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Abstract

We study the problem of supervised learning of event classes
in a simple temporal event-description language. We give
lower and upper bounds and algorithms for the subsumption
and generalization problems for two expressively powerful
subsets of this logic, and present a positive-examples-only
specific-to-general learning method based on the resulting
algorithms. We also present a polynomial-time computable
“syntactic” subsumption test that implies semantic subsump-
tion without being equivalent to it. A generalization algo-
rithm based on syntactic subsumption can be used in place of
semantic generalization to improve the asymptotic complex-
ity of the resulting learning algorithm. A companion paper
shows that our methods can be applied to duplicate the per-
formance of human-coded concepts in the substantial appli-

LTL and of the temporal event logic of Siskind (2001) as
well as of standard first-order logic (somewhat painfully).

Motivation for the choice of this subset is developed
throughout the paper, and includes useful learning bias, effi-
cient computation, and expressive power. Here we construct
and analyze a specific-to-general learner for this subset. This
paper contains theoretical results on the algorithmic prob-
lems (concept subsumption and generalization) involved in
constructing such a learner: we give algorithms along with
lower and upper asymptotic complexity bounds. Along the
way, we expose considerable structure in the language.

In (Fern, Siskind, & Givan 2002), we develop practical
adaptations of these techniques for a substantial application
(including a novel automatic conversion of relational data to

propositional data), and show that our learner can replicate
the performance of carefully hand-constructed definitions in
recognizing events in video sequences.

cation domain of video event recognition.

Introduction

In many domains, interesting concepts take the form of Bottom-up Learning from Positive Data
struct.ured temporal sequences of events. These domains in-r sequence-mining literature contains many general-to-
clude: planning, where macro-actions represent useful tem-

ral patterns: computer fitv. where tvoical lication specific (“levelwise”) algorithms for finding frequent se-
poral patterns, computer securily, where typical applicatio quences (Agrawal & Srikant 1995; Mannila, Toivonen, &

penayir o tmporal aten of syt cals st be e encamo 1095 K & Fu 2000; Conn 2001, Hopprer
wise authorized us%r behaviorpf?om intrusive behavior); and 2001). Here we explore a specific-to-general approach.
' Inductive logic programming (ILP) (Muggleton & De

B e eocnes! RAGd! 1004) has Gxplored postve.only. approsches
y 9 " systems that can be applied to our problem, including

Many proposed representation languages can be used 0% olem (Muggleton & Feng 1992), Claudien (De Raedt &
capture temporal structure. These include standard first- Dehaspe 1997), and Progol (Muégleton 1995). Our early

order logic, Allen’s interval calculus (Allen 1983), and : , . :
: ’ . A . experiments confirmed our belief that horn clauses, lacking
various temporal logics (Clarke, Emerson, & Sistla 1983; special handling of time, give a poor inductive Bias

Allen & Ferguson 1994; Bacchus & Kabanza 2000). In this Here we present and analvze a specific-to-general
work, we study a simple temporal language that is a subset o P Y P g
positive-only learner for temporal events—our learning al-

of many of these languages—we restrict our learner to con- hm i \ qi itive traini | here th
cepts expressible with conjunction and temporal sequencing 3°M™M IS oy gl(\j/gn positive training examp els (w ehre eh
of consecutive intervals (called “Until” in linear temporal V€Nt (()jccurs) andis notTgr:ven hegative Iexamp es (w f(_aret e
logic, or LTL). Our restricted language is a sublanguage of event does not occur). The positive-only setting is of inter-
est as it appears that humans are able to learn many event
*This work was supported in part by NSF grants 9977981-11S  definitions given primarily or only positive examples. From
and 0093100-11S, an NSF Graduate Fellowship for Fern, and the a practical standpoint, a positive-only learner removes the
Center for Education and Research in Information Assurance and often difficult task of collecting negative examples that are

Security at Purdue University. Part of this work was performed “representative” of what is not the event to be learned.
while Siskind was at NEC Research Institute, Inc.
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A reasonable alternative approach to ours would be to add syn-
tactic biases (Cohen 1994; Dehaspe & De Raedt 1996) to ILP.



