
Implicit Finite Element Applications: A Case for Matching

the Number of Processors to the Dynamics of the Program

Execution�

Meenakshi A.Kandaswamy y Valerie E. Taylor z Rudolf Eigenmann xx

Jose' A. B. Fortesx

Abstract

Generally, parallel scienti�c applications are executed on a �xed number of
processors determined to be optimal by an e�ciency analysis of the application's
computational kernel. It is well-known, however, that the degree of parallelism found
in di�erent parts of an application varies. In this paper, we present the results of
an in-depth study quantifying the advantages of matching the number of processors
to the parallelism pro�le for a widely used application, �nite element analysis. The
study entails using e�ectiveness as the performance metric. The results indicate that
the varying processor allocation is signi�cantly more e�ective than �xed processor
allocation by one to nine orders of magnitude for problems with 105 to 109 nodes.
Further, the results indicate that it is very e�ective to match the number of processors
to the parallelism pro�le even when only a small percentage of the application has a
di�erent degree of parallelism.

1 Introduction

Generally, parallel scienti�c applications are executed on a given number of processors,
which remains �xed throughout execution. This number is often determined by analyzing
the computational kernel of the application in terms of e�ciency. In reality, however, the
degree of parallelism of the application is a value which varies dynamically throughout the
execution of the application. While it is well-known that the degree of parallelism varies,
the advantages of matching the processor allocation to the parallelism pro�le has not been
quanti�ed for large problems and large number of processors. In this work, we quantify
the advantages of allowing the number of processors to vary throughout the execution of a
widely used scienti�c application. An example of such a machine would be a multiprocessor
that allows multiprogramming, thereby enabling di�erent users to simultaneously use
di�erent number of processors throughout the execution of their programs; the total number
of processors in use at any given time remains �xed.

The application that is used in our study is the Fast Implicit Finite Element Analysis
(FIFEA) code [2]. FIFEA is a parallel implementation that provides the framework for

�This research was supported in part by NSF grants ASC-9612133 and ASC-9612023
yCIS Dept., Syracuse University, Syracuse, NY 13244 e-mail: meena@ece.nwu.edu (This work was

done at Northwestern University.)
zECE Dept., Northwestern University, 2145, Sheridan Road, Evanston, IL 60208 e-mail:

taylor@ece.nwu.edu
xSchool of ECE, 336 EE Bldg. West Lafayette, IN 47907 e-mail:[eigenman, fortes]@ecn.purdue.edu

1

2

the analysis of the �nite element method, which is used widely in various engineering and
scienti�c problems such as biomedical engineering or structural analysis. The comparison
between using a �xed number of processors and matching the number of processors to the
parallelism pro�le is accomplished by estimating the execution time via an extrapolation
from the timings obtained from the actual execution on the IBM SP. The estimation is such
that the relative timings of the di�erent steps of FIFEA is consistent with that observed on
the IBM SP. The FIFEA code is analyzed for problem sizes ranging from 105 to 109 nodes.
The computation to communication ratio is equal to 10�3, which re
ects the processor
and network technologies currently found in parallel computers including the IBM SP.
The number of processors varies from 1 to the problem size. For the varying number of
processors case, the suitable number of processors for each step is selected if the e�ciency
of going to a higher number of processors is at least 40%.

The performance metric used to compare the �xed with the varying processor allocations
is e�ectiveness, as de�ned in [10]. Good e�ectiveness, which is de�ned and explained further
in Section 4, indicates good speedup with a small parallel cost (i.e., small overhead). The
results of the analysis indicate that the varying processor allocation provides three to �ve
orders of magnitude better e�ectiveness than the �xed processor allocation for the 105 node
problem and one to nine orders of magnitude better e�ectiveness for the 109 node problem.
Further, for the 105 node problem, the higher e�ectiveness resulted when 93.3% of the
execution time was assigned to 500 processors and the remaining 6.67% was assigned to 1,
200 and 50,000 processors. Similar trends occurred with the other problem sizes.

