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1 IntroductionSchubert's steamroller is a well known challenge problem for automated reasoningsystems [Cohn, 1989], [Cohn, 1984], [Stickel, 1985], [Bibel et al., 1987], [Davies,1988], [Oppacher and Suen, 1986], and [Walther, 1984]. All previous automatedsolutions of Schubert's steamroller have been based on search procedures | proce-dures that search for proofs and which are not guaranteed to halt. In this paper wedescribe a di�erent kind of solution to Schubert's steamroller | a solution withoutsearch. Although there is no established technical meaning to the term \search",it seems reasonable to assert that a procedure guaranteed to terminate in poly-nomial time does not search. We present a natural general purpose polynomialtime inference procedure capable of solving Schubert's steamroller given only theaxioms of the problem plus three user speci�ed \focus terms".The polynomial time inference procedure presented in this paper exploits, inan apparently essential way, aspects of natural language syntax. The inferenceprocedure is de�ned by a set of inference rules. If R is a set of inference rules thenwe let `R be the inference relation generated by R, i.e., for any set of formulas� and formula � we write � `R � if there exists a derivation of � from theformulas in � using the inference rules in R. A rule set R will be called tractable if`R is polynomial time decidable, i.e., there exists a procedure that is guaranteedto terminate in polynomial time in the written length of � and � and that deter-mines whether or not � `R �. There exist useful, though incomplete, tractablesets of inference rules for �rst order logic. However, much more powerful tractablerule sets can be given if �rst order formulas are written in a non-standard syn-tax. A \taxonomic syntax" for �rst order logic is presented in [McAllester et al.,1989]. A more elaborate \Montagovian syntax" for �rst order logic, incorporatingquanti�cational aspects of English noun phrases, is presented in [McAllester andGivan, 1989]. The polynomial time inference procedure used here to solve Schu-bert's steamroller is de�ned by a set of inference rules stated in a Montagoviansyntax. The inference relation de�ned by these inference rules appears not to bede�nable in the classical syntax of �rst order logic.2 Montagovian SyntaxIn this section we present a Montagovian syntax for �rst order logic similar tothat described in [McAllester and Givan, 1989]. The classical syntax for �rst orderlogic involves two grammatical categories | formulas and terms. The Montago-vian syntax presented below also involves two syntactic categories | formulas andclass expressions. Formulas denote truth values and class expressions denote sets.Constant symbols and variables are treated as class expressions that denote sin-1



gleton sets. In the following, � is a formula; C, C1, C2 are class expressions; andR is a binary relation symbol.� A class expression is one of the following:{ A class symbol (monadic predicate symbol).{ A constant symbol or variable.{ An intersection expression (intersection C1 C2).{ A union expression (union C1 C2).{ A �-expression (� x �(x)), where x is a variable.{ An expression (R (some C)) or (R (every C)).� A formula is one of the following:{ A subset formula of the form (every C1 C2).{ An intersection formula of the form (some C1 C2).{ An existence formula of the form (there-exists-a C).{ An at-most-one formula of the form (at-most-one C).{ Any Boolean combination of the above formulas.Before giving a formal semantics, it is useful to consider some examples offormulas and their associated meanings. If P and Q are class symbols then (everyP Q) is a formula which is true if the set denoted by P is a subset of the set denotedby Q. If man is a class symbol that denotes the set of all men, and runs is a classsymbol that denotes the set of all things that run, then the formula (every manruns) is true if every man runs. The formula (some man runs) is true if someman runs.If John is a constant symbol (or variable) then the formulas (every Johnruns) and (some John runs) are semantically equivalent and we can use (Johnruns) as an abbreviation for either formula. Similarly, we write (likes John)as an abbreviation for either of the class expressions (likes (every John)) or(likes (some John)).If owns is a relation symbol, and denotes the predicate which is true of twoobjects if the �rst owns the second, then the class expression (owns (some car))denotes the set of individuals that own some car. If policeman is a class symbolthat denotes the set of all policemen, then the formula (every policeman (owns(some car))) is true if every policeman owns a car.2