A typical learning domain specifies an example space (the val relations (e.g., “overlaps”, “meets”, “during”). Event
objects we wish to classify) and a concept language (formu- logic allows the definition of static properties of intervals di-

las that represent sets of examples that tbeyer. Gen- rectly and dynamic properties by hierarchically relating sub-
erally we say a concepf; is more general (less specific) intervals using the Allen interval relations.
thanC; iff C5 is a subset o€, —alternatively, a generality Here we restrict our attention to a subset of event logic

relation that may not be equivalent to subset may be speci- we call AMA, defined below. We believe that our choice of
fied, often for computational reasons. Achieving the goal of eventlogic rather than first-order logic, as well as our restric-
finding a concept consistent with a set of positive-only train-  tion to AMA, provide a useful learning bias by ruling out a
ing data generally results in a trivial solution (simply return large number of ‘practically useless’ concepts while main-
the most general concept in the language). To avoid adding taining substantial expressive power. The practical utility of
negative training data, it is common to specify the learning this bias is shown in our companion paper (Fern, Siskind, &
goal as finding the least-general concept that covers all of Givan 2002). Our choice can also be seen as a restriction of
the datd. With enough data and an appropriate concept lan- LTL to conjunction and “Until”, with similar motivations.
guage, the least-general concept often converges usefully. It is natural to describe temporal events by specifying a
We take a standard specific-to-general machine-learning sequence of properties that must hold consecutively; e.g., “a
approach to finding the least-general concept covering a set hand picking up a block” might become “the block is not
of positive examples. Assume we have a concept langliage supported by the hand and then the block is supported by
and an example spacée The approach relies on the compu-  the hand.” We represent such sequences Mifitimelines,
tation of two quantities: the least-general covering formula which are sequences of conjunctive state restrictions. Intu-
(LGCF) of an example and the least-general generalization itively, an MA timeline represents the events that temporally
(LGG) of a set of formulas. An LGCF i, of an example match the sequence of consecutive conjunctions. An AMA
in S is a formula inL that covers the example such that no formula is then the conjunction of a number of MA time-
other covering formula is strictly less general. Intuitively, lines, representing events that can be simultaneously viewed
the LGCF of an example is the “most representative” for- as satisfying each conjoined timeline. Formally,
mula in L of that example. An LGG of any subset bfis
a formula more general than each formula in the subset and Staté true | prop | prop A state
not strictly more general than any other such formula. MA (statg | (state; MA /I may omit parens
Given the existence and uniqueness (up to set equiv- AMA ::= MA|MAAAMA
alence) of the LGCF and LGG (which is non-trivial to
show for some concept languages) the specific-to-general Wherepropis a primitive proposition. We often treat states
approach proceeds by: 1) Use the LGCF to transform each as proposition sets (wittrue the empty set), MA formulas
positive training instance into a formula 6f and 2) Return as state setsand AMA formulas as MA timeline sets.
the LGG of the resulting formulas. The returned formula A temporal modelM = (M, Z) over the set of proposi-
represents the least-general concept ithat covers all the  tions PROP is a pair of a mappirdg from the natural num-
positive training examples. This learning approach has been bers (representing time) to truth assignments to PROP, and a
pursued for a variety of concept languages including, clausal closed natural number interval The natural numbers in the
first-order logic (Plotkin 1971), definite clauses (Muggleton domain of M represent time discretely, but there is no pre-
& Feng 1992), and description logic (Cohen & Hirsh 1994).  scribed unit of continuous time alloted to each number. In-
It is important to choose an appropriate concept language as stead, each number represents an arbitrarily long period of
a bias for this learning approach or the concept returned will continuous time during which nothing changed. Similarly,
be (or resemble) the disjunction of the training data. states in MA timelines represent arbitrarily long periods of
In this work, our concept language is the AMA temporal time during which the Conjunctive state restrictions hold.
event logic presented below and the example space is the sety A states is satisfied by mode|M, I) iff M [z] assignsP
of all models of that logic. Intuitively, a training example true for everyr € I andP € s.
depicts a model where a target event occurs. (The models
can be thought of as movies.) We will consider two notions
of generality for AMA concepts and, under both notions,
study the properties and computation of the LGCF and LGG.

e An MA timeline sq;s0;---; s, is satisfied by a model
(M, [t,¢])iff 3" € [t,t']s. t.(M, [t,t"]) satisfiess;, and
either(M, [t",t']) or (M, [t" 4 1,1']) satisfiesss; - - - ; sp,.

° An AMA fqrmulg <I?1 NPy A ... A D, is satisfied byM
AMA Syntax and Semantics iff each @, is satisfied byM.