2 FIFEA

FIFEA makes extensive use of the PETSc (Portable, Extensible, Toolkit for Scienti�c
computation) library [1] for linear algebra and to manipulate sparse matrices and vectors.
FIFEA and PETSc use the BlockSolve95 library[6] to store the sparse matrices and the MPI
library [5] for communication between processors. The particular application of FIFEA used
in this study was the analysis of an automotive disk brake system. The analysis entailed
collecting performance data (i.e., timings of the various computation and communication
steps) of the execution of the application on the IBM SP system available at Argonne
National Laboratory; the timing data was collected using the Pablo software environment
[9]. In addition, the code was hand analyzed to identify the main computational phases
and the various computational steps in each phase.

Four main phases of FIFEA were identi�ed: setup, initialization, static, and dynamic.
In the setup and initialization phases, various data structures necessary for the �nite element
solution steps are set-up and initialized. These two phases include the following operations:
creating lists of faces, calculating body inertias, assembling the diagonal mass matrix,
initializing rigid body coordinates, computing rigid body acceleration, and creating vectors
for the solution step.

Both the static and dynamic phases employ the preconditioned conjugate gradient
solver, with the preconditioner being the Incomplete Cholesky factorization. The solver is
e�ciently implemented in parallel in the BlockSolve95 library, which uses a parallel heuristic
[7] to color the graph. This coloring presents an ordering of the nodes to be computed in
parallel in both the factorization and the forward and backward substitution steps. In the
static phase, the solver step is executed for one instance in time. The preconditioned
conjugate gradient solver consists of various operations including SAXPY, vector dot
products, matrix vector multiplication, forward substitution, and back substitution. In

3

1

10

100

1000

10000

100000

1e+06

1e+07

10 20 30 40 50 60

D
eg

re
e

of
 p

ar
al

le
lis

m

Step Number

10^5 Node Mesh

Fig. 1. Parallelism pro�le for 105 nodes.

the dynamic phase, the solver is executed in a main loop, which iterates over di�erent time
steps.

Figure 1 gives the parallelism pro�le of an instance of the FIFEA code for a problem
size of 105 nodes. The degree of parallelism is given for the 63 steps identi�ed in the FIFEA
code. This data is based upon the hand analysis. Steps 1{19 comprise the set-up phase,
steps 20{39 comprise the initialization phase, steps 40{49 comprise the static phase, and
steps 50{63 comprise the dynamic phase. The FIFEA code executes the steps in sequence
with steps 50{63 executed for di�erent time intervals. The results indicate that the degree
of parallelism varies throughout execution, with the maximum equal to the problem size.
Similar results occurred with the other problem sizes.

3 Performance Metrics

E�ciency is used to identify the number of processors to be used for each step. Initially,
a step is assigned the lowest number of processors and then the number of processors is
increased only when the e�ciency of using a larger number of processors is at least 40%.
This scheme attempts to match the number of processors to the parallelism pro�le of the
application for e�cient execution.

The performance metric, e�ectiveness, is used to compare the �xed processors allocation
with the varying processor allocation cases. The term FP , e�ectiveness for P processors, is
e�ciency per time unit and can be stated as:

FP =
EP

TP
=

T1

((TP � P) � TP)
=
EPSP

T1
(1)

where,

P ! the number of processors on which the parallel algorithm is executed

T1 ! the time taken by the sequential algorithm

TP ! the time taken by the parallel algorithm when executed on P processors

E�ectiveness is a combined measure of speedup and e�ciency. It is often the case with
parallel scienti�c applications that increases in speedup occur at the cost of decreases in

4

e�ciency. The goal is to maximize e�ectiveness, which implies maximizing e�ciency while
decreasing parallel execution time; small parallel execution time leads to good speedup. To
see this, e�ectiveness can also be expressed as:

FP =
SP

PTP
(2)

where P � TP is the `cost' of the parallel implementation. Equation 2 implies that good
e�ectiveness implies large speedup at a small parallel cost. Similarly, from Equation 1, we
can say that maximizing e�ectiveness will result in both high e�ciencies and low execution
times. Hence, achieving good e�ectiveness results in achieving both good e�ciency and
speedup.

