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Abstract

This article discusses issues in designing and exploiting parallel architectures as seen from a

research group that has been focusing on the development of compilers for such machines. For

scienti�c and engineering applications, Fortran languages have been the primary means of expressing

algorithms. Current programmers of high-performance parallel machines have to make a choice

between sequential, portable programs and e�cient, parallel codes that come at a signi�cantly

higher development cost. The much needed compiler technology for parallelizing sequential programs

automatically is currently being developed, but has not yet delivered tools that consistently yield

e�cient code. Programmers have to specify parallelism explicitly to make up for this shortcoming.

Currently, users are faced with two rather di�erent parallel programming models, both reecting

the underlying machine organization: shared-address space machines provide a name space for data

that needs to be seen by multiple parallel tasks; message-passing machines provide separate address

spaces and data needs to be exchanged by explicitly sending and receiving messages. The question

of which model will dominate in the long term is one of the issues currently being debated.

1 Introduction

This article tries to shed some light on the huge �eld of parallel architectures and their programming
technology. This will be done from the angle of a research group at the University of Illinois that has
been involved in this �eld for more than two decades. During this time, researchers at our University
have pioneered new parallel machine architectures, programming methodologies and tools, compilers,
algorithms and applications, as well as benchmarks for evaluating these technologies. A small selection
of this work is described in [BENP93, KDL+93, GNP+90, CKPK90]1.

This position statement is, without doubt, somewhat biased by our main �eld of research: the
development of compiler technology for parallel computers. However, compiler research has put us in
the middle of some practical questions: what applications do we need to consider; what language and
tools do we need to provide to the user; and, how can we design better machines that allow us to
implement these user services in the best way possible.

It is not evident why we want parallel computers. When it comes to discussing user interfaces, this
issue needs careful consideration. For example, one should be aware that buying a fast parallel machine
is not the proper response to the need for increased computing power, if a number of programs could
actually be run on a set of less expensive, independent computers. Frequently, system administrators
of expensive parallel machines �nd out that it is more cost-e�ective to assign parallel CPUs to di�erent
programs, instead of making them available to individual applications. As a result, the communication
hardware { the part that makes the di�erence between a loose bunch of computers and a parallel
architecture { ends up totally underutilized. If we invest in learning about parallel programming, then
we have to target a machine that is actually operated as a parallel computer. Because this is expensive,
we have to be certain that the need for high performance in a single application is a crucial one.

1These and many other reports can be retrieved by anonymous ftp from ftp.csrd.uiuc.edu:CSRD Info/reports
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Scienti�c and engineering applications are the playing ground for our research. \Supercomputer"
technology is the most mature in these �elds. Non-numerical computing has been mentioned as a
potential application area of high-performance parallel machines for many years. But, to date, we have
seen only a few industrially signi�cant applications of that sort. This will change as languages used in
non-numerical areas receive increased support on parallel machines, but perhaps more-so because the
boundaries between supercomputers, high-performance workstations, and most recently even personal
computers are becoming increasingly blurred.

In order to understand the changes that the �eld of high-performance computing is going through,
we need to consider some political forces as well. The Advanced Research Projects Agency (ARPA) has
been directing the research and development in U.S. industry and academia quite signi�cantly. Massively
parallel computers have been strongly promoted by this funding agency over the past decade. With the
current changes this agency is undergoing { among others as a result of the 1993 change in the U.S.
presidency { this trend will clearly have to prove its merits before it will be continued.

2 Parallel architectures for high-performance computing

This article focuses on the issues of how to compose multiple processors into a moderately or highly
parallel computer and how to take advantage of this computing power in application programs. It does
not deal with the inner structure of individual processors. However, it shall be noted that advances in
instruction-level parallelism have been signi�cant over the past few years. The interested reader will �nd
thorough introductions in many books; [Hwa93] is a recommended example.

Interconnection technology is what makes a parallel computer out of a number of independent pro-
cessors. Several interconnection structures have become known over the years and shall only briey be
mentioned here. Bus-based shared-memory systems are perhaps the oldest ones. Additionally there are
mesh, torus, cube, ring, omega, crossbar, and tree connections that have been explored in several ex-
perimental and commercial architectures. Although these structures are well-known, there is continuous
pressure on their designers to increase speed and keep up with the increasing computational power of
individual processors (i.e., they have to maintain the \computation to communication ratio").