Our formal semantics for the Montagovian syntax is a (drastic) simpli�cationof Montague's original semantics for English [Montague, 1973].1 Just as in classicalsyntax, a model of our Montagovian language is a �rst order model, i.e., a domainD together with an interpretation of constant, class, and relation symbols. Each�rst order model interprets each constant symbol as an element of its domain. Amodel also interprets each class symbol as a subset of its domain and each relationsymbol as a binary relation on its domain, i.e., a set of pairs of domain elements.If M is a �rst order model, and � is a variable interpretation over M, i.e., amapping from variables to elements of the domain ofM, then we write V(e;M; �)for the semantic value of the expression e in the modelM under variable interpre-tation �. If C is a class expression then V(C;M; �) is a subset of the domain ofM. If � is a formula, then V(�;M; �) is a truth value, either T or F.� For class symbol P , V(P; M; �) is the set M(P ).� For constant c, V(c; M; �) is the singleton set fM(c)g.� For variable x, V(x; M; �) is the singleton set f�(x)g.� V((intersection C1 C2); M; �) is V(C1; M; �) \ V(C2; M; �).� V((union C1 C2); M; �) is the set V(C1; M; �) [ V(C2; M; �).� V((� x �(x)); M; �) is the set of all d such that V(�(x); M; �[x := d]) is T where�[x := d] is the same as � except that it interprets x as d.� V((R (every C));M; �) is the set of all d such that for every d0 in V(C;M; �) the pair<d; d0> is an element of the relation denoted by R. (Consider the class expression (loves(every child)).)� V((R (some C));M; �) is the set of all d such that there exists an element d0 in V(C;M; �)such that that the pair <d; d0> is an element of the relation denoted by R. (Consider theclass expression (loves (some child)).)� V((every C W); M; �) is T if the set V(C; M; �) is a subset of V(W; M; �).� V((some C W); M; �) is T if the setV (C; M; �) \ V(W; M; �) is non-empty.� V((there-exists-a C); M; �) is T if V(C; M �) is non-empty.� V((at-most-one C); M; �) is T if V(C; M �) has at most one member.� Boolean combinations of atomic formulas have their standard meaning.Binary relation symbols, in the presence of equality, are in some sense su�cientto express arbitrary �rst order facts. We leave it to the reader to verify that, ifwe restrict our attention to languages with only constants and unary and binary1Our class expressions play the role of both verb phrases, as in (owns (some car)), and ofincomplete noun phrases, as in (brother-of (some policeman)). Montague, of course, treatedthese as separate syntactic categories. Montague also treated complete noun phrases, such as(every policeman), as another syntactic category with its own denotational semantics. Thetreatment of propositional attitudes makes Montague's formal language yet more complex.3



relation symbols, then every classical �rst order formula can be translated to alogically equivalent formula of Montagovian syntax and vice versa. Montagoviansyntax is really just a syntactic variant of �rst order logic.3 Schubert's SteamrollerSchubert's steamroller is a logical puzzle originally stated in English. Each sentenceof the English statement of the problem is given below along with a translation ofthat sentence into a set of formulas in our Montagovian syntax for �rst order logic.Wolves, foxes, birds, caterpillars, and snails are animals, and there are some ofeach of them.(every wolf animal) (there-exists-a wolf)(every fox animal) (there-exists-a fox): : :There are some grains, and grains are plants.(there-exists-a grain) (every grain plant)Caterpillars and snails are much smaller than birds, which are much smaller thanfoxes, which are much smaller than wolves.(every caterpillar (is-smaller-than (every bird)))(every snail (is-smaller-than (every bird)))(every bird (is-smaller-than (every fox)))(every fox (is-smaller-than (every wolf)))Wolves do not like to eat foxes or grains, while birds like to eat caterpillars butnot snails.:(some wolf (eats (some fox))) :(some wolf (eats (some grain)))(every bird (eats (every caterpillar))) :(some bird (eats (some snail)))Caterpillars and snails like to eat some plants.(every caterpillar (eats (some plant)))(every snail (eats (some plant)))Every animal either likes to eat all plants or all animals much smaller than itselfthat like to eat some plants. 4



(every animal(union(eats (every plant))(� x (x (eats (every(intersectionanimal(is-smaller-than x))))))))Prove there is an animal that likes to eat a grain-eating animal.(some animal(eats (some (intersectionanimal(eats (some grain))))))A formula of Montagovian Syntax is called quanti�er-free if it does not containany �-expressions. The \quanti�ers" some and every that appear in noun phrasesare considered to be quanti�er-free combinators. In [McAllester and Givan, 1989]we show that satis�ability is decidable (NP-complete) for the quanti�er-free frag-ment of the Montagovian syntax presented in that paper. Although the Mon-tagovian syntax presented here is somewhat more elaborate, we conjecture thatthe quanti�er-free fragment remains decidable. When translated into our Mon-tagovian syntax, all of the sentences of Schubert's steamroller are quanti�er-freeexcept for the second to last sentence above, which involves a single �-expression.4 Polynomial Time InferenceFigure 1 gives a set of 33 inference rules stated in our Montagovian syntax. Weare actually interested in the rules in �gure 1 plus all contrapositives of those rules.Each inference rule is analogous to an implication of the form 	1 ^ � � �	n ! �where each 	i is an antecedent and � is the conclusion. A contrapositive of a rule	1 ^ � � �	n ! � is a rule of the form	1 ^ � � � ^ 	i�1 ^ :� ^	i+1 ^ � � � ^	n ! :	i:In the contrapositive, the conclusion has been interchanged with one of the an-tecedents and both of the interchanged formulas have been negated. If a givenrule is semantically sound, then so is each of its contrapositives. We conjecturethat the rule set consisting of the rules in �gure 1 plus all contrapositives of those5



