A0 to A0+I3 for the task j are turned o�.
At time t3 when a task j+1 completes, the cache sets
from A2 to A2+I2 are not turned o� because the other
processor (processor 3) is using the same start address
for a task j+3. When a task j+2 completes at time
t4, the cache sets from A3 to A3+I3 are not turned
o� because the same task is again in the task dispatch
queue.

4



Task Dispatch Unit

Task Dispatch Queue

task j+1
A2/I2

task j+2 :
A3/I3

task J+4:
A3/I3

task J+5 :
A4/I5

Processor 0 Processor 1 Processor 2 Processor 3

task j
A0/I3 task j+1

A2/I2 task j+2 
A3/I3 task J+3

A2/I2

time

Instruction Cache

Queue Head

task J+3
A2/I2

t0

t2
t3

A0

A2

A3

A0+I3

A2+I2

A3+I3

time
t0 t2 t3initially

t1

t1

t4

t4

on

off

Figure 3. Example of the Proposed Compiler
Techniques for Energy Savings. A task dispatch
unit turns on and o� the cache sets which are used for
the tasks in the task dispatch queue using two types
of information: the predicted target address by an
inter-task predictor and the number of instructions
by a compiler. This scheme turns on only these cache
sets that are used by active tasks.

3.2 Hardware Extension

We assume two new hardware capabilities for our
scheme: (1) the hardware can turn on and o� the in-
struction cache set by set, and (2) the task dispatch
unit is able to add the task size to the start address
and turn on the needed I-cache sets in this address
range. Our scheme increases the hardware complex-
ity slightly, but results is substantial energy savings.
We have added these features in the Multiscalar/CIP
simulator.

4 Performance Analysis

4.1 Experimental Setup

Table 2 shows the parameters used for the perfor-
mance measurement. There are four cache compo-
nents on a processor: ARB, task, instruction, and data
caches. The ARB cache is a speculative cache to resolve
the memory dependencies at run time. We used two
SPECint95 (COMPRESS and GO) and three SPECfp95
benchmarks (SWIM, HYDRO2D, and FPPPP) for our per-
formance evaluation. We used the test data set for

COMPRESS, SWIM, and HYDRO2D, and train data set for
GO and FPPPP provided with the SPEC benchmarks.

4.2 Overall Performance

Figure 4 shows the overall performance of the pro-
posed CIP scheme and the L0-scheme reported in [1]
with 256 bytes L0-cache and a block size of 8 bytes.
We directly quoted the results given in [1] for the
L0-scheme. In SWIM and HYDRO2D, the L0-scheme re-
duces more power than the CIP scheme, but in FPPPP,
COMPRESS and GO, the CIP scheme performs better. In
scienti�c codes that take most time in loop execution
such as SWIM and HYDRO2D, the L0-scheme is better
than the CIP scheme because it is easy to �nd the most
frequently used basic blocks. However, in applications
with more complex structure and signi�cant execution
time in non-loop regions, the CIP scheme performs bet-
ter.

Our scheme can incur three types of overheads: One
is that, because we increase the size of the task header,
the fetch and decode of a task header takes slightly
longer. Another overhead results from task mispredic-
tion. When the task is mispredicted, unused sets of the
I-cache are turned on. The correct cache sets are then
only turned on with some delay, which increases the
cache misses (access of a turned-o� cache set results
in a miss). Table 3 shows the average access latency
and I-cache hit ratio without power saving and with
our power saving scheme. The average access latency
increases a little, and the hit ratio decreases, except in
SWIM. Even if the hit ratio decreases in SWIM, other fac-
tors a�ect the architectural behavior, which results in
faster access time. It shows that the proposed scheme
performs very well. The third overhead is that if the a
task is reused repeatedly with a large distance in exe-
cution time, our scheme will turn o� the cache between
uses and hence lose the cache content. In contrast, a
processor without power saving may retain some of the
instructions of this task in the I-cache. Our measure-
ments in Figure 4 show that these overheads result in
very little execution time penalty.

The execution time overhead of the L0-scheme oc-
curs when instructions are transferred to the L0-cache,
as a result of an L0-cache miss. The performance of
this scheme is highly dependent on the accuracy of the
branch prediction. It should be noted that the accu-
racy of inter-task prediction in our scheme is usually
higher than the normal branch prediction used widely
in modern processors. This is because the number of
conditional branches in inter-task prediction is less in
most cases.

