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Abstract. In this paper, we examine some of the challenges present in
providing support for OpenMP applications on a Software Distributed
Shared Memory(DSM) based cluster system. We present detailed mea-
surements of the performance characteristics of realistic OpenMP appli-
cations from the SPEC OMP2001 benchmarks. Based on these measure-
ments, we discuss application and system characteristics that impede
the efficient execution of these programs on a Software DSM system. We
point out pitfalls of a naive translation approach from OpenMP into the
API provided by a Software DSM system, and we discuss a set of possible
program optimization techniques.

1 Introduction

The current OpenMP 2.0 API is designed to be used on shared-memory multi-
processors. In this paper we describe challenges and opportunities in providing
OpenMP support via a Software Distributed Shared Memory (DSM) system.
Implementing OpenMP via Software DSM [1] is one possible avenue for making
OpenMP amenable to distributed-memory systems, such as cluster architectures.

Alternative approaches to OpenMP implementation on distributed systems
include language extensions and architecture support. Several recent papers have
proposed language extensions. For example, in [2–4] the authors propose data
distribution directives similar to the ones designed for High-Performance For-
tran (HPF). Other researchers have proposed page placement techniques to
map data to the most suitable processing nodes [2]. In [5] remote procedure
calls are used to employ distributed processing nodes. Another related approach
is to use explicit message passing for communication across distributed sys-
tems and OpenMP within shared-memory multiprocessor nodes [6]. Providing
architectural support for OpenMP essentially means building shared-memory
multiprocessors (SMPs). While this is not new, an important observation is
that increasingly large-scale SMPs continue to become commercially available.
For example, the largest machine on which SPEC OMP 2001 benchmarks have
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been reported recently is a 128-processor Fujitsu PRIMEPOWER2000 system
(www.spec.org/hpg/omp2001/results/omp2001.html).

The present paper is meant to complement, rather than compete with, these
related approaches. The goal is to measure quantitatively the challenges faced
when implementing OpenMP on a Software DSM system. We have found that,
while results from small test programs have shown promising performance, little
information on the behavior of realistic OpenMP applications on Software DSM
systems is available. This paper is meant to fill this void. We will pinpoint areas
needing improvement and discuss opportunities for addressing the challenges. In
particular, we will describe program transformation techniques that may reduce
overheads incurred by a naive translation of OpenMP programs onto a Software
DSM system.

In our measurements we use a commodity cluster architecture consisting of
16 PentiumII/Linux processors connected via standard Ethernet networks. We
expect the scaling behavior of this architecture to be representative of that of
common cluster systems with modest network connectivity. We have measured
basic OpenMP low-level performance attributes via the kernel benchmarks in-
troduced in [7]. These benchmarks are meant to characterize the performance
behavior of OpenMP constructs, such as the time taken to fork and join a paral-
lel region or to execute a barrier. We have also measured a small, highly parallel
program, demonstrating upper bounds on the scalability of a Software DSM
application. In order to understand the performance characteristics of realistic
OpenMP applications, we have measured three of the SPEC OMP2001 appli-
cations. We have chosen the applications wupwise, swim and equake, which are
among the most scalable of SPEC’s OpenMP benchmarks. Wupwise and swim
are Fortran codes whereas equake is written in C. In order to execute these
OpenMP programs on a Software DSM system we have hand-translated them
into the API provided by the Treadmarks system [8]. We will describe some of
the key transformation steps.

The rest of the paper is organized as follows. In Section 2 we will describe
the transformations applied to the OpenMP benchmarks in order to execute
them on the Treadmarks Software DSM system. In Section 3 we present and
discuss our measurements. In Section 4 we describe techniques for improving
the performance of OpenMP/Software DSM programs. Section 5 concludes the
paper.

2 Translating OpenMP Applications into Software DSM

Programs

Common translation methods for loop-parallel languages employ a microtasking
scheme. Here the master processor begins program execution as a sequential
process and pre-forks helper processes on the participating processors, which sleep
until needed. On encountering a parallel construct, the master wakes the helpers
and sets up the requisite execution environment. Such microtasking schemes are



typically used in shared-memory environments with low communication latencies
and fully shared address-spaces.

Software distributed shared-memory systems usually exhibit significantly
higher communication latencies and they do not support fully-shared address
spaces. In the Treadmarks Software DSM system used in our work, shared-
memory sections can be allocated on-request. However, all process-local address
spaces are private – not visible to other processes. Typically, there are also con-
straints on the amount of shared-memory which can be allocated. This is an issue
for applications with large data-sets. These properties question the benefit of a
microtasking scheme because (1)the helper wakeup call performed by the master
process would take significantly longer and (2) the data environment communi-
cated to the helpers could only include addresses from the explicitly allocated
shared address space. Therefore, in our work we have chosen an SPMD scheme,
as is more common in applications for distributed systems. In an SPMD scheme
all processes begin execution of the program in parallel. Sections that need to
be executed only by one processor must be marked explicitly and executed con-
ditionally on the process identification.