We study a subset of an interval-based logic called event  3\a stands for “Meets/And”, an MA timeline being the

logic developed by Siskind (2001) for event recognition in  “Meet” of a sequence of conjunctively restricted intervals.

video sequences. This logic is “interval-based” in explic- “Timelines may contain duplicate states, and the duplication

itly representing each of the possible interval relationships can be significant. For this reason, when treating timelines as sets

given originally by Allen (1983) in his calculus of inter-  of states, we formally intend sets sffate-index pairs We do not
indicate this explicitly to avoid encumbering our notation, but this

2In some cases, there can be more than one such least-generamust be remembered whenever handling duplicate states.
concept. The set of all such concepts is called the “specific bound- SWe note that Siskind (2001) gives a continuous-time semantics
ary of the version space” (Mitchell 1982). for event logic for which our results below also hold.



The condition defining satisfaction for MA timelines may
appear unintuitive, as there are two ways that - - ; s,, can
be satisfied. Recall that we are using the natural numbers
to represent arbitrary static continuous time intervals. The
transition between consecutive stategnds;; can occur
either within a static interval (i.e., one of constant truth as-
signment), that happens to satisfy both states, or exactly at
the boundary of two static time intervals. In the above def-
inition, these cases correspondstg- - - ; s,, being satisfied
during the time intervalg”, '] and[t” + 1, '], respectively.

When M satisfiesP we sayM is a model ofd. We say
AMA ¥, subsumeAMA Y, iff every model of ¥ is a
model of Uy, written ¥y, < W4, and¥, properly subsumes
W, when, in addition; £ ¥,. We may also say; is
more general (or less specific) thak, or that ¥, covers
¥,. Siskind (2001) provides a method to determine whether
a given model satisfies a given AMA formula. We now give
two illustrative examples.

Example 1. (Stretchability) The MA timelines
S1;52; 83, S15892; 52; S2; 53, and Si; 515525 S3; 53
are all equivalent. In general, MA timelines have the
property that duplicating any state results in an equivalent
formula. Given a mode{M, I), we view eachM[z] as

a continuous time-interval that can be divided into an
arbitrary number of subintervals. So, if stateis satisfied
by (M, [z, z]), then so is the sequen&esS; - - -; S.

Example 2. (Infinite Descending Chains) Given proposi-
tions A and B, the MA timelined = (A A B) is subsumed
by each ofA; B, A;B;A;B, A;B;A;B; A; B, .... This

is clear from a continuous-time perspective, as an interval
where A and B are true can always be broken into subin-
tervals where bottd and B hold—any AMA formula over
only A and B will subsumebd. This example illustrates that
there are infinite descending chains of AMA formulas that
each properly subsume a given formula.

Motivation for AMA  MA timelines are a very natural
way to capture “stretchable” sequences of state constraints.
But why consider the conjunction of such sequences, i.e.,
AMA? We have several reasons for this language enrich-
ment. First of all, we show below that the AMA LGG is
unique; this is not true for MA. Second, and more infor-
mally, we argue that parallel conjunctive constraints can be
important to learning efficiency. In particular, the space of
MA formulas of lengthk grows in size exponentially with,
making it difficult to induce long MA formulas. However,
finding several shorter MA timelines that each characterize
part of a long sequence of changes is exponentially easier.
(At least, the space to search is exponentially smaller.) The
AMA conjunction of these timelines places these shorter
constraints simultaneously and often captures a great deal
of the concept structure. For this reason, we analyze AMA
as well as MA and, in our empirical companion paper, we
bound the lengtlk of the timelines considered.

Our language, analysis, and learning methods here are de-

scribed for a propositional setting. However, in a companion
paper (Fern, Siskind, & Givan 2002) we show how to adapt

these methods to a substantial empirical domain (video event
recognition) that requires relational concepts. There, we
convert relational training data to propositional training data
using an automatically extracted object correspondence be-
tween examples and then universally generalizing the re-
sulting learned concepts. This approach is somewhat dis-
tinctive (compare (Lavrac, Dzeroski, & Grobelnik 1991;
Roth & Yih 2001)). The empirical domain presented there
also requires extending our methods here to allow states to
assert proposition negations and to control the exponential
growth of concept size with a restricted-hypothesis-space
bias to small concepts (by bounding MA timeline length).
AMA formulas can be translated to first-order clauses, but
it is not straightforward to then use existing clausal general-
ization techniques for learning. In particular, to capture the
AMA semantics in clauses, it appears necessary to define
subsumption and generalization relative to a background
theory that restricts us to a “continuous-time” first-order—
model space. In general, least-general generalizations rela-
tive to background theories need not exist (Plotkin 1971), so
clausal generalization does not simply subsume our results.