In the following subsections, we will discuss the per-

5



Table 2. Simulation Parameters on Multiscalar.

Components Parameters

Processor 4 processors, and each has 2-way superscalar.
Cache ARB 4 banks, full-associative, 32 word/block. (Total 512K).

Task 1 bank, 512 sets, 2-way, 16 word/block, LRU. (Total 64K).
Instruction 4 banks, 256 sets, 2-way, 8 word/block, LRU. (Total 64K).
Data L1 4 banks, 256 sets, 2-way, 8 word/block, LRU.(Total 64K).

Network ARB Crossbar, one read port and one write port per bank.
Cache O�-chip Bus, one read port and one write port per bank.

Table 3. Average Access Latency (Cycles) and Hit Ratio (%) to an Instruction Cache on Multiscalar. The
average access latency to the instruction cache increases slightly except in SWIM, where even if the cache miss ratio
increases, the average access latency decreases.

Without Power Saving Scheme With Power Saving Scheme
Benchmarks Access Latency Hit Ratio Access Latency Hit Ratio

SWIM 1.14 100.0 1.12 99.9
HYDRO2D 1.11 100.0 1.13 99.9
FPPPP 2.11 89.4 2.32 86.6

COMPRESS 1.07 99.9 1.10 98.5
GO 1.31 97.9 1.53 92.8

Figure 4. Performance of the New Power Saving Techniques. (a) Power Savings. (b) Execution
Overhead. A 20% energy result means that we use only 20% of the power in an instruction cache.
We directly quoted the results given in [8]. The execution overhead of the CIP scheme is the ratio of
execution time with power saving techniques to the execution time without power saving techniques.

6



formance of each benchmark in more detail.

4.3 COMPRESS and GO

In COMPRESS and GO, the performance of our CIP
scheme is better than that of the L0-scheme in both
power reduction and execution overhead. Figure 5 (a)
and (b) show the usage of the cache sets in these bench-
marks. About half of the instruction cache is unused
in COMPRESS, and in both benchmarks the I-cache ac-
cess patterns are irregular. In non-numeric code with
irregular access patterns, it is not easy to �nd fre-
quently used basic blocks, such as loops. The perfor-
mance of the CIP scheme is relatively independent of
application characteristics, whereas the performance of
the L0-scheme depends on the presence of identi�able,
time-consuming loops. The execution overhead of the
L0-scheme is very high because of the high branch mis-
prediction, which is about 10% in COMPRESS and 26%
in GO [1].

4.4 FPPPP

Similarly, in FPPPP, the performance of the CIP
scheme is better than that of the L0-scheme. Figure
5 (c) shows that some code sections are executed re-
peatedly, but there are also irregular access patterns
shown as several peaks in the �gure. The benchmark
FPPPP spends much execution time in non-loop regions,
and it has high branch misprediction of about 7%. It
results in less power savings and high execution over-
head in the L0-scheme.

4.5 SWIM and HYDRO2D

In SWIM and HYDRO2D, the power saving of the pro-
posed CIP scheme is less than the L0-scheme, but the
CIP scheme has less execution time overhead. The rea-
son is that, in our current speculative code generation
scheme, calls to library routines are part of the call-
ing tasks, although the library code is statically linked
at the end of the application body. The called library
is not described in the task header and, consequently,
the task predictor does not know that the execution
branches to it. When the library is called for the �rst
time, the instruction fetches cause cache misses, as a
result of which the cache sets for the library code are
turned on. For similar reasons, when the execution of
the library is completed, the accessed cache sets are
not turned o�. They remain turned on until a future
task uses the same cache sets, and then turns them
o�. In SWIM, the most time-consuming loop calls hyper-
geometric functions, which results in less power savings

in our CIP scheme. Also, HYDRO2D uses mathematical
libraries and input functions. Figure 5 (d) and (e) show
that many cache sets are turned on during all execution
time, where the cache sets are used for the libraries.

5 Conclusion

We have presented a new method for energy saving
in instruction caches of speculative parallel architec-
tures. Our compiler-assisted I-cache prediction scheme
is based on both compiler techniques and hardware ca-
pabilities to turn on and o� individual sets of the I-
cache. We have shown that the new scheme can result
in up to 90% I-cache energy savings in general purpose
programs without signi�cant execution overhead. The
applicability to general-purpose programs is a distin-
guishing feature of the new scheme. It contrasts with
related approaches that have focused on programs with
regular loop structures. Loop-oriented schemes may
lead to higher savings in programs that exhibit certain
regular patterns. A low-power processor may use the
presented method in combination with such schemes.