Perhaps the easiest way to architect processor and network components into a parallel computer is
to build a network port for each processor to exchange messages over the network. This message passing
(MP) scheme makes maximumuse of o�-the-shelf components and, hence, appeals as a cost-e�ective way
to build parallel systems. Examples of such systems are the Connection Machine CM5, Intel paragon,
and the IBM SP1.

Sending and receiving messages is a costly operation. Some application programs can run e�ciently
in parallel only if the communication latencies are very low. Latencies can be reduced by building the
network interface into the processor-to-memory connection. Accessing memories directly from the net-
work bypasses the processor and, ideally, can be as simple and fast as an address decoding operation.
In addition, the requesting processor can access remote memory through normal read and write instruc-
tions, rather than through time-consuming input/output port operations. Obviously such techniques
require more than o�-the-shelf components and they operate at high speed. Consequently they are more
expensive. The advantage is not only reduced latency, but also an important impact on the programming
model: each processor can now access the other processor's memory as just another address range. We
will use the term shared (or global) address space (SA) for these machines. Examples are the Cray T3D
and the Convex Exemplar. Figure 1 displays simple models of the message passing and shared address
architecture. The distinguishing feature of the two is the position of the network interface.

Both SA and MP machines usually provide additional processor-private memory for fast access to
local data. Even in SA machines there can be a signi�cant di�erence between local and remote accesses.
All of these machines are distributed memory machines. Shared-memory machines provide uniform
memory access latency, which can be achieved by placing all memories close to all processors. Such
systems are believed to be not scalable. However, it should be noted that such systems are still the top
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Figure 1: One important di�erence between message-passing (MP) and shared-address (SA) architectures
is that MP implementation is possible with low-cost I/O ports to network. E�cient SA implementations
need more expensive address path switches.

performers in some important benchmarks. For example, the Cray YMP/C90 ranks number one in the
Perfect Benchmarks and, except for the Cray T3D in some cases, is reported to perform best on the
NAS Benchmarks as well.

To further reduce the latency of remote data accesses in SA machines, the design of cache systems
is currently given much attention. Although cache technology is quite advanced in uniprocessor envi-
ronments, the design of a highly parallel cache is still an unsolved problem. The �eld is currently being
explored and we can �nd all variants between no caching of remote data (as in the Cray T3D) and \All
cache systems" (as in the Kendall Square machine).

The natural question is, \What is the best system"? This question is being discussed with sometimes
religious vigor. It seems we can do better. Obviously MP systems have proven to be applicable to a set of
programs and they have demonstrated high, cost-e�ective performance. This has promoted the interest
in this machine class. It is also a fact that SA and even shared memory systems hold the record on some
benchmarks, as noted above, which may be part of the reason why they have gotten renewed attention.
Clearly there is a need for a more comprehensive evaluation of current parallel machine architectures.
Many machines have been built and, so far, it remains the user's responsibility to deal with this variety.
The next two sections will deal with the user's view of these machines in more detail.

3 Languages for scienti�c and engineering applications

Sequential languages

Fortran The reader who is starting to familiarize him or herself with the area of program development
for scienti�c and engineering applications is well advised to learn the standard Fortran77 language.
Not only is the majority of important programs written in Fortran77, but the compiler optimization
technology for this language is also the most sophisticated. For example, the automatic detection of
parallelism is a discipline that has been dealing almost exclusively with Fortran77. Hence, new languages
would not only have to take the hurdle of proving their superiority to the user, but they would also have
to wait for the adaptation of a substantial body of compilation and optimization techniques.

C and C++ Only recently C and, most recently C++, have become more popular is this �eld. Today,
however, C programs that rely on compiler technology for automatic parallelization are practically
nonexistent. One big issue in C is pointer data structures, whose access patterns are very di�cult for
compilers to investigate. We are only at the very beginning of resolving this problem.
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Fortran extensions Most computer vendors provide Fortran77 extensions. Although potentially very
useful (e.g., dynamic allocate/deallocate functions or variable-sized data declarations), these extensions
make programs machine-dependent. The programmer is usually better o� not taking advantage of such
features, unless programs are short-lived. Implicitly, most Fortran compilers also \support" extensions
by failing to enforce the rules of the language standard. For example, passing real-type variables to
subroutine parameters that are declared complex violates the standard; but it is usually not enforced
by the compiler, and therefore used by programmers. Traditional Fortran compilers translate on a
subroutine by subroutine basis, and \interprocedural operation" is only a relatively young capability.
Other language rules cannot be enforced by the compiler; the programmer has to be well aware of this
fact, since compiler optimization may count on the rules being observed. Such an example is an array
that is passed to two di�erent subroutine parameters, each with a di�erent index (e.g., a(i1) is passed
to array x() and a(i2) is passed to y()). If the variables i1 and i2 are derived from program input
data, the aliased (i.e., overlapping) parts of x() and y() cannot be determined at compile time. The
Fortran77 standard prohibits the modi�cation of aliased array parts, which allows the compiler to do
certain optimizations. It is the user's full responsibility to enforce this rule.