Basic Concepts and Properties of AMA

We use the following conventions: “propositions” and “the-
orems” are the key results of our work, with theorems being
those results of the most difficulty, and “lemmas” are tech-
nical results needed for the later proofs of propositions or
theorems. We number the results in one sequence. Com-
plete proofs are available in the full paper.

Least-General Covering Formula. A logic can discrimi-
nate two models if it contains a formula that satisfies one but
not the other. It turns out AMA formulas can discriminate
two models exactly whemternal positiveevent logic for-
mulas can do so. Internal positive formulas are those that de-
fine event occurrence only in terms of positive (non-negated)
properties within the defining interval (i.e., satisfaction by
(M, I) depends only on the proposition truth values given by
M inside the interval). This fact indicates that our restric-
tion to AMA formulas retains substantial expressiveness and
leads to the following result that serves as the least-general
covering formula (LGCF) component of our learning proce-
dure. TheMA-projectionof a modelM = (M, [i, j]) is an

MA timeline sg; s1; - - -5 s;—; Where states;, gives the true
propositions inM (i + k) for0 < k < j —i.

Proposition 1. The MA-projection of a model is its LGCF
for internal positive event logic (and hence for AMA), up to
semantic equivalence.

Proposition 1 tells us that the LGCF of a model exists, is
unique, and is an MA timeline. Given this property, when a
formula ¥ covers all the MA timelines covered by another
formula ¥/, we have¥’ < ¥. Proposition 1 also tells us
that we can compute the LGCF of a model by constructing
the MA-projection of that model—it is straightforward to do
this in time polynomial in the size of the model.

Subsumption and Generalization for States. A stateS;
subsumesS; iff Sy is a subset obs, viewing states as sets
of propositions. From this we derive that the intersection of



states is the least-general subsumer of those states and that Suppose, s, s3, t1, t2, andts are each sets of proposi
the union of states is likewise the most general subsumee. | tions (i.e., states). Consider the timelings= s;; so; s3
andT = tq;to;t3. The relation

Interdigitations.  Given a set of MA timelines, we need to
consider the different ways in which a model could simulta- { (s1,t1), (s2,t1), (s3,t2), (s3,t3) }
neously satisfy the timelines in the set. At the start of sucha | . ) S ) .
model, the initial state from each timeline must be satisfied. | IS an interdigitation o5 and7" in which states;; andss
At some point, one or more of the timelines can transition | €0-occur witht,, andss co-occurs withi, andts. The
so that the second state in those timelines must be satisfied| corresponding IG and IS members are

in place of the initial state, while the initial state of the other s Nty soNtys s Nte; s3Nts € 1G({S, T}
timelines remains satisfied. After a sequence of such transi- s Ut Sy Uty 83 Uty 53Uty € IS({SyT}).
tions in subsets of the timelines, the final state of each time- ' ' ' ’
line holds. Each way of choosing the transition sequence | If t; Csy,t1 Cso,t2 C s3, andts C s, then the interdigi-

constitutes a different “interdigitation” of the timelines. tationwitnessess < 7.
Alternatively viewed, each model simultaneously satisfy- . i o ]
ing the timelines induces@-occurrence relation tuples Figure 1: An interdigitation with IG and IS members.

of timeline states, one from each timeline, identifying which o . L o )
tuples co-occur at some point in the model. We represent Definition 2. An interdigitation generalization (special-
this concept formally as a set of tuples of co-occurring states 1Zation) of a set: of MA timelines is an MA timeline
that can be ordered by the sequence of transitions. Intu- 51;- - - ; Sm, Such that, for some interdigitatiahof X with
itively, the tuples in an interdigitation represent the maximal tuples,s; is the intersection (respectively, union) of the com-
time intervals over which no MA timeline has a transition, Ponents of the j'th tuple of the sequeniceThe set of inter-
giving the co-occurring states for each such time interval. dlgltatlon generallzatlons' (respectively, specializations) of
ArelationR on X, x- - -x X,, issimultaneously consistent > IS calledIG(X) (respectively|S(X)).

