
Specific-to-General Learning for Temporal Events∗

Alan Fern and Robert Givan and Jeffrey Mark Siskind
Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907 USA

{afern,givan,qobi}@purdue.edu

Abstract

We study the problem of supervised learning of event classes
in a simple temporal event-description language. We give
lower and upper bounds and algorithms for the subsumption
and generalization problems for two expressively powerful
subsets of this logic, and present a positive-examples-only
specific-to-general learning method based on the resulting
algorithms. We also present a polynomial-time computable
“syntactic” subsumption test that implies semantic subsump-
tion without being equivalent to it. A generalization algo-
rithm based on syntactic subsumption can be used in place of
semantic generalization to improve the asymptotic complex-
ity of the resulting learning algorithm. A companion paper
shows that our methods can be applied to duplicate the per-
formance of human-coded concepts in the substantial appli-
cation domain of video event recognition.

Introduction
In many domains, interesting concepts take the form of
structured temporal sequences of events. These domains in-
clude: planning, where macro-actions represent useful tem-
poral patterns; computer security, where typical application
behavior as temporal patterns of system calls must be differ-
entiated from compromised application behavior (and like-
wise authorized user behavior from intrusive behavior); and
event recognition in video sequences, where the structure of
behaviors shown in videos can be automatically recognized.

Many proposed representation languages can be used to
capture temporal structure. These include standard first-
order logic, Allen’s interval calculus (Allen 1983), and
various temporal logics (Clarke, Emerson, & Sistla 1983;
Allen & Ferguson 1994; Bacchus & Kabanza 2000). In this
work, we study a simple temporal language that is a subset
of many of these languages—we restrict our learner to con-
cepts expressible with conjunction and temporal sequencing
of consecutive intervals (called “Until” in linear temporal
logic, or LTL). Our restricted language is a sublanguage of

∗This work was supported in part by NSF grants 9977981-IIS
and 0093100-IIS, an NSF Graduate Fellowship for Fern, and the
Center for Education and Research in Information Assurance and
Security at Purdue University. Part of this work was performed
while Siskind was at NEC Research Institute, Inc.
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

LTL and of the temporal event logic of Siskind (2001) as
well as of standard first-order logic (somewhat painfully).

Motivation for the choice of this subset is developed
throughout the paper, and includes useful learning bias, effi-
cient computation, and expressive power. Here we construct
and analyze a specific-to-general learner for this subset. This
paper contains theoretical results on the algorithmic prob-
lems (concept subsumption and generalization) involved in
constructing such a learner: we give algorithms along with
lower and upper asymptotic complexity bounds. Along the
way, we expose considerable structure in the language.

In (Fern, Siskind, & Givan 2002), we develop practical
adaptations of these techniques for a substantial application
(including a novel automatic conversion of relational data to
propositional data), and show that our learner can replicate
the performance of carefully hand-constructed definitions in
recognizing events in video sequences.

Bottom-up Learning from Positive Data
The sequence-mining literature contains many general-to-
specific (“levelwise”) algorithms for finding frequent se-
quences (Agrawal & Srikant 1995; Mannila, Toivonen, &
Verkamo 1995; Kam & Fu 2000; Cohen 2001; Hoppner
2001). Here we explore a specific-to-general approach.

Inductive logic programming (ILP) (Muggleton & De
Raedt 1994) has explored positive-only approaches in
systems that can be applied to our problem, including
Golem (Muggleton & Feng 1992), Claudien (De Raedt &
Dehaspe 1997), and Progol (Muggleton 1995). Our early
experiments confirmed our belief that horn clauses, lacking
special handling of time, give a poor inductive bias1.

Here we present and analyze a specific-to-general
positive-only learner for temporal events—our learning al-
gorithm is only given positive training examples (where the
event occurs) and is not given negative examples (where the
event does not occur). The positive-only setting is of inter-
est as it appears that humans are able to learn many event
definitions given primarily or only positive examples. From
a practical standpoint, a positive-only learner removes the
often difficult task of collecting negative examples that are
“representative” of what is not the event to be learned.

1A reasonable alternative approach to ours would be to add syn-
tactic biases (Cohen 1994; Dehaspe & De Raedt 1996) to ILP.

A typical learning domain specifies an example space (the
objects we wish to classify) and a concept language (formu-
las that represent sets of examples that theycover). Gen-
erally we say a conceptC1 is more general (less specific)
thanC2 iff C2 is a subset ofC1—alternatively, a generality
relation that may not be equivalent to subset may be speci-
fied, often for computational reasons. Achieving the goal of
finding a concept consistent with a set of positive-only train-
ing data generally results in a trivial solution (simply return
the most general concept in the language). To avoid adding
negative training data, it is common to specify the learning
goal as finding the least-general concept that covers all of
the data2. With enough data and an appropriate concept lan-
guage, the least-general concept often converges usefully.