Fortran90 Some Fortran77 extensions include array notation, (e.g., a(1:n) referring to the array section
from 1 to n). This is also one of the best-known features of the Fortran90 standard language. Beyond this
construct, many language implementations that \support Fortran90 features" o�er little new. Although
there are now a growing number of true Fortran90 compiler announcements, these tools are still unable
to optimize program sections that take advantage of the Fortran90 pointer, aggregate structures, or
module features. Fortran90 has the reputation of being one of the most complex languages. Users may
see this as more of an advantage than a problem; however, it is clear that compiler technology will have
to take many years to deal with this complexity. This complexity may have been the reason that, despite
the fact that the Fortran90 standard is now 4 years old and has been discussed as Fortran8X for many
more years, there is only a small number of programs written that use its features.

Parallel languages

Compiler technology that is able to automatically parallelize standard Fortran programs works well
for some programs, but it has severe limitations in others. Programmers that wish to exploit parallel
machines to a high degree usually must learn an extensive amount about compiler optimizations and
rearrange their sequential code so that compilers can recognize the parallelism. In many cases, the user
may wish to specify parallelism explicitly in the program. Here, the user leaves the realm of standard
portable programs. Parallel Fortran dialects are much less uniform since they are in ux and have to
adapt to changing machine architectures in order to provide an e�ective interface between user and
machine. Many computer vendors add directives to the standard Fortran language which, for example,
de�ne that a loop shall run in parallel and that data shall be private to the loop. Such directives vary
widely from vendor to vendor.

Whether the user speci�es parallelism in the form of directives or through new parallel language
constructs, is equivalent in many respects. One frequently named advantage of directive-based parallel
extensions is that a sequential program can be derived easily by ignoring the directives. In the case of
explicitly parallel languages, more carefully de�ned constructs serve as the advantage.

X3H5 parallel Fortran and C This ANSI standard de�nes extensions to the two programming
languages Fortran90 and C. The committee that de�ned these language extensions has recently com-
pleted its work, and the language de�nitions are in the process of being formally approved as ANSI
standards[Ame94]. The X3H5 programmingmodel addresses shared-memory machines. Currently, there
seems to be signi�cantly less interest in X3H5 than in the language described in the next paragraph;
consequently, very few programs are written using this standard. Whether this changes as a result of
the renewed interest in SA machines, remains to be seen.
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High Performance Fortran Another notable e�ort to standardize a parallel Fortran language is the
High-Performance Fortran Forum, which is currently in the process of rede�ning the version 1 HPF
proposal [For93]. The HPF e�ort started from the perception that programming in message passing
constructs for MP machines is tedious, particularly the process of distributing data and generating the
appropriate messages. HPF lets the user specify the data distribution directly and leaves the generation
of messages up to the compiler. In addition to data distribution constructs, HPF includes directives
such as \independent" (parallel loops) and \private" (local data) that are applicable to machines with
a shared address space as well. Information about HPF can be retrieved via the world-wide web from
http://www.erc.msstate/hp�/home.html.

Message passing languages Because HPF is young, most available programs on message-passing
machines are currently still written in message passing languages (i.e., in Fortran77, Fortran90, or C
plus calls to send and receive subroutines). Numerous message-passing libraries have led to the message
passing interface forum, whose goal is to create of a message passing standard (MPI). The current doc-
ument [For94] can be retrieved via the world wide web from http://www.mcs.anl.gov/mpi/index.html.
MPI de�nes, among others, constructs for point-to-point communication as well as for collective opera-
tions.

4 Programming models and methods

Sequential versus parallel model Today's programming tools are unable to map ordinary pro-
grams written in standard languages to parallel machines in such a way that they run consistently at
high speed. The user who is willing to invest time to learn a more machine-speci�c programming model
may be rewarded with a signi�cant performance gain. Hence, there is a tradeo� between achievable per-
formance and software development costs. Although, recently there have been substantial improvements
to compiler technology, this tradeo� can be expected to continue into the foreseeable future. A survey
of parallelizing compiler technology can be found in [BENP93].