We translate OpenMP workshare constructs in the usual method, by modify-
ing lower and upper bound of the loops according to the iteration space assigned
for each participating process. Currently we support static scheduling only. All
parallel constructs are placed between a pair of barrier synchronizations. The
barriers perform the dual functions of synchronization and maintaining coher-
ence of shared data. Our SPMD approach is different from that adopted in [1]
and it resolves, to an extent, the issues described earlier. We do not need explicit
wakeup calls. We may also substitute communication of certain data items by
redundantly computing them and thus reduce the amount of memory that must
be allocated as shared.

The translation of serial program sections now becomes non-trivial. The need
to maintain correct control flow precludes the possibility of executing the serial
section by only the master process. Thus, following the SPMD method, parts
of the serial section are redundantly executed by all participating processes.
However, correctness constraints dictate that shared-memory updates as well
as certain operations like I/O in the serial section be done only by the master
process. Each such portions is marked to be executed by the master only and is
followed by a barrier to ensure shared-memory coherence.

3 Performance Measurements

In this section we describe and discuss some measurements carried out on the
performance of OpenMP kernels, microbenchmarks and real-application bench-
marks on our cluster. The programs were hand-translated using the transforma-
tions described in Section 2, without any further optimizations.



3.1 Speedup Bounds: Performance of an OpenMP Kernel

In order to test the basic capability of scaling parallel code, we measured the per-
formance of a simple OpenMP kernel, which is a small, highly parallel program

that calculates the value of π using the integral approximation
∫ 1
0

4.0
(1.0+x2) dx.

The OpenMP constructs used within the program include a single OMP DO
with a REDUCTION clause. The execution times and speedups obtained(shown
in Figure 1) provides an upper bound on the performance we can expect for
our system. This kernel makes use of only 3 shared scalar variables.Thus the
coherence actions at the barrier terminating the parallel region are minor. This
point will assume significance when we compare the performance of this kernel
to real applications.
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Fig. 1. Execution Time and Speedup of the PI program on 1,2,4 and 8 processors

3.2 Performance of the OpenMP Synchronization Microbenchmark

In order to understand the overheads incurred by the different OpenMP con-
structs on our system, we have used the kernel benchmarks introduced in [7].
In the present work we are primarily interested in the synchronization over-
heads. The performance of our system on the Synchronization Microbenchmark
is shown in Figure 2.
The trends displayed in Figure 2 look similar to those for the NUMA ma-

chines (such as the SGI Origin 2000) enumerated in [7]. This is consistent with
the fact that a NUMA machine is conceptually similar to a Software DSM sys-
tem. However, for a Software DSM system, the overheads are now in the order
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Fig. 2. OpenMP Synchronization Overheads as measured by the OpenMP Synchro-
nization Microbenchmark. The overheads have been measured on a system of 1,2,4 and
8 processors.

of milliseconds as compared to microseconds overhead in NUMA SMPs. The
dominant factor is the barrier overhead, since the barrier also maintains coher-
ence of the shared-memory. These coherence overheads grow with the increase
in shared memory activity within parallel constructs in a Software DSM. This
fact is not captured here since the Synchronization Microbenchmark, like the
PI kernel benchmark, uses a very small amount of shared memory. To quanti-
tatively understand the behavior of OpenMP programs that utilize shared data
substantially, we look at three of the most scalable applications in the SPEC
OMP2001 benchmark suite.

3.3 Performance Evaluation of Real Application Benchmarks

The SPEC OMP2001 suite of benchmarks [9] consists of realistic OpenMP C and
Fortran applications. We selected three of the more scalable benchmarks, namely
SWIM and WUPWISE from the set of Fortran applications and EQUAKE
from the set of C applications. The trends in our performance measurements was
found to be consistent for all three applications. So, for brevity, we shall primarily
limit our discussion of exact measurements to the EQUAKE benchmark.

Execution Time Figure 3 shows the execution times for the EQUAKE bench-
mark run using the train dataset. The times shown here include the startup time.
For each processor, the total elapsed time has been expressed as a sum of the
user and the system times.
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Fig. 3. Execution Times for the equake SPEC OpenMP Benchmark running on 1,2,4
and 8 processors, shown in terms of the measured user times and system times.

The figure shows a speedup in terms of user-times from one to eight proces-
sors. However, considering total elapsed time, the overall speedup is much less.
For 8 processors, the performance degrades so that no speedup is achieved. This
fact is consistent with the growing system time component as we go from serial
to 8 processor execution. We verified that this system time component is not
caused by system scheduling or paging activity. Instead, we attribute the system
time to shared-memory coherence activities.