We take a standard specific-to-general machine-learning
approach to finding the least-general concept covering a set
of positive examples. Assume we have a concept languageL
and an example spaceS. The approach relies on the compu-
tation of two quantities: the least-general covering formula
(LGCF) of an example and the least-general generalization
(LGG) of a set of formulas. An LGCF inL of an example
in S is a formula inL that covers the example such that no
other covering formula is strictly less general. Intuitively,
the LGCF of an example is the “most representative” for-
mula inL of that example. An LGG of any subset ofL is
a formula more general than each formula in the subset and
not strictly more general than any other such formula.

Given the existence and uniqueness (up to set equiv-
alence) of the LGCF and LGG (which is non-trivial to
show for some concept languages) the specific-to-general
approach proceeds by: 1) Use the LGCF to transform each
positive training instance into a formula ofL, and 2) Return
the LGG of the resulting formulas. The returned formula
represents the least-general concept inL that covers all the
positive training examples. This learning approach has been
pursued for a variety of concept languages including, clausal
first-order logic (Plotkin 1971), definite clauses (Muggleton
& Feng 1992), and description logic (Cohen & Hirsh 1994).
It is important to choose an appropriate concept language as
a bias for this learning approach or the concept returned will
be (or resemble) the disjunction of the training data.

In this work, our concept language is the AMA temporal
event logic presented below and the example space is the set
of all models of that logic. Intuitively, a training example
depicts a model where a target event occurs. (The models
can be thought of as movies.) We will consider two notions
of generality for AMA concepts and, under both notions,
study the properties and computation of the LGCF and LGG.

AMA Syntax and Semantics
We study a subset of an interval-based logic called event
logic developed by Siskind (2001) for event recognition in
video sequences. This logic is “interval-based” in explic-
itly representing each of the possible interval relationships
given originally by Allen (1983) in his calculus of inter-

2In some cases, there can be more than one such least-general
concept. The set of all such concepts is called the “specific bound-
ary of the version space” (Mitchell 1982).

val relations (e.g., “overlaps”, “meets”, “during”). Event
logic allows the definition of static properties of intervals di-
rectly and dynamic properties by hierarchically relating sub-
intervals using the Allen interval relations.

Here we restrict our attention to a subset of event logic
we call AMA, defined below. We believe that our choice of
event logic rather than first-order logic, as well as our restric-
tion to AMA, provide a useful learning bias by ruling out a
large number of ‘practically useless’ concepts while main-
taining substantial expressive power. The practical utility of
this bias is shown in our companion paper (Fern, Siskind, &
Givan 2002). Our choice can also be seen as a restriction of
LTL to conjunction and “Until”, with similar motivations.

It is natural to describe temporal events by specifying a
sequence of properties that must hold consecutively; e.g., “a
hand picking up a block” might become “the block is not
supported by the hand and then the block is supported by
the hand.” We represent such sequences withMA timelines3,
which are sequences of conjunctive state restrictions. Intu-
itively, an MA timeline represents the events that temporally
match the sequence of consecutive conjunctions. An AMA
formula is then the conjunction of a number of MA time-
lines, representing events that can be simultaneously viewed
as satisfying each conjoined timeline. Formally,

state ::= true | prop | prop∧ state

MA ::= (state) | (state); MA // may omit parens

AMA ::= MA | MA∧ AMA

whereprop is a primitive proposition. We often treat states
as proposition sets (withtrue the empty set), MA formulas
as state sets4, and AMA formulas as MA timeline sets.

A temporal modelM = 〈M, I〉 over the set of proposi-
tions PROP is a pair of a mappingM from the natural num-
bers (representing time) to truth assignments to PROP, and a
closed natural number intervalI. The natural numbers in the
domain ofM represent time discretely, but there is no pre-
scribed unit of continuous time alloted to each number. In-
stead, each number represents an arbitrarily long period of
continuous time during which nothing changed. Similarly,
states in MA timelines represent arbitrarily long periods of
time during which the conjunctive state restrictions hold.5

• A states is satisfied by model〈M, I〉 iff M [x] assignsP
true for everyx ∈ I andP ∈ s.
• An MA timeline s1; s2; · · · ; sn is satisfied by a model
〈M, [t, t′]〉 iff ∃t′′ ∈ [t, t′] s. t.〈M, [t, t′′]〉 satisfiess1, and
either〈M, [t′′, t′]〉 or 〈M, [t′′+ 1, t′]〉 satisfiess2; · · · ; sn.

• An AMA formula Φ1 ∧ Φ2 ∧ . . . ∧ Φn is satisfied byM
iff eachΦi is satisfied byM.

3MA stands for “Meets/And”, an MA timeline being the
“Meet” of a sequence of conjunctively restricted intervals.

4Timelines may contain duplicate states, and the duplication
can be significant. For this reason, when treating timelines as sets
of states, we formally intend sets ofstate-index pairs. We do not
indicate this explicitly to avoid encumbering our notation, but this
must be remembered whenever handling duplicate states.

5We note that Siskind (2001) gives a continuous-time semantics
for event logic for which our results below also hold.

The condition defining satisfaction for MA timelines may
appear unintuitive, as there are two ways thats2; · · · ; sn can
be satisfied. Recall that we are using the natural numbers
to represent arbitrary static continuous time intervals. The
transition between consecutive statessi andsi+1 can occur
either within a static interval (i.e., one of constant truth as-
signment), that happens to satisfy both states, or exactly at
the boundary of two static time intervals. In the above def-
inition, these cases correspond tos2; · · · ; sn being satisfied
during the time intervals[t′′, t′] and[t′′+ 1, t′], respectively.