(1) 	; :	� (2) 	::	 (3) ::		(4) �	 _ � (5) �� _	 (6) � _	; :�	(7) (every C C) (8) (there-exists-a c) (9) (at-most-one c)(10) (there-exists-a C)(some C C) (11) (some C W)(there-exists-a C) (12) (some C W)(some W C)(13) (every C W)(every W Z)(every C Z) (14) (some C W)(every C Z)(some Z W) (15) (some C W)(at-most-one C)(every C W)(16) (at-most-one W)(every C W)(at-most-one C) (17) :(at-most-one C)(there-exists-a C) (18) :(every C W)(there-exists-a C)(19) (every C (union C W)) (20) (every W (union C W))(21) (every (intersection C W) C) (22) (every (intersection C W) W)(23) (every C Z); (every W Z)(every (union C W) Z) (24) (every Z C); (every Z W)(every Z (intersection C W))(25) (some C W)(there-exists-a (intersection C W)) (26) :(there-exists-a C)(every W (R (every C)))(27) (every C (union W Z)):(some C W)(every C Z) (28) (every C (union W Z)):(some C Z)(every C W)(29) (every C W)(every (R (some C)) (R (some W))) (30) (every C W)(every (R (every W)) (R (every C)))(31) (some C W)(every (R (every C)) (R (some W))) (32) (there-exists-a (R (some C)))(there-exists-a C)Figure 1: Some inference rules for Montagovian Syntax. The letters C,W , and Z,range over class expressions, c ranges over constants and variables, � and 	 rangeover formulas, and R ranges over relation symbols.6



rules is local (see below), and thus generates a polynomial time decidable inferencerelation.The inference rules in �gure 1, together with their contrapositives, determinea sound inference relation for formulas expressed in our Montagovian syntax for�rst order logic. This (incomplete) �rst order inference relation appears not haveany de�nition in the classical syntax for �rst order logic. 2 We have constructed apolynomial time inference procedure based on this set of inference rules. A generaltheoretical framework for constructing polynomial time inference procedures ispresented in [McAllester, 1990]. Let R be any set of inference rules. The followingde�nition is from [McAllester, 1990].De�nition: We write � ` R � if there exists a proof of � from thepremise set � such that every proper subexpression of a formula usedin the proof appears as a proper subexpression of �, a proper subex-pression of some formula in �, or as a closed (variable free) expressionin the rule set R.The following lemma is proved in [McAllester, 1990] .Lemma: For any given rule set R, there exists a procedure for deter-mining whether or not � ` R � which runs in time polynomial in thewritten length of � and �.The inference relation ` R is a restricted version of `R. For any rule set R,the relation ` R is polynomial time decidable. If the relation `R is intractable,as is the case for any sound and complete set of rules for �rst order logic, thenthe polynomial time relation ` R will be weaker than the relation `R. However,there is a large class of rule sets for which these two relations are the same. Thefollowing de�nition is also from [McAllester, 1990] .De�nition: A set R of inference rules is called local if the relation ` Ris the same as the relation `R.An immediate consequence of the above de�nitions and lemma is that local rulesets are tractable, i.e., they generate polynomial time decidable inference relations.A variety of nontrivial local rule sets is presented in [McAllester, 1990]. Let Mbe the set of inference rules in �gure 1 together with the contrapositives of thoserules. We conjecture, although we have not yet proved, that M is local. Even ifM is not local, ` M is still polynomial time decidable, and it appears to be a verypowerful inference relation.2This is because the variables in the rules of �gure 1 range over class expressions, but thereare no class expressions in classical syntax. Consider for example the classical equivalent of theMontagovian class expression (brother-of (every man)).7