As e�ectiveness measures e�ciency per time unit, good e�ectiveness ensures that the
program maintains good utilization of processors throughout the execution of the program.

4 Analysis of Results

The FIFEA application was analyzed for problem sizes ranging from 105 to 109 nodes.
The number of processors varied from 1 to the problem size, which is the maximum degree
of parallelism in FIFEA as indicated in Section 2. The analysis entails estimating the
execution time for a given problem size executing on a speci�ed number of processors
and using the estimation to calculate e�ciency and e�ectiveness. The execution time was
estimated via an extrapolation from the timings obtained from the actual execution on
the IBM SP. The estimation was such that the relative timings of the di�erent steps of
FIFEA was consistent with that observed on the IBM SP. For our estimation, we �xed
the computation to communication ratio at 10�3, which re
ects the processor and network
technologies currently found in parallel computers, including the IBM SP.

4.1 E�ectiveness

The values of estimated execution time, e�ciency, and e�ectiveness for various �xed number
of processors and varying number of processors are given in Tables 1, 2 and 3 for problem
sizes of 105, 107 and 109 nodes, respectively. As the varying processor case uses di�erent
number of processors for di�erent steps, the e�ciency and e�ectiveness is a weighted sum
where the values for each step are weighted by each step's respective contribution to the
execution time. The value of e�ectiveness for the varying processor case is three to �ve
orders of magnitude greater than the �xed processor cases for the 105 node problem, two
to �ve orders of magnitude greater for the 107 node problem, and one to nine orders of
magnitude for the 109 node problem. Hence, the varying processor case has the most
e�ective parallel implementation of all the cases.

In some cases, the e�ciency of the �xed processor allocation is greater than that of
the varying processor allocation. In these cases, however, the estimated execution time is
greater than that for the varying processor case because some parts of the program have
higher degree of parallelism than the �xed number of processors. The result is a smaller
e�ectiveness for these cases. For example if we consider the problem size of 109 nodes, the
�xed processor case of 500 processors has a greater e�ciency and estimated execution time
than the varying processor case. The result, for this case, is that the e�ectiveness is two
orders of magnitude smaller than the varying processors case.

Further, in some cases the estimated execution time is smaller for the �xed processor
allocation; this occurs at the cost of small e�ciency. Again, the result is a smaller

5

e�ectiveness. If we take the example of the 107 node problem, the estimated execution
time of all the �xed processors cases, with the exception of the single and 500 processor
case, is smaller than the varying processor case. Recall that the varying processor allocation
selects a number of processors for each step based upon e�ciency not execution time. Yet,
for this problem size, the e�ectiveness for the �xed processors cases is two to �ve orders of
magnitude smaller than that for the varying processor case.

Table 1

Analysis Results for Problem size of 105 Nodes

Num Procs Estimated E�ciency E�ectiveness
Execution Time

1 1.73e+04 1.00e+00 5.77e-05
500 2.38e+02 1.46e-01 6.13e-04
1000 2.21e+02 7.82e-02 3.54e-04
4000 2.10e+02 2.06e-02 9.81e-05
6000 2.09e+02 1.38e-02 6.60e-05
8000 2.09e+02 1.04e-02 4.97e-05
10,000 2.09e+02 8.30e-03 3.98e-05
50,000 2.09e+02 1.66e-03 7.92e-06
100,000 2.09e+02 8.25e-04 3.93e-06

varying procs 2.29e+02 1.79e-01 1.41e-01

Table 2

Analysis Results for Problem size of 107 Nodes

Num Procs Estimated E�ciency E�ectiveness
Execution Time

1 1.75e+06 1.00e+00 5.72e-07
500 4.50e+03 7.78e-01 1.73e-04
1000 2.75e+03 6.36e-01 2.31e-04
4000 1.44e+03 3.04e-01 2.11e-04
6000 1.29e+03 2.25e-01 1.74e-04
8000 1.22e+03 1.79e-01 1.46e-04
10,000 1.18e+03 1.48e-01 1.26e-04
50,000 1.04e+03 3.36e-02 3.23e-05
10,0000 1.02e+03 1.71e-02 1.67e-05
1,000,000 1.01e+03 1.73e-03 1.71e-06
10,000,000 1.01e+03 1.73e-04 1.71e-07

varying procs 3.54e+03 7.22e-01 1.29e-02

4.2 Estimated Execution Time Distribution

Tables 4 and 5 present the distribution of the estimated execution time across di�erent
groupings of processors for the varying processor allocation case. The results indicate that
having only a small percentage of the execution time distributed across di�erent groupings