WhenM satisfiesΦ we sayM is a model ofΦ. We say
AMA Ψ1 subsumesAMA Ψ2 iff every model ofΨ2 is a
model ofΨ1, writtenΨ2 ≤ Ψ1, andΨ1 properly subsumes
Ψ2 when, in addition,Ψ1 6≤ Ψ2. We may also sayΨ1 is
more general (or less specific) thanΨ2 or that Ψ1 covers
Ψ2. Siskind (2001) provides a method to determine whether
a given model satisfies a given AMA formula. We now give
two illustrative examples.

Example 1.(Stretchability) The MA timelines
S1;S2;S3, S1;S2;S2;S2;S3, and S1;S1;S2;S3;S3

are all equivalent. In general, MA timelines have the
property that duplicating any state results in an equivalent
formula. Given a model〈M, I〉, we view eachM [x] as
a continuous time-interval that can be divided into an
arbitrary number of subintervals. So, if stateS is satisfied
by 〈M, [x, x]〉, then so is the sequenceS;S; · · · ;S.

Example 2. (Infinite Descending Chains) Given proposi-
tionsA andB, the MA timelineΦ = (A ∧ B) is subsumed
by each ofA;B, A;B;A;B, A;B;A;B;A;B, This
is clear from a continuous-time perspective, as an interval
whereA andB are true can always be broken into subin-
tervals where bothA andB hold—any AMA formula over
onlyA andB will subsumeΦ. This example illustrates that
there are infinite descending chains of AMA formulas that
each properly subsume a given formula.

Motivation for AMA MA timelines are a very natural
way to capture “stretchable” sequences of state constraints.
But why consider the conjunction of such sequences, i.e.,
AMA? We have several reasons for this language enrich-
ment. First of all, we show below that the AMA LGG is
unique; this is not true for MA. Second, and more infor-
mally, we argue that parallel conjunctive constraints can be
important to learning efficiency. In particular, the space of
MA formulas of lengthk grows in size exponentially withk,
making it difficult to induce long MA formulas. However,
finding several shorter MA timelines that each characterize
part of a long sequence of changes is exponentially easier.
(At least, the space to search is exponentially smaller.) The
AMA conjunction of these timelines places these shorter
constraints simultaneously and often captures a great deal
of the concept structure. For this reason, we analyze AMA
as well as MA and, in our empirical companion paper, we
bound the lengthk of the timelines considered.

Our language, analysis, and learning methods here are de-
scribed for a propositional setting. However, in a companion
paper (Fern, Siskind, & Givan 2002) we show how to adapt

these methods to a substantial empirical domain (video event
recognition) that requires relational concepts. There, we
convert relational training data to propositional training data
using an automatically extracted object correspondence be-
tween examples and then universally generalizing the re-
sulting learned concepts. This approach is somewhat dis-
tinctive (compare (Lavrac, Dzeroski, & Grobelnik 1991;
Roth & Yih 2001)). The empirical domain presented there
also requires extending our methods here to allow states to
assert proposition negations and to control the exponential
growth of concept size with a restricted-hypothesis-space
bias to small concepts (by bounding MA timeline length).

AMA formulas can be translated to first-order clauses, but
it is not straightforward to then use existing clausal general-
ization techniques for learning. In particular, to capture the
AMA semantics in clauses, it appears necessary to define
subsumption and generalization relative to a background
theory that restricts us to a “continuous-time” first-order–
model space. In general, least-general generalizations rela-
tive to background theories need not exist (Plotkin 1971), so
clausal generalization does not simply subsume our results.

Basic Concepts and Properties of AMA
We use the following conventions: “propositions” and “the-
orems” are the key results of our work, with theorems being
those results of the most difficulty, and “lemmas” are tech-
nical results needed for the later proofs of propositions or
theorems. We number the results in one sequence. Com-
plete proofs are available in the full paper.

Least-General Covering Formula. A logic can discrimi-
nate two models if it contains a formula that satisfies one but
not the other. It turns out AMA formulas can discriminate
two models exactly wheninternal positiveevent logic for-
mulas can do so. Internal positive formulas are those that de-
fine event occurrence only in terms of positive (non-negated)
properties within the defining interval (i.e., satisfaction by
〈M, I〉 depends only on the proposition truth values given by
M inside the intervalI). This fact indicates that our restric-
tion to AMA formulas retains substantial expressiveness and
leads to the following result that serves as the least-general
covering formula (LGCF) component of our learning proce-
dure. TheMA-projectionof a modelM = 〈M, [i, j]〉 is an
MA timeline s0; s1; · · · ; sj−i where statesk gives the true
propositions inM(i+ k) for 0 ≤ k ≤ j − i.
Proposition 1. The MA-projection of a model is its LGCF
for internal positive event logic (and hence for AMA), up to
semantic equivalence.