Another important consideration when selecting a programmingmodel is the tradeo� between porta-
bility and performance. Programs written in standard languages are obviously more portable than those
written in machine-speci�c dialects. Because standard languages such as Fortran77/90 or ANSI C are
sequential languages, the performance of such programs is limited, as explained above. Two attempts to
standardize parallel languages were mentioned in the previous section: ANSI X3H5 and HPF. However,
even if these e�orts succeed, one cannot expect that they will yield e�cient portable programs. Whoever
has attended one of these standardization meetings knows that many constructs that made it into the
�nal language could only be agreed upon after sometimes painful performance compromises.

Figure 2 displays the framework of programming models and languages used in this paper.

Message-passing vs. shared-address model Even the user who is willing to learn a parallel
programming model will not �nd a single school of thought. One of the most signi�cant current debates
is the question of message-passing (MP) versus shared-address (SA) space model. Both models support
the notion of (processor-)private and global shared data. In the SA model, global data can be read and
written in the usual way (although it may be important for the user to be aware of the fact that data
residing on a remote memory has a longer access latency than data residing on the local memory). In
the MP model, remote data cannot be accessed directly; instead, a message must be sent requesting the
remote processor to read or write the item on its memory module. The debate is over the question of
whether it's reasonable to construct MP machines if SA machines can be built to provide the user with
the much wanted SA programmingmodel. It includes the following questions: how much more expensive
is it to build SA machines; how much larger is the range of applications that can be run e�ciently on
SA machines; in reality, how di�cult is the MP programming model; and, to what degree can future
compilers translate SA programs onto MP machines.
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Figure 2: Programming models and languages for scienti�c and engineering applications

Finding parallelism How much and what form of parallelism does the user need to deal with? In
both models it is the user's responsibility to identify parallelism { mostly in the form of parallel loops.
Parallelizing compilers can often help �nd an initial set of parallel loops so that the programmer's task
is simpli�ed to identifying parallelism in the time-consuming loops left serial by the compiler. Such a
programming methodology is described in [Eig93]. Compiler support for message-passing models is very
limited. Usually it is the user's full responsibility to �nd parallel program sections.

Mapping parallelism to processors Once parallel sections are identi�ed, there is an important
additional programming step to map them to the actual machine. In the SA model, this involves
transformations such as: interchanging loops to optimize memory reference patterns; splitting loops
into two nested loops (loop blocking) { also to optimize memory reference patterns; serializing loops
that have insu�cient parallelism; and, inserting data prefetch operations to hide memory latencies.
These techniques are of equal importance in the MP model as well. Additional steps include generating
messages and partitioning parallel loops into parts executed by each processing node. These latter
steps are perhaps the most tedious in message-passing models and have led to the development of the
High-Performance Fortran language. HPF provides constructs for data distribution, thus allowing the
compiler to generate messages automatically. HPF is an SA model and, although initially developed
with a focus on MP machines, is now being implemented on some of the newer SA machines.

Mapping data to processors How much data distribution does the user need to deal with? This is
the question which HPF focuses on. HPF provides constructs for mapping data onto multiple processing
nodes in various ways. Although it is commonly agreed that successful data distribution is crucial to
good performance, it is unclear what can be gained by what e�ort of data layout optimization. The
user will have to experiment with data distribution schemes on current parallel machines and �nd out
how much there is to gain him- or herself. The question of how well this process can be automated in a
compilation tool is very open as well.
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5 Conclusions

In the past �ve years, machine peak performances have greatly increased. The gap between peak and
actual performance has increased as well. We have seen architectural trends going from shared-memory
machines (with a modest number of processors) to massively parallel systems (with relatively high
communication latencies). Currently we see the trend going back to systems with shared address spaces.
Given this variety of architectures, it seems time to step back and look at what we have done; this
is perhaps the most important conclusion today. Given that the problem of exploiting the variety of
machines has been pushed onto the user, the issue of programming them has become crucial.

This has brought us to the dilemma at hand: to achieve good performance, programmers should use
a parallel language that is close to the machine; on the other hand, among application scientists and
engineers, there is a growing dissatisfaction with the necessity to invest time in computer science issues.
The demand for standard language support is increasing as well.

Consequently, future trends will be greatly inuenced by the degree to which automatic tools can
transform standard languages into e�cient parallel code. Presently, to what extent this will be possible
is unforeseeable. The research area dealing with this question is very active and has made signi�cant
advances over the past few years. However, we are still far from the ultimate goal of automatically
compiling a wide spectrum of standard language programs for a wide spectrum of machines.
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