Detailed Measurements of Program Sections The equake code has two
small serial sections and several parallel regions, which cover more than 99% of
the serial execution time. We first look at two parallel loops main 2 and main 3
which show the desirable speedup behavior. The times spent within the parallel
loop and the time spent at the barrier are shown separately. Loop main 3 is one
of the more important parallel loops where around 30% of the program time is
spent. Figure 4 shows the behavior of these loops.
Loop main 2 shows a speedup of about two and loop main 3 shows almost

linear speedup on 8 processors in terms of elapsed time. In both cases the loop
time itself speeds up almost linearly, but the barrier time increases considerably.
In fact,main 2 has a considerable increase in barrier overheads from the serial to
8 processor execution. In main 3, the barrier overhead is within a more accept-
able range. The reason for this is that the loop body of main 2 is very small.
It consists of a loop of 3 iterations containing a single assignment statement.
Compared to that, main 3 has a larger loop body which considerably amortizes
the cost of the barrier.
We next look at three loops,main 1meminit 1 andmeminit 2 , which incur

large barrier overheads. Figure 5 shows the behavior of these loops.
In all these three loops, loop times speed up linearly, but the barrier times

increase to 15 to 30 times the loop times on 8 processors. So, for these loops,



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

main_2 main_3

Loop Times Barrier Times

Fig. 4. Normalized Execution Times for the parallel loops, main 2 and main 3, on
1,2,4 and 8 processors. The total execution time for each is expressed as a sum of the
time spent within the loop and the time spent on the barrier at its end. Timings for
each loop are normalized with respect to the serial version.

there is a substantial slowdown as we go from serial to 8-processor execution.
These loops mainly contain shared memory writes. Especially meminit 1 and
meminit 2 contain only shared memory initialization. So the barrier time be-
comes unacceptably more expensive than the loops themselves. As discussed
previously, the barrier cost increases with the number of shared memory writes
in the parallel region.

We next look at the performance of the serial sections (serial 1 and serial 2)
and the most time consuming parallel region (smvp0) within the program. Fig-
ure 6 shows the behavior of these regions.

As previously discussed in Section 2, barriers have to be placed within a se-
rial region so that shared memory writes by the master processor become visible
to the other processors. We see that this results in serial section serial 1 expe-
riencing a slowdown as we go from the serial to 8-processor execution. Section
serial 2 in unaffected since it does not have barriers in-between.

The parallel region smvp 0 also suffers because of the same reason - it con-
tains several parallel loops and after each of these, a barrier has to be placed.
The parallel region svmp 0 takes up more than 60% of the total execution time,
hence its performance has a major impact on the overall application.

To summarize our measurements, we note that a naive transformation of
realistic OpenMP applications for Software DSM execution does not give us the
desired performance. A large part of this performance degradation is owing to
the fact that shared-memory activity and synchronization is more expensive in a
Software DSM scenario and this cost is several orders of magnitude higher than
in SMP systems. Barrier costs now increase with the number of shared memory
writes in parallel regions. Realistic applications use a large shared-memory space,
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Fig. 5. Normalized Execution Times for the parallel loops main 1 meminit 1 and
meminit 2 on 1,2,4 and 8 processors. The total execution time for each is expressed as
a sum of the time spent within the loop and the time spent on the barrier at its end.

and thus have high data coherence overheads, which explains the seemingly
contradicting performance results of kernels and real-applications.
Our measurement motivate the need for optimizations when we try to run

real OpenMP applications in a Software DSM scenario. The results discussed
above indicate that these optimizations should be primarily aimed at optimiz-
ing shared-memory synchronization in programs, irrespective of the underlying
Software DSM specifics. In our subsequent discussion, we present some of the
possible optimizations.

4 Ongoing Work: Improving OpenMP Performance on

Software DSM Systems

In this section we describe transformations that can optimize OpenMP pro-
grams on a Software DSM system. Many of these techniques have been dis-
cussed in other contexts. We expect their combined implementation in an
OpenMP/Software DSM compiler to have a significant impact. The realization
of such a compiler is one objective of our ongoing project.

Data Prefetch and Forwarding: Prefetch is a fundamental technique for overcom-
ing memory access latencies. Closely-related to prefetch is data forwarding, which
is producer-initiated. Forwarding has the advantage that it is a one-way commu-
nication (producer forwards to all consumers) whereas prefetching is a two-way
communication (consumers request data and producers respond). An impor-
tant issue in prefetch/forwarding is to determine the optimal prefetch point.
Prefetch techniques have been studied previously [10], albeit not in the context of
OpenMP applications for Software DSM systems. We expect prefetch/forwarding
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Fig. 6. Normalized Execution Times for the serial sections serial 1, serial 2 and the
parallel region smvp 0 . For each region the times are normalized with respect to the
serial version.

to significantly lower the cost of OpenMP END PARALLEL region constructs,
as it reduces the need for coherence actions at that point.