Proposition 1 tells us that the LGCF of a model exists, is
unique, and is an MA timeline. Given this property, when a
formula Ψ covers all the MA timelines covered by another
formula Ψ′, we haveΨ′ ≤ Ψ. Proposition 1 also tells us
that we can compute the LGCF of a model by constructing
the MA-projection of that model—it is straightforward to do
this in time polynomial in the size of the model.

Subsumption and Generalization for States. A stateS1

subsumesS2 iff S1 is a subset ofS2, viewing states as sets
of propositions. From this we derive that the intersection of

states is the least-general subsumer of those states and that
the union of states is likewise the most general subsumee.

Interdigitations. Given a set of MA timelines, we need to
consider the different ways in which a model could simulta-
neously satisfy the timelines in the set. At the start of such a
model, the initial state from each timeline must be satisfied.
At some point, one or more of the timelines can transition
so that the second state in those timelines must be satisfied
in place of the initial state, while the initial state of the other
timelines remains satisfied. After a sequence of such transi-
tions in subsets of the timelines, the final state of each time-
line holds. Each way of choosing the transition sequence
constitutes a different “interdigitation” of the timelines.

Alternatively viewed, each model simultaneously satisfy-
ing the timelines induces aco-occurrence relationon tuples
of timeline states, one from each timeline, identifying which
tuples co-occur at some point in the model. We represent
this concept formally as a set of tuples of co-occurring states
that can be ordered by the sequence of transitions. Intu-
itively, the tuples in an interdigitation represent the maximal
time intervals over which no MA timeline has a transition,
giving the co-occurring states for each such time interval.

A relationR onX1×· · ·×Xn issimultaneously consistent
with orderings≤1,. . . ,≤n, if, wheneverR(x1, . . . , xn) and
R(x′1, . . . , x

′
n), eitherxi≤ix′i, for all i, orx′i≤ixi, for all i.

We sayR is piecewise totalif the projection ofR onto each
component is total (i.e., every state in anyXi appears inR).

Definition 1. An interdigitationI of a set of MA timelines
{Φ1, . . . ,Φn} is aco-occurrencerelation overΦ1×· · ·×Φn
(viewing timelines as sets of states) that is piecewise total,
and simultaneously consistent with the state orderings of the
Φi. We say that two statess ∈ Φi and s′ ∈ Φj for i 6= j
co-occur inI iff some tuple ofI contains boths ands′. We
sometimes refer toI as a sequence of tuples, meaning the se-
quence lexicographically ordered by theΦi state orderings.

There are exponentially many interdigitations of even two
MA timelines (relative to the timeline lengths). Figure 1
shows an interdigitation of two MA timelines.

We first use interdigitations to syntactically characterize
subsumption between MA timelines. An interdigitationI of
two MA timelinesΦ1 andΦ2 is awitnessto Φ1 ≤ Φ2 if, for
every pair of co-occuring statess1 ∈ Φ1 ands2 ∈ Φ2, we
haves1 ≤ s2. Below we establish the equivalence between
witnessing interdigitations and MA subsumption.

Proposition 2. For MA timelinesΦ1 and Φ2, Φ1 ≤ Φ2 iff
there is an interdigitation that witnessesΦ1 ≤ Φ2.

IS(·) and IG(·). Interdigitations are useful in analyzing
both conjunctions and disjunctions of MA timelines. When
conjoining timelines, all states that co-occur in an inter-
digitation must simultaneously hold at some point, so that
viewed as sets, the union of the co-occuring states must
hold. A sequence of such unions that must hold to force the
conjunction of timelines to hold (via some interdigitation)
is called an “interdigitation specialization” of the timelines.
Dually, an “interdigitation generalization” involving inter-
sections of states upper bounds the disjunction of timelines.

Supposes1, s2, s3, t1, t2, andt3 are each sets of proposi-
tions (i.e., states). Consider the timelinesS = s1; s2; s3

andT = t1; t2; t3. The relation

{ 〈s1, t1〉 , 〈s2, t1〉 , 〈s3, t2〉 , 〈s3, t3〉 }

is an interdigitation ofS andT in which statess1 ands2

co-occur witht1, ands3 co-occurs witht2 andt3. The
corresponding IG and IS members are

s1 ∩ t1; s2 ∩ t1; s3 ∩ t2; s3 ∩ t3 ∈ IG({S, T})
s1 ∪ t1; s2 ∪ t1; s3 ∪ t2; s3 ∪ t3 ∈ IS({S, T}).

If t1⊆s1, t1⊆s2, t2⊆s3, andt3⊆s3, then the interdigi-
tationwitnessesS ≤ T .

Figure 1: An interdigitation with IG and IS members.

Definition 2. An interdigitation generalization (special-
ization) of a setΣ of MA timelines is an MA timeline
s1; . . . ; sm, such that, for some interdigitationI of Σ withm
tuples,sj is the intersection (respectively, union) of the com-
ponents of the j’th tuple of the sequenceI. The set of inter-
digitation generalizations (respectively, specializations) of
Σ is calledIG(Σ) (respectively,IS(Σ)).