with orderings<i,... <,, if, wheneverR(zy, ..., z,) and Each timeline in IGX) (dually, 1IS(X)) subsumes (is sub-
R(xY, ..., x;,), eitherz; <;zj, for all4, orz} <; x;, for all 4. sumed by) each timeline i6. For our complexity analyses,
We sayR is piecewise totaif the projection of2 onto each we note that the number of states in any member ¢t1G
component is total (i.e., every state in ally appears ink). or IS(C) is lower-bounded by the number of states in any
Definition 1. An interdigitation! of a set of MA timelines  Of the MA timelines inC' and is upper-bounded by the total
{®,,...,®,}is aco-occurrenceelation overd; x - - - x &, number of states in all the MA timelines @. The number

(viewing timelines as sets of states) that is piecewise total, Of interdigitations ofC’, and thus of members of I&) or
and simultaneously consistent with the state orderings of the 'S(C), is exponential in that same total number of states.

®,. We say that two statese @, ands’ € @, fori # j We now give a useful lemma and a proposition concerning
co-occur in! iff some tuple of contains boths and s’. We the relationships between conjunctions and disjunctions of
sometimes refer thas a sequence of tuples, meaning the se- MA concepts (the former being AMA concepts). For conve-

quence lexicographically ordered by the state orderings. nience here, we use disjunction on MA concepts, producing

_ _ o formulas outside of AMA with the obvious interpretation.
There are exponentially many interdigitations of even two

MA timelines (relative to the timeline lengths). Figure 1
shows an interdigitation of two MA timelines.

We first use interdigitations to syntactically characterize
subsumption between MA timelines. An interdigitatibof
two MA timelines®; and®, is awitnessto ®; < ®, if, for

Lemma 3. Given an MA formula® that subsumes each
member of a seE of MA formulas, som@&’ € IG(X) is
subsumed bg. Dually, whend is subsumed by each mem-
ber of £, somed’ ¢ IS(X) subsume®. In each case, the
length of®’ can be bounded by the sizeXf

every pair of co-occuring stateas € ®; andss € o, we Proof: (Sketch) Construct a witnessing interdigitation for
haves; < s,. Below we establish the equivalence between the subsumption of each membenbby ®. Combine these
witnessing interdigitations and MA subsumption. interdigitationsIy; to form an interdigitatiorn/ of ¥ U {®}
Proposition 2. For MA timelines®; and &, &; < &, iff such that any state in ® co-occurs with a state’ only if

s ands’ co-occur in some interdigitation ifi;. “Project” I

to an interdigitation of: and form the corresponding mem-
ber®’ of IG(X). Careful analysis showd’ < & with the
desired size bound. The dual is argued similarlya

there is an interdigitation that witnessés < ®,.

IS(-) and IG(-). Interdigitations are useful in analyzing
both conjunctions and disjunctions of MA timelines. When
conjoining timelines, all states that co-occur in an inter-
digitation must simultaneously hold at some point, so that ) ) o .
viewed as sets, the union of the co-occuring states mustl. (and-to-or) The conjunction of a sEtof MA timelines is
hold. A sequence of such unions that must hold to force the ~ €gual to the disjunction of the timelinesIB(X).
conjunction of timelines to hold (via some interdigitation) 2. (or-to-and) The disjunction of a s&t of MA timelines is
is called an “interdigitation specialization” of the timelines. subsumed by the conjunction of the timelinekd(®).
Dually, an “interdigitation generalization” involving inter-

sections of states upper bounds the disjunction of timelines. Proof: (\/IS(X)) < (AX) and(V X) < (AIG(X)) are

Proposition 4. The following hold:



straightforward (A X) < (\/ I1S(X)) follows from Lemma 3
by considering any timeline covered bj ). O

Using “and-to-or”, we can now reduce AMA subsump-
tion to MA subsumption, with an exponential size increase.

Proposition 5. For AMA T, and U5, (T < O,) iff
forall &, € IS(¥,) and®, € Uy, @y < Oy

Subsumption and Generalization

We give algorithms and complexity bounds for the construc-
tion of least-general generalization (LGG) formulas based
on an analysis of subsumption. We give a polynomial-time
algorithm for deciding subsumption between MA formu-
las. We show that subsumption for AMA formulas is cONP-
complete. We give existence, uniqueness, lower/upper
bounds, and an algorithm for the LGG on AMA formulas.
Finally, we give a syntactic notion of subsumption and an al-
gorithm that computes the corresponding syntactic LGG that
is exponentially faster than our semantic LGG algorithm.