Barrier elimination: Two types of barrier eliminations will become important.
It is well known that the usual barrier that separates two consecutive parallel
loops can be eliminated if permitted by data dependences [11]. Similarly, within
parallel regions containing consecutive parallel loops, it may be possible to elim-
inate the barrier separating the individual loops. Barriers in the serial section,
as described in Section 2, can be eliminated in some situations, if the shared
data written are not read subsequently within the same serial section.

Data privatization: Private data in a Software DSM system are not subject
to costly coherence actions. An extreme of a Software DSM program can be
viewed as a program that has only private, and no shared, data. The necessary
data exchanges between processors are performed by copy operations via shared
memory or possibly via explicit messages. Such a program is equivalent to a
message-passing program. Many points are possible in-between this extreme and
a program that has all OpenMP shared data placed in shared DSM address space.
For example, shared data with read-only accesses in certain program sections



can be made “private with copy-in” during these sections. Similarly, shared data
that are exclusively accessed by the same processor can be privatized during
such a program phase. For large phases, the benefit of this scheme is obvious.
In programs with small read-only or exclusive phases, the copy-in and copy-
out operations at phase boundaries become significant, moving closer the the
“message-passing” extreme mentioned above.
Figure 7 demonstrates a simple form of this optimization, applied to the

equake benchmark. The program reads data in a serial region from a file. In the
original code, since all the processors use the data, a shared attribute is given.
However, we have modified the program so that the input data, which are read-
only after the initialization, become private to all processes. Figure 7 shows that
even this simple optimization substantially reduces the execution times. With
this new scheme, the resulting speedup on four processors is close to two.

Improvemts in Execution Times by a Simple 
Privatization Optimization
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Fig. 7. Performance Improvements with a simple data privatization optimization

Page placement: Software DSM systems may place memory pages on fixed home
processors or the pages may migrate between processors. Fixed page placement
leads to high overhead if the chosen home is not the processor with the most
frequent accesses to this page. Migrating pages can incur high overhead if the
pages end up changing their home frequently. In both cases the compiler can



help direct the page placing mechanism. It can estimate the number of accesses
made to a page by all processors and choose the best home.

Automatic data distribution: Data distribution mechanisms have been well re-
searched in the context of distributed memory multiprocessors and languages
such as HPF. Many of these techniques are directly applicable to a Software
DSM system. Automatic data distribution is easy in regular data structures
and program patterns. Hence, a possible strategy is to apply data distribution
with explicit messaging in regular program sections and rely on Software DSM
mechanism for other data and program patterns. This idea has been pursued
in [12], and we will combine our approaches in a collaborative effort. Planned
enhancements include other data and loop transformation techniques for locality
enhancement.

Adaptive optimization: A big impediment for all compiler optimizations is the
fact that input data is not known at compile-time. Consequently, compilers must
make conservative assumptions leading to suboptimal program performance. The
potential performance degradation is especially high if the compiler’s decision
making chooses between transformation variants whose performance differs sub-
stantially. This is the case in Software DSM systems, which typically possess
several tunable parameters. We are building on a prototype of a dynamically
adaptive compilation system [13–15], called ADAPT, which can dynamically
compile program variants, substitute them at runtime, and evaluate them in the
executing application.

In ongoing work we are creating a compilation system that integrates the pre-
sented techniques. As we have described, several of these techniques have been
proposed previously. However, no quantitative data of their value on large, re-
alistic OpenMP applications on Software DSM systems is available. Evaluating
these optimizations in the context of the SPEC OMP applications is an impor-
tant objective of our current project.
Our work complements efforts to extend OpenMP with latency management

constructs. While our primary emphasis is on the development and evaluation of
compiler techniques, we will consider small extensions that may become critical
in directing compiler optimizations.

5 Conclusions

In this paper we have studied the feasibility of executing OpenMP applications
on a commodity cluster architecture via a distributed shared memory system.
We have found that, although small OpenMP programs can exhibit near-ideal
speedups, a naive translation of realistic OpenMP programs onto the API pro-
vided by the Software DSM system is not sufficient. We have found that coher-
ence actions performed at synchronization points are major sources of overheads.
We found that the efficient execution of realistic OpenMP applications on dis-
tributed processor architectures via a Software DSM system requires substantial



program optimizations, one of which we demonstrated through a simple experi-
ment. We are in the process of realizing such optimizations in a new optimizing
compiler.
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