Each timeline in IG(Σ) (dually, IS(Σ)) subsumes (is sub-
sumed by) each timeline inΣ. For our complexity analyses,
we note that the number of states in any member of IG(C)
or IS(C) is lower-bounded by the number of states in any
of the MA timelines inC and is upper-bounded by the total
number of states in all the MA timelines inC. The number
of interdigitations ofC, and thus of members of IG(C) or
IS(C), is exponential in that same total number of states.

We now give a useful lemma and a proposition concerning
the relationships between conjunctions and disjunctions of
MA concepts (the former being AMA concepts). For conve-
nience here, we use disjunction on MA concepts, producing
formulas outside of AMA with the obvious interpretation.

Lemma 3. Given an MA formulaΦ that subsumes each
member of a setΣ of MA formulas, someΦ′ ∈ IG(Σ) is
subsumed byΦ. Dually, whenΦ is subsumed by each mem-
ber ofΣ, someΦ′ ∈ IS(Σ) subsumesΦ. In each case, the
length ofΦ′ can be bounded by the size ofΣ.

Proof: (Sketch) Construct a witnessing interdigitation for
the subsumption of each member ofΣ by Φ. Combine these
interdigitationsIΣ to form an interdigitationI of Σ ∪ {Φ}
such that any states in Φ co-occurs with a states′ only if
s ands′ co-occur in some interdigitation inIΣ. “Project” I
to an interdigitation ofΣ and form the corresponding mem-
ber Φ′ of IG(Σ). Careful analysis showsΦ′ ≤ Φ with the
desired size bound. The dual is argued similarly.2

Proposition 4. The following hold:

1. (and-to-or) The conjunction of a setΣ of MA timelines is
equal to the disjunction of the timelines inIS(Σ).

2. (or-to-and) The disjunction of a setΣ of MA timelines is
subsumed by the conjunction of the timelines inIG(Σ).

Proof: (
∨

IS(Σ)) ≤ (
∧

Σ) and (
∨

Σ) ≤ (
∧

IG(Σ)) are

straightforward.(
∧

Σ) ≤ (
∨

IS(Σ)) follows from Lemma 3
by considering any timeline covered by(

∧
Σ). 2

Using “and-to-or”, we can now reduce AMA subsump-
tion to MA subsumption, with an exponential size increase.

Proposition 5. For AMAΨ1 andΨ2, (Ψ1 ≤ Ψ2) iff
for all Φ1 ∈ IS(Ψ1) andΦ2 ∈ Ψ2,Φ1 ≤ Φ2

Subsumption and Generalization
We give algorithms and complexity bounds for the construc-
tion of least-general generalization (LGG) formulas based
on an analysis of subsumption. We give a polynomial-time
algorithm for deciding subsumption between MA formu-
las. We show that subsumption for AMA formulas is coNP-
complete. We give existence, uniqueness, lower/upper
bounds, and an algorithm for the LGG on AMA formulas.
Finally, we give a syntactic notion of subsumption and an al-
gorithm that computes the corresponding syntactic LGG that
is exponentially faster than our semantic LGG algorithm.

Subsumption. Our methods rely on a novel algorithm for
deciding the subsumption questionΦ1 ≤ Φ2 between MA
formulasΦ1 andΦ2 in polynomial-time. Merely searching
for a witnessing interdigitation ofΦ1 and Φ2 provides an
obvious decision procedure for the subsumption question—
however, there are exponentially many such interdigitations.
We reduce this problem to the polynomial-time operation of
finding a path in a graph on pairs of states inΦ1 × Φ2.

Theorem 6. Given MA timelinesΦ1 andΦ2, we can check
in polynomial time whetherΦ1 ≤ Φ2.

Proof: (Sketch) WriteΦ1 as s1, . . . , sm and Φ2 as
t1, . . . , tn. Consider a directed graph with verticesV the
set{vi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let the (directed) edges
E be the set of all〈vi,j , vi′,j′〉 such thatsi ≤ tj , si′ ≤ tj′ ,
and bothi ≤ i′ ≤ i+ 1 andj ≤ j′ ≤ j + 1. One can show
thatΦ1 ≤ Φ2 iff there is a path in〈V,E〉 from v1,1 to vm,n.
Paths here correspond to witnessing interdigitations.2

A polynomial-time MA-subsumption tester can be built
by constructing the graph described in this proof and em-
ploying any polynomial-time path-finding method. Given
this polynomial-time algorithm for MA subsumption,
Proposition 5 immediately suggests an exponential-time al-
gorithm for deciding AMA subsumption—by computing
MA subsumption between the exponentially many IS time-
lines of one formula and the timelines of the other formula.
The following theorem tells us that, unlessP = NP , we
cannot do any better than this in the worst case.

Theorem 7. Deciding AMA subsumption is coNP-complete.

Proof: (sketch) AMA-subsumption ofΨ1 by Ψ2 is in coNP
because there are polynomially checkable certificates to
non-subsumption. In particular, there is a memberΦ1 of
IS(Ψ1) that is not subsumed by some member ofΨ2, which
can be checked using MA-subsumption in polynomial time.