Subsumption. Our methods rely on a novel algorithm for
deciding the subsumption questidn < ®, between MA
formulas®; and®, in polynomial-time. Merely searching
for a witnessing interdigitation o®; and ®, provides an
obvious decision procedure for the subsumption question—
however, there are exponentially many such interdigitations.
We reduce this problem to the polynomial-time operation of
finding a path in a graph on pairs of stategbinx ®-.

Theorem 6. Given MA timelines; and ®,, we can check
in polynomial time whethep; < ®,.

Proof: (Sketch) Write®; as si,...,s, and ®; as
t1,...,t,. Consider a directed graph with verticésthe
set{v; ; | 1 <i<m,1<j<n}. Letthe (directed) edges
E be the set of al(v; ;,v; ;) such thats; < ¢;, s;y < tj,
and bothi <4 <i+1andj < j < j+ 1. One can show
that®, < @, iff there is a path iNV, E) from vy 1 t0 vy, 4.
Paths here correspond to witnessing interdigitationsl

A polynomial-time MA-subsumption tester can be built
by constructing the graph described in this proof and em-
ploying any polynomial-time path-finding method. Given
this polynomial-time algorithm for MA subsumption,
Proposition 5 immediately suggests an exponential-time al-
gorithm for deciding AMA subsumption—by computing
MA subsumption between the exponentially many IS time-
lines of one formula and the timelines of the other formula.
The following theorem tells us that, unless= NP, we
cannot do any better than this in the worst case.

Theorem 7. Deciding AMA subsumption is coNP-complete.

Proof: (sketch) AMA-subsumption of; by ¥, is in coNP
because there are polynomially checkable certificates to
non-subsumption. In particular, there is a memfbgrof
IS(,) that is not subsumed by some membewef which
can be checked using MA-subsumption in polynomial time.
We reduce the problem of deciding the satisfiability of a
3-SAT formulaS = Cy A --- A Cy, to the problem of rec-
ognizing non-subsumption between AMA formulas. Here,

eachC; is (1,1 V12 V1, 3) and eachi; ; either a proposition

P chosen fromP;, ..., P, orits negatior—P. The idea of
the reduction is to view members of(I8, ) as representing
truth assignments. We exploit the fact that all interdigitation
specializations ofX; Y andY; X will be subsumed by ei-
ther X or Y—this yields a binary choice that can represent
a proposition truth value, except that there will be an inter-
digitation that “sets” the proposition to both true and false.

Let @ be the set of propositions

{Trug, |1 <k <n}U{Falsg | 1 <k <n},

and let¥; be the conjunction of the timelines

n

(J{(Q; True;; False; Q), (Q; False; True;; Q).

i=1

Each member of I8;) will be subsumed by either Trye
or False for eachi, and thus “represent” at least one truth
assignment. Le¥; be the formulas;. . .; s,,, where

S; =

{True; | I; , = P; for somek} U
{Falsg | [; , = —P; for somek}.

Eachs; can be thought of as asserting “r@f’. It can now
be shown that there exists a certificate to non-subsumption
of Uy by ¥, i.e., amember of ISP, ) not subsumed by,
if and only if there exists a satisfying assignment$or O

We later define a weaker polynomial-time—computable
subsumption notion for use in our learning algorithms.

Least-General Generalization. The existence of an
AMA LGG is nontrivial as there are infinite chains of in-
creasingly specific formulas that generalize given formu-
las: e.g., each member of the chath Q, P;Q;P;Q,
P;Q; P;Q; P;Q; P;Q,...coversP A Q and(P A Q); Q.

Theorem 8. There is an LGG for any finite sét of AMA
formulas that is subsumed by every generalization.of

Proof: LetT be the set J,, .y IS(V’). Let ¥ be the con-
junction of the finitely many MA timelines that generalize
I while having size no larger thaih. Each timeline in¥
generalize§' and thust (by Proposition 4), s& must gen-
eralizeX. Now, consider an arbitrary generalizatigt of

Y. Proposition 5 implies tha?’ generalizes each member
of I'. Lemma 3 then implies that each timeline &f sub-
sumes a timeliné, no longer than the size df, that also
subsumes the timelines 6f Then® must be a timeline of
U, by our choice ofl, so every timeline oft’ subsumes a
timeline of ¥. Then¥’ subsumesl, and¥ is the desired
LGG. O

Strengthening “or-to-and” we can compute an AMA LGG.