6

Table 3

Analysis Results for Problem size of 109 Nodes

Num Procs Estimated E�ciency E�ectiveness
Execution Time

1 1.75e+08 1 5.70e-09
500 3.69e+05 9.51e-01 2.58e-06
1000 1.93e+05 9.06e-01 4.68e-06
4000 6.20e+04 7.07e-01 1.14e-05
6000 4.74e+04 6.16e-01 1.30e-05
8000 4.01e+04 5.47e-01 1.36e-05
10,000 3.57e+04 4.91e-01 1.38e-05
50,000 2.17e+04 1.62e-01 7.46e-06
100,000 1.99e+04 8.80e-02 4.42e-06
1,000,000 1.83e+04 9.55e-03 5.21e-07
10,000,000 1.82e+04 9.63e-04 5.30e-08
100,000,000 1.82e+04 9.64e-05 5.30e-09
1,000,000,000 1.82e+04 9.64e-06 5.30e-10
varying procs 5.13e+04 6.46e-01 9.14e-04

of processors is very e�ective. For example, with the 105 node problem 93.33% of the
execution occurs with the 500 processors and the remaining 6.67% is distributed among 1,
200 and 50,000 processors. In Table 1, for the 500 �xed processor case, the e�ectiveness is
6.13e-04; for the varying processor case the e�ectiveness is 1.41e-01. The varying processor
case is three orders of magnitude more e�ective, yet only 6.67% of the execution makes use
of other processor groupings. Similar results occur with the other problem sizes. Hence, it
is e�ective to match the number of processors to the parallelism pro�le even when only a
small percentage of the application has a di�erent degree of parallelism.

Table 4

Processor distribution for the varying processor case : 105 and 106 nodes problem size

105 106

procs % time # procs % time

1 6.55 1 2.49
500 93.33 500 97.24
2000 0.10 1000 0.16
50,000 0.02 9000 0.09

500,000 0.01

5 Related Work

Other work in this area includes the development of a self-tuning runtime system and the
design of a parallel machine with a hierarchy of processors. Nguyen et. al [8] have developed
a runtime system that dynamically adjusts the number of processors used by the application
based on dynamic measurements of performance gathered during execution. The runtime
system has been developed in the context of shared memory multiprocessors. The metric
used to determine processor allocation is speedup. Their self-tuning schemes are based on

7

Table 5

Processor distribution for the varying processor case : 107, 108 and 109 nodes problem size

107 108 109

procs % time # procs % time # procs % time

1 0.42 1 0.08 1 0.029
500 98.59 500 21.78 500 35.17
1000 0.93 700 59.16 2000 50.06
10,000 0.02 1000 7.9 10,000 14.65
100,000 0.01 2000 10.86 100,000 0.08
5,000,000 0.002 10,000 0.18 1,000,000 0.01

100,000 0.005 500,000,000 0.0001
500,000 0.006

50,000,000 0.0004

the golden sections method used in non-linear programming. The class of applications to
which they can apply this technique have to be iterative in nature. Initial work on the
KSR-2 running SPLASH and Perfect Club benchmarks demonstrate better performance
than �xed processor allocation. The maximum number of processors used in this work was
50. Our work uses estimated execution time, based on an extrapolation, which allows us
to consider large problems executed on large number of processors. Further, we are able to
go in-depth and consider the execution time distribution.