5 Socratic Proof SystemsLocal rule sets de�ne polynomial time inference procedures. Of course, no poly-nomial time inference procedure can be complete for �rst order logic | the 32inference rules given in the previous section are not complete for our Montagoviansyntax for �rst order logic. However, it is possible to exploit fast and powerful infer-ence procedures based on Montagovian syntax in constructing semi-automated ver-i�cation systems. In this section we describe a particular kind of semi-automatedveri�cation system called a Socratic Sequent system.3 A proof in a Socratic sequentsystem is a series of lines where each line is a sequent of the form � ` � where �is a set of formulas and � is a formula.De�nition: A Socratic sequent system is a pair <R; S> where R is aset of inference rules (deriving formulas from formulas) and S is a setof sequent rules (deriving sequents from sequents).De�nition: An acceptable derivation in a Socratic sequent system<R;S> is a series of sequents where, for each sequent � ` �, either� `R � (in which case the sequent is called obvious), or the sequentfollows from earlier sequents using a rule in S.If the rule set R that de�nes the obvious sequents is local, then the inferencerelation ` R is polynomial time decidable, and one can therefore determine, inpolynomial time, whether a series of sequents is an acceptable derivation in thesequent system <R; S>. (Note that �nding an acceptable derivation of � from� is still an undecidable operation|the critical point is that once we have such aderivation, we can verify that it is acceptable in polynomial time).In this section we give a Socratic sequent system that is complete for ourMontagovian syntax for �rst order logic and show how this Socratic system yieldsa one-step solution to Schubert's steamroller. The sequent rules for our proofsystem are given in �gure 2. The rules of obviousness of our Socratic systeminclude all of the inference rules in �gure 1 plus the following two rules concerning�-expressions:(33) �(y); (focus-on y)(every y (� x�(x)))3The term \Socratic proof" was introduced in [Crawford and Kuipers, 1989] to describe anysystem in which steps of a proof are veri�ed using an automated reasoning procedure. Our notionof a Socratic sequent system is a special case of this general concept.8



(S1) � [ f	g ` �� [ f:	g ` �� ` � (S2) � ` 	� [ f	g ` �� ` �(S3) � [ (focus-on x) ` �� ` � (S4) � ` �� [ f	g ` �(S5) � ` (there-exists-a C)� [ f(every x C)g ` �� ` � (S6) � ` (some C W)� [ f(every x C); (every x W)g ` �� ` �(S7) � [ f(every x C)g ` (every W (R x))� ` (every W (R (every C))) (S8) � [ f(every x C)g ` (every x W)� ` (every C W)(S9) � ` (at-most-one Z)� ` (every Z (R (some C)))� [ f(every x C); (every Z (R x))g ` �� ` � (S10) � [ f(every x1 C); (every x2 C)g ` (every x1 x2)� ` f(at-most-one C)gFigure 2: The Socratic Proof Rules. In these rules C, W , and Z, are class expres-sions, � is a formula, and x, x1 and x2 are variables that do not appear free in �,�, C, Z, or W .(34) (every y (� x�(x))); (focus-on y)�(y)Each of these rules has an antecedent of the form (focus-ony), where y mustbe variable. Formulas of this form are used to control the inference process andhave no semantic content. The focus-on antecedents of the above rules restrictthe application of these rules to \focus variables", i.e., variables y such that theformula (focus-ony) is given as a premise (there are no inference rules for derivingformulas of the form (focus-ony)). Note that the sequent rule S3 in �gure 2 canbe used to eliminate focus-on premises from sequents. If the �-expression ruleswere not restricted with focus-on antecedents, then the inference relation de�nedby those rules, together with the rules of �gure 1, would be undecidable. Let M 0be the set of inference rules including all rules in �gure 1 and their contrapositives,plus the above two rules for quanti�ers. We have a polynomial time implementationof the inference relation ` M 0, provided there is a bounded level of �-nesting. Thisimplementation is constructed along the lines described in [McAllester, 1989]. Weconjecture that M 0 is local, and thus that ` M 0 is the same as `M 0.Now let � be the set of formulas of Montagovian syntax used to represent thepremises of Schubert's steamroller as given in section 3 and let � be the formulato be proven. Our implementation of an inference procedure for the rule set M 09



has been used to verify that:� [ 8><>: (xw wolf), (focus-on xw),(xf fox), (focus-on xf),(xb bird), (focus-on xb) 9>=>; `M 0 �This sequent expresses the English statement \to see that � follows from �, con-sider a wolf xw, a fox xf , and a bird xb | the result is then obvious". Repeateduse of the Socratic inference rules S3 and S5 can be used to eliminate all premisesother than �, and hence derive the sequent � ` �. A simple user interface to theSocratic proof system can be used to automatically apply sequent rules, such asS3 and S5, that remove extraneous premises. Given this user interface, the abovesequent is a one line solution to Schubert's steamroller.6 DiscussionWe