Theorem 9. For a set® of MA formulas, the conjunctio
of all MA timelines iNG(X) is an AMA LGG of.

Proof: That¥ subsumes the members Xfis straightfor-
ward. To show? is “least”, consider¥’ subsuming the
members of. Lemma 3 implies that each timeline &f
subsumes a member of (&). This implies? < ¥'. O

Combining this result with Proposition 4, we get:



Theorem 10. IG([Jy,y, IS(¥)) is an AMA LGG of the set
> of AMA formulas.

Theorem 10 leads to an algorithm that is doubly exponen-
tial in the input size because both(Ifand IG-) produce
exponential size increases. We believe we cannot do better:

Theorem 11. The smallest LGG of two MA formulas can be
exponentially large.

Proof: (Sketch) Consider the formulés = s ;524 - .-
;Sn,x and ®y = Sx,178%,25 -+ -3 Sx,ny Wheresi,* = Pi,l A

-+ ANPyyands,; = P A--- AP, ;. For each member
@ = x1;...;T2,_1 Of the exponentially many members of
IG({®1,P2}), definep to be the timelinegP? — xo;...; P —
Ton_o, WhereP is all the propositions. Itis possible to show
that the AMA LGG of®; and®,, e.g., the conjunction of
IG({®1,P2}), must contain a separate conjunct excluding
each of the exponentially magyy O

Conjecture 12. The smallest LGG of two AMA formulas
can be doubly-exponentially large.

Even when there is a small LGG, it is expensive to compute:

Theorem 13. Determining whether a formuld is an AMA
LGG for two given AMA formulag; and W, is co-NP-hard,
and is in co-NEXP, in the size of all three formulas together.

Proof: (Sketch) Hardness by reduction from AMA sub-
sumption. Upper bound by the existence of exponentially-
long certificates for “No” answers: membels of IS(¥)
andY of IG(IS(¥,) UIS(¥3)) suchthatY £ Y. O

Syntactic Subsumption. We now introduce a tractable
generality notion, syntactic subsumption, and discuss the
corresponding LGG problem. Using syntactic forms of sub-
sumption for efficiency is familiar in ILP (Muggleton & De
Raedt 1994). Unlike AMA semantic subsumption, syntac-
tic subsumption requires checking only polynomially many
MA subsumptions, each in polynomial time (via theorem 6).

Definition 3. AMA ¥, is syntactically subsumed by AMA
Wy (written Wy <gyn Wo) iff for each MA timelined, € W5,
there is an MA timelin®,; € ¥, such thatb; < ®,.

Proposition 14. AMA syntactic subsumption can be decided
in polynomial time.

Syntactic subsumption trivially implies semantic
subsumption—however, the converse does not hold in
general. Consider the AMA formulds!; B) A (B; A), and
A; B; A where A and B are primitive propositions. We
have(4; B) A (B; A) < A; B; A; however, we have neither
A;B < A;B;Anor B;A < A;B; A, so thatA4; B; A
does not syntactically subsunid; B) A (B; A). Syntactic
subsumption fails to recognize constraints that are only
derived from the interaction of timelines within a formula.

Syntactic Least-General Generalization. The syntactic
AMA LGG is the syntactically least-general AMA for-

mula that syntactically subsumes the input AMA formfilas
Based on the hardness gap between syntactic and semantic
AMA subsumption, one might conjecture that a similar gap
exists between the syntactic and semantic LGG problems.
Proving such a gap exists requires closing the gap between
the lower and upper bounds on AMA LGG shown in Theo-
rem 10 in favor of the upper bound, as suggested by Conjec-
ture 12. While we cannot yet show a hardness gap between
semantic and syntactic LGG, we do give a syntactic LGG al-
gorithm that is exponentially more efficient than the best se-
mantic LGG algorithm we have found (that of Theorem 10).

Theorem 15. There is a syntactic LGG for any AMA for-
mula setY that is syntactically subsumed by all syntactic
generalizations of.