We reduce the problem of deciding the satisfiability of a
3-SAT formulaS = C1 ∧ · · · ∧ Cm to the problem of rec-
ognizing non-subsumption between AMA formulas. Here,

eachCi is (li,1 ∨ li,2 ∨ li,3) and eachli,j either a proposition
P chosen fromP1, . . . , Pn or its negation¬P . The idea of
the reduction is to view members of IS(Ψ1) as representing
truth assignments. We exploit the fact that all interdigitation
specializations ofX;Y andY ;X will be subsumed by ei-
therX or Y—this yields a binary choice that can represent
a proposition truth value, except that there will be an inter-
digitation that “sets” the proposition to both true and false.

LetQ be the set of propositions

{Truek | 1 ≤ k ≤ n} ∪ {Falsek | 1 ≤ k ≤ n},

and letΨ1 be the conjunction of the timelines
n⋃
i=1

{(Q; Truei; Falsei;Q), (Q; Falsei; Truei;Q)}.

Each member of IS(Ψ1) will be subsumed by either Truei
or Falsei for eachi, and thus “represent” at least one truth
assignment. LetΨ2 be the formulas1; . . . ; sm, where

si = {Truej | li,k = Pj for somek} ∪
{Falsej | li,k = ¬Pj for somek}.

Eachsi can be thought of as asserting “notCi”. It can now
be shown that there exists a certificate to non-subsumption
of Ψ1 by Ψ2, i.e., a member of IS(Ψ1) not subsumed byΨ2,
if and only if there exists a satisfying assignment forS. 2

We later define a weaker polynomial-time–computable
subsumption notion for use in our learning algorithms.

Least-General Generalization. The existence of an
AMA LGG is nontrivial as there are infinite chains of in-
creasingly specific formulas that generalize given formu-
las: e.g., each member of the chainP ;Q, P ;Q;P ;Q,
P ;Q;P ;Q;P ;Q;P ;Q, . . . coversP ∧Q and(P ∧Q);Q.

Theorem 8. There is an LGG for any finite setΣ of AMA
formulas that is subsumed by every generalization ofΣ.

Proof: LetΓ be the set
⋃

Ψ′∈Σ IS(Ψ′). Let Ψ be the con-
junction of the finitely many MA timelines that generalize
Γ while having size no larger thanΓ. Each timeline inΨ
generalizesΓ and thusΣ (by Proposition 4), soΨ must gen-
eralizeΣ. Now, consider an arbitrary generalizationΨ′ of
Σ. Proposition 5 implies thatΨ′ generalizes each member
of Γ. Lemma 3 then implies that each timeline ofΨ′ sub-
sumes a timelineΦ, no longer than the size ofΓ, that also
subsumes the timelines ofΓ. ThenΦ must be a timeline of
Ψ, by our choice ofΨ, so every timeline ofΨ′ subsumes a
timeline of Ψ. ThenΨ′ subsumesΨ, andΨ is the desired
LGG. 2

Strengthening “or-to-and” we can compute an AMA LGG.

Theorem 9. For a setΣ of MA formulas, the conjunctionΨ
of all MA timelines inIG(Σ) is an AMA LGG ofΣ.

Proof: ThatΨ subsumes the members ofΣ is straightfor-
ward. To showΨ is “least”, considerΨ′ subsuming the
members ofΣ. Lemma 3 implies that each timeline ofΨ′
subsumes a member of IG(Σ). This impliesΨ ≤ Ψ′. 2

Combining this result with Proposition 4, we get:

Theorem 10. IG(
⋃

Ψ∈Σ IS(Ψ)) is an AMA LGG of the set
Σ of AMA formulas.

Theorem 10 leads to an algorithm that is doubly exponen-
tial in the input size because both IS(·) and IG(·) produce
exponential size increases. We believe we cannot do better:

Theorem 11. The smallest LGG of two MA formulas can be
exponentially large.

Proof: (Sketch) Consider the formulasΦ1 = s1,∗; s2,∗; . . .
; sn,∗ and Φ2 = s∗,1; s∗,2; . . . ; s∗,n, wheresi,∗ = Pi,1 ∧
· · · ∧ Pi,n ands∗,j = P1,j ∧ · · · ∧ Pn,j . For each member
ϕ = x1; . . . ;x2n−1 of the exponentially many members of
IG({Φ1,Φ2}), defineϕ to be the timelineP − x2; . . . ;P −
x2n−2, whereP is all the propositions. It is possible to show
that the AMA LGG ofΦ1 andΦ2, e.g., the conjunction of
IG({Φ1,Φ2}), must contain a separate conjunct excluding
each of the exponentially manyϕ. 2

Conjecture 12. The smallest LGG of two AMA formulas
can be doubly-exponentially large.

Even when there is a small LGG, it is expensive to compute:

Theorem 13. Determining whether a formulaΨ is an AMA
LGG for two given AMA formulasΨ1 andΨ2 is co-NP-hard,
and is in co-NEXP, in the size of all three formulas together.