We have focused our work on an emerging class of
machines: speculative parallel microarchitectures. The
presented methods grew naturally out of our compiler
work with these architectures. While we believe this
is one of the most interesting future classes of target
machines, our scheme can easily be extended to conven-
tional processors: Because conventional processors do
not have a task concept, we introduce a virtual task as
the aggregation of several basic blocks. In most cases
the basic blocks in the same virtual task are executed
under the same control ow condition. For example,
a loop can be one virtual task. We augment the code
to specify the number of instructions before branches
that jump to out of the current virtual task. In order
to implement this scheme, we need extensive control
ow analysis. Also pro�ling can be used. In ongoing
work we are developing such extensions.

We have addressed one of several important prob-
lems towards low-power processor design, which can
be used in applications such as mobile computing de-
vices and �eld appliances. Complementing our I-cache
energy reduction techniques, we need to develop meth-
ods for reducing the power consumption of data caches.
Doing so is another objective of our ongoing work.

References

[1] N. Bellas, I. Hajj, and C. Polychronopoulis. Using dy-
namic cache management techniques to reduce energy
in a high-performance processor. Proceedings 1999 in-

7



(a) COMPRESS (b) GO (c) FPPPP

(d) SWIM (e) HYDRO2D

Figure 5. Usage of Cache Sets in our CIP scheme. The white areas of all graphs represent switched-o� I-
cache sets. COMPRESS,GO, and FPPPP have more irregular access patterns than the other benchmarks. Substantial
savings are achieved in all codes. The least savings occur in SWIM and HYDRO2D, due to linked libraries, whose
use is not predicted by our scheme.

ternational symposium on Low power electronics and
design, pages 64{69, August 1999.

[2] N. Bellas, I. Hajj, C. Polychronopoulis, and G. Sta-
moulis. Architectural and compiler support for en-
ergy reduction in the memory hierarchy of high per-
formance microprocessors. Proceedings 1998 interna-
tional symposium on Low power electronics and de-
sign, pages 70{75, August 1998.

[3] J. Diguet, S. Wuytack, F. Catthoor, and H. D. Man.
Formalized methodology for data reuse exploration in
hierarchical memory mapping. International Sympo-
sium of Low Power Electronics and Design, pages 30{
35, August 1997.

[4] L. Gwennap. Digital leads the pack with 21164. Mi-
croprocessor Report, 8(12):1{6, 1994.

[5] L. Hammond, M. Willey, and K. Olukotun. Data spec-
ulation support for a chip multiprocessors. Proceedings
of the Eighth ACM Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS'98), October 1998.

[6] S. W. Kim and R. Eigenmann. Compiling for spec-
ulative architectures. Proceedings of the 12th Inter-
national Workshop on Languages and Compilers for
Parallel Computing, August 1999.

[7] J. Kin, M. Gupta, and W. Mangione-Smith. The
�lter cache: An energy e�cient memory structure.
IEEE International Symposium on Microarchitecture
(Micro-30), pages 184{193, December 1997.

[8] S. Manne, D. Grunwald, and A. Klauser. Pipeline
gating: Speculation control for energy reduction. Pro-

ceedings of the International Symposium of Computer
Architecture (ISCA98), pages 132{141, 1998.

[9] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Mul-
tiscalar processors. The 22th International Symposium
on Computer Architecture (ISCA-22), pages 414{425,
June 1995.

[10] J. G. Ste�an and T. C. Mowry. The potential for
thread-level data speculation to facilitate automatic
parallelization. In Proceedings of the Fourth Inter-
national Symposium on High-Performance Computer
Architecture (HPCA-4), pages 2{13, Feb. 1998.

[11] V. Tiwari, S. Malik, and A. Wolfe. Compilation tech-
niques for low energy: An overview. Proceedings of
the 1994 IEEE Symposium on Low Power Electronics,
October 1994.

[12] J.-Y. Tsai, Z. Jiang, Z. Li, D. Lilja, X. Wang, P.-
C. Yew, B. Zheng, and S. Schwinn. Superthread-
ing: Integrating compilation technology and processor
architecture for cost-e�ective concurrent multithread-
ing. Journal of Information Science and Engineering,
March 1998.

[13] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hard-
ware for speculative parallelization in high-end multi-
processors. The Third PetaFlop Workshop (TPF-3),
February 1999.

8