Z. Ben Miled et. al. [3, 4] have proposed a a cost-e�ective multiprocessor architecture
that takes into consideration the importance of hardware and software costs as well as
delivered performance in the context of real applications. The proposed architecture,
called HPAM, is organized as a hierarchy of processors-and-memory (PAM) subsystems.
Each PAM contains one or more processors and one or more memory modules. An
HPAM consists of several levels of processors-and-memory (PAM) systems. Relative to
the �rst (top) level of the hierarchy, each additional level has an increasing number of
slower processors. Each PAM system can be implemented with di�erent processors and
interconnections. Applications on the HPAM can be mapped to the di�erent levels based
on the resource requirements of the di�erent phases of the application. Also HPAM is a
multi-programmable architecture allowing di�erent programs to simultaneously run using
di�erent number of processors.

6 Conclusion

In this paper we quanti�ed the advantages of matching the processor allocation to
the parallelism pro�le for an implicit �nite element application. Large problems were
analyzed and the maximum number of processors was allowed to equal the problem size.
E�ectiveness was chosen as a metric that can capture speedups and e�ciencies of a parallel
implementation. The results of our study show that varying the number of processors is
the most e�ective for the implicit �nite element application. In particular, the varying
processor allocation scheme was three to �ve orders of magnitude more e�ective than the
�xed processor allocation for the 105 node problem, two to �ve orders of magnitude for the
107 node problem, and one to nine orders of magnitude for the 109 node problem. Further,
for the 105 node problem, the higher e�ectiveness resulted when 93.3% of the execution
time was assigned to 500 processors and the remaining 6.67% was assigned to 1, 200 and
50,000 processors. Similar trends occurred with the other problem sizes. Hence, it is very
e�ective to match the number of processors to the parallelism pro�le even when only a small

8

percentage of the execution has a di�erent degree of parallelism. The study indicates that
the number of processors used for execution should be matched to the parallelism pro�le
of the application.

7 Acknowledgments

The authors would like to acknowledge Dr. Thomas Can�eld, of Argonne National
Laboratory, for the use of his code FIFEA and Shai Eisen, of Northwestern University,
for assisting with collecting the performance data from the IBM SP. The authors also
acknowledge Argonne National Laboratory for the use of their IBM SP machine.

References

[1] S.Balay, W.Gropp, L.Curfman McInnes, and B.Smith, \PETSc 2.0 Users Manual,"Technical
Report ANL-95/11. Argonne National Laboratory., 1995.

[2] T. Can�eld, T. Disz, M. Papka, R. Stevens, M. Huang, V. Taylor, and J. Chen, \Toward
real-time interactive virtual prototyping of mechanical systems: Experiences coupling virtual
reality with �nite element analysis," High Performance Computing Conference, 1996.

[3] M.Kandaswamy, Z.Ben Miled, B.Armstrong, S.Kim, V.Taylor, R.Eigenmann and J.Fortes,
\Progress towards the design of a hierarchical processors-and-memory architecture for high
performance computing,"The Peta
op frontier workshop - Sixth symposium on the frontiers of
massively parallel computation, Oct 1996.

[4] Z. Ben Miled, J.A.B.Fortes, R.Eigenmann and V.Taylor, \Hierarchical processors-and-memory
architecture for high performance computing," Sixth symposium on the frontiers of massively
parallel computation, Oct 1996.

[5] W.Gropp, E.Lusk, and A.Skjellum, \Using MPI Portable Parallel Programming with the
Message-Passing Interface," Massachussets: MIT Press, Cambridge.

[6] M.T.Jones and P.E.Plassman, \BlockSolve95 Users manual: Scalable library software for the
parallel solution of sparse linear systems," ANL Report 95/48. Argonne National Laboratory.

[7] M.T.Jones and P.E.Plassman, \A Parallel graph coloring heuristic," SIAM J. Scienti�c and
statistical computing 14 654-669, 1993.

[8] T.D.Nguyen, R.Vaswani and J.Zahorjan, \Maximizing speedup through self-tuning of processor
allocation,"Technical Report 95-09-02, Department of computer science and engineering Univ.
of . Washington, Seattle.

[9] D. A. Reed, K. A. Shields, W. H. Scullin, L. F. Tavera, and C. L. Elford, \Virtual reality and
parallel systems performance analysis," IEEE Computer, November 1995.

[10] U. Schendel, \Introduction to numerical methods for parallel computers," Ellis Horwood
Publishers, Chichester, 1984.