Proof: (Sketch) Hardness by reduction from AMA sub-
sumption. Upper bound by the existence of exponentially-
long certificates for “No” answers: membersX of IS(Ψ)
andY of IG(IS(Ψ1) ∪ IS(Ψ2)) such thatX 6≤ Y . 2

Syntactic Subsumption. We now introduce a tractable
generality notion, syntactic subsumption, and discuss the
corresponding LGG problem. Using syntactic forms of sub-
sumption for efficiency is familiar in ILP (Muggleton & De
Raedt 1994). Unlike AMA semantic subsumption, syntac-
tic subsumption requires checking only polynomially many
MA subsumptions, each in polynomial time (via theorem 6).

Definition 3. AMA Ψ1 is syntactically subsumed by AMA
Ψ2 (written Ψ1 ≤syn Ψ2) iff for each MA timelineΦ2 ∈ Ψ2,
there is an MA timelineΦ1 ∈ Ψ1 such thatΦ1 ≤ Φ2.

Proposition 14. AMA syntactic subsumption can be decided
in polynomial time.

Syntactic subsumption trivially implies semantic
subsumption—however, the converse does not hold in
general. Consider the AMA formulas(A;B) ∧ (B;A), and
A;B;A whereA andB are primitive propositions. We
have(A;B) ∧ (B;A) ≤ A;B;A; however, we have neither
A;B ≤ A;B;A nor B;A ≤ A;B;A, so thatA;B;A
does not syntactically subsume(A;B) ∧ (B;A). Syntactic
subsumption fails to recognize constraints that are only
derived from the interaction of timelines within a formula.

Syntactic Least-General Generalization. The syntactic
AMA LGG is the syntactically least-general AMA for-

mula that syntactically subsumes the input AMA formulas6.
Based on the hardness gap between syntactic and semantic
AMA subsumption, one might conjecture that a similar gap
exists between the syntactic and semantic LGG problems.
Proving such a gap exists requires closing the gap between
the lower and upper bounds on AMA LGG shown in Theo-
rem 10 in favor of the upper bound, as suggested by Conjec-
ture 12. While we cannot yet show a hardness gap between
semantic and syntactic LGG, we do give a syntactic LGG al-
gorithm that is exponentially more efficient than the best se-
mantic LGG algorithm we have found (that of Theorem 10).

Theorem 15. There is a syntactic LGG for any AMA for-
mula setΣ that is syntactically subsumed by all syntactic
generalizations ofΣ.

Proof: LetΨ be the conjunction of all the MA timelines that
syntactically generalizeΣ, but with size no larger thanΣ.
Complete the proof usingΨ as in Theorem 8. 2

Semantic and syntactic LGG are different, though clearly
the syntactic LGG must subsume the semantic LGG. For ex-
ample,(A;B) ∧ (B;A), andA;B;A have a semantic LGG
of A;B;A, as discussed above; but their syntactic LGG is
(A;B; true) ∧ (true;B;A), which subsumesA;B;A but
is not subsumed byA;B;A. Even so, on MA formulas:

Proposition 16. Any syntactic AMA LGG for an MA for-
mula setΣ is also a semantic LGG forΣ.

Proof: We first argue the initial claim(Φ ≤ Ψ) iff (Φ ≤syn
Ψ) for AMA Ψ and MA Φ. The reverse direction is im-
mediate, and for the forward direction, by the definition of
≤syn, each conjunct ofΨ must subsume “some timeline” in
Φ, and there is only one timeline inΦ. Now to prove the
theorem, suppose a syntactic LGGΨ of Σ is not a semantic
LGG of Σ. ConjoinΨ with any semantic LGGΨ′ of Σ—the
result can be shown, using our initial claim, to be a syntactic
subsumer of the members ofΣ that is properly syntactically
subsumed byΨ, contradicting our assumption. 2

With Theorem 11, an immediate consequence is that we can-
not hope for a polynomial-time syntactic LGG algorithm.

Theorem 17. The smallest syntactic LGG of two MA for-
mulas can be exponentially large.

Unlike the semantic LGG case, for the syntactic LGG
we have an algorithm whose time complexity matches this
lower-bound. Theorem 10, when eachΨ is MA, provides
a method for computing the semantic LGG for a set of MA
timelines in exponential time using IG (because IS(Ψ) =
Ψ when Ψ is MA). Given a set of AMA formulas, the
syntactic LGG algorithm uses this method to compute the
polynomially-many semantic LGGs of sets of timelines, one
chosen from each input formula, and conjoins all the results.

Theorem 18. The formula
∧

Φi∈Ψi
IG({Φ1, . . . ,Φn}) is a

syntactic LGG of the AMA formulasΨ1, . . . ,Ψn.

Proof: Let Ψ be
∧

Φi∈Ψi
IG({Φ1, . . . ,Φn}). Each time-

line Φ of Ψ must subsume eachΨi becauseΦ is an out-

6Again, “least” means that no formula properly syntactically
subsumed by the syntactic LGG can subsume the input formulas.