Proof: Let¥ be the conjunction of all the MA timelines that
syntactically generaliz&, but with size no larger thak.
Complete the proof usingr as in Theorem 8. O

Semantic and syntactic LGG are different, though clearly
the syntactic LGG must subsume the semantic LGG. For ex-
ample,(4; B) A (B; A), and4; B; A have a semantic LGG
of A; B; A, as discussed above; but their syntactic LGG is
(A; B;true) A (true; B; A), which subsumes!; B; A but
is not subsumed byi; B; A. Even so, on MA formulas:

Proposition 16. Any syntactic AMA LGG for an MA for-
mula set® is also a semantic LGG for.

Proof: We first argue the initial clairt® < ) iff (& <qyn

U) for AMA ¥ and MA ®. The reverse direction is im-
mediate, and for the forward direction, by the definition of
<syn, €ach conjunct o must subsume “some timeline” in
®, and there is only one timeline i®. Now to prove the
theorem, suppose a syntactic LAGof X is not a semantic
LGG of 3. Conjoin¥ with any semantic LGA@’ of ¥—the
result can be shown, using our initial claim, to be a syntactic
subsumer of the members %fthat is properly syntactically
subsumed by, contradicting our assumption. O

With Theorem 11, an immediate consequence is that we can-
not hope for a polynomial-time syntactic LGG algorithm.

Theorem 17. The smallest syntactic LGG of two MA for-
mulas can be exponentially large.

Unlike the semantic LGG case, for the syntactic LGG
we have an algorithm whose time complexity matches this
lower-bound. Theorem 10, when eathis MA, provides
a method for computing the semantic LGG for a set of MA
timelines in exponential time using IG (becaus¢¥$ =
¥ when ¥ is MA). Given a set of AMA formulas, the
syntactic LGG algorithm uses this method to compute the
polynomially-many semantic LGGs of sets of timelines, one
chosen from each input formula, and conjoins all the results.

Theorem 18. The formula/; .y IG({®1,...,®,}) is a
syntactic LGG of the AMA formulag,, ..., V.

Proof: LetV be Ay .y, IG({®1,...,®,}). Each time-
line ® of ¥ must subsume each; becauseb is an out-

6Again, “least” means that no formula properly syntactically
subsumed by the syntactic LGG can subsume the input formulas.



Subsumption Semantic AMA LGG | Synt. AMA LGG
Inputs| Sem Syn |Low Up Size Low Up  Size

MA P P P coNP EXP |P coNP EXP
AMA |coNP P coNP NEXP 2-EXP?P coNP EXP

Table 1: Complexity Results Summary. The LGG complexities
are relative tdnput plus outpusize. The size column reports the
largest possible output size. The “?” denotes a conjecture.

put of IG on a set containing a timeline d@f;. Now con-
sider U’ syntactically subsuming eveny;. We show that
U <sn ¥’ to conclude. Each timelin@’ in ¥’ subsumes
a timelineT; € ¥,, for eachi, by our assumption that
U, <syn ¥’'. But then by Lemma 39’ must subsume a
member of IG{T1,...,T,})—and that member is a time-
line of ¥—so each timelin@’ of ¥’ subsumes a timeline of
U. We concludel <sy, ¥, as desired. O

This theorem yields an algorithm that computes a syn-
tactic AMA LGG in exponential time. The method does an
exponential amount of work even if there is a small syntactic
LGG (typically because many timelines can be pruned from
the output because they subsume what remains). It is still an
open question as to whether there is an output efficient algo-
rithm for computing the syntactic AMA LGG—this problem
is in coNP and we conjecture that it is coNP-complete. One
route to settling this question is to determine the output com-
plexity of semantic LGG for MA input formulas. We believe
this problem to be coNP-complete, but have not proven this;
if this problem is in P, there is an output-efficient method for
computing syntactic AMA LGG based on Theorem 18.

Conclusion
Table 1 summarizes the upper and lower bounds we have

shown. In each case, we have provided a theorem suggesting

an algorithm matching the upper bound shown. The table
also shows the size that the various LGG results could possi-
bly take relative to the input size. The key results in this table
are the polynomial-time MA subsumption and AMA syntac-
tic subsumption, the coNP lower bound for AMA subsump-
tion, the exponential size of LGGs in the worst case, and the
apparently lower complexity of syntactic AMA LGG versus
semantic LGG. We described how to build a learner based
on these results and, in our companion work, demonstrate
the utility of this learner in a substantial application.
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