Subsumption Semantic AMA LGG Synt. AMA LGG
Inputs Sem Syn Low Up Size Low Up Size
MA P P P coNP EXP P coNP EXP
AMA coNP P coNP NEXP 2-EXP?P coNP EXP

Table 1: Complexity Results Summary. The LGG complexities
are relative toinput plus outputsize. The size column reports the
largest possible output size. The “?” denotes a conjecture.

put of IG on a set containing a timeline ofΨi. Now con-
siderΨ′ syntactically subsuming everyΨi. We show that
Ψ ≤syn Ψ′ to conclude. Each timelineΦ′ in Ψ′ subsumes
a timelineTi ∈ Ψi, for eachi, by our assumption that
Ψi ≤syn Ψ′. But then by Lemma 3,Φ′ must subsume a
member of IG({T1, . . . , Tn})—and that member is a time-
line of Ψ—so each timelineΦ′ of Ψ′ subsumes a timeline of
Ψ. We concludeΨ ≤syn Ψ′, as desired. 2

This theorem yields an algorithm that computes a syn-
tactic AMA LGG in exponential time. The method does an
exponential amount of work even if there is a small syntactic
LGG (typically because many timelines can be pruned from
the output because they subsume what remains). It is still an
open question as to whether there is an output efficient algo-
rithm for computing the syntactic AMA LGG—this problem
is in coNP and we conjecture that it is coNP-complete. One
route to settling this question is to determine the output com-
plexity of semantic LGG for MA input formulas. We believe
this problem to be coNP-complete, but have not proven this;
if this problem is in P, there is an output-efficient method for
computing syntactic AMA LGG based on Theorem 18.

Conclusion
Table 1 summarizes the upper and lower bounds we have
shown. In each case, we have provided a theorem suggesting
an algorithm matching the upper bound shown. The table
also shows the size that the various LGG results could possi-
bly take relative to the input size. The key results in this table
are the polynomial-time MA subsumption and AMA syntac-
tic subsumption, the coNP lower bound for AMA subsump-
tion, the exponential size of LGGs in the worst case, and the
apparently lower complexity of syntactic AMA LGG versus
semantic LGG. We described how to build a learner based
on these results and, in our companion work, demonstrate
the utility of this learner in a substantial application.

References
Agrawal, R., and Srikant, R. 1995. Mining sequential pat-
terns. InProc. 11th Int. Conf. Data Engineering, 3–14.
Allen, J. F., and Ferguson, G. 1994. Actions and events in
interval temporal logic.Journal of Logic and Computation
4(5).
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals.Communications of the ACM26(11):832–843.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning.Artificial
Intelligence16:123–191.
Clarke, E. M.; Emerson, E. A.; and Sistla, A. P. 1983.
Automatic verification of finite state concurrent systems

using temporal logic specifications: A practical approach.
In Symposium on Principles of Programming Languages,
117–126.
Cohen, W., and Hirsh, H. 1994. Learnability of the classic
description logic: Theoretical and experimental results. In
4th International Knowledge Representation and Reason-
ing, 121–133.
Cohen, W. 1994. Grammatically biased learning: Learn-
ing logic programs using an explicit antecedent description
lanugage.Artificial Intelligence68:303–366.
Cohen, P. 2001. Fluent learning: Elucidation the structure
of episodes. InSymposium on Intelligent Data Analysis.
De Raedt, L., and Dehaspe, L. 1997. Clausal discovery.
Machine Learning26:99–146.
Dehaspe, L., and De Raedt, L. 1996. Dlab: A declara-
tive language bias formalism. InInternational Syposium
on Methodologies for Intelligent Systems, 613–622.
Fern, A.; Siskind, J. M.; and Givan, R. 2002. Learning
temporal, relational, force-dynamic event definitions from
video. InProceedings of the Eighteenth National Confer-
ence on Artificial Intelligence.
Hoppner, F. 2001. Discovery of temporal patterns—
learning rules about the qualitative behaviour of time se-
ries. In 5th European Principles and Practice of Knowl-
edge Discovery in Databases.
Kam, P., and Fu, A. 2000. Discovering temporal patterns
for interval-based events. InInternational Conference on
Data Warehousing and Knowledge discovery.
Lavrac, N.; Dzeroski, S.; and Grobelnik, M. 1991. Learn-
ing nonrecursive definitions of relations with LINUS. In
Proceedings of the Fifth European Working Session on
Learning, 265–288.
Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1995. Dis-
covery of frequent episodes in sequences. InInternational
Conference on Data Mining and Knowledge Discovery.
Mitchell, T. 1982. Generalization as search.Artificial
Intelligence18(2):517–542.
Muggleton, S., and De Raedt, L. 1994. Inductive logic
programming: Theory and methods.Journal of Logic Pro-
gramming19/20:629–679.
Muggleton, S., and Feng, C. 1992. Efficient induction
of logic programs. In Muggleton, S., ed.,Inductive Logic
Programming. Academic Press. 281–298.
Muggleton, S. 1995. Inverting entailment and Progol. In
Machine Intelligence, volume 14. Oxford University Press.
133–188.
Plotkin, G. D. 1971.Automatic Methods of Inductive In-
ference. Ph.D. Dissertation, Edinburgh University.
Roth, D., and Yih, W. 2001. Relational learning via propo-
sitional algorithms: An information extraction case study.
In International Joint Conference on Artificial Intelligence.
Siskind, J. M. 2001. Grounding the lexical semantics of
verbs in visual perception using force dynamics and event
logic. Journal of Artificial Intelligence Research15:31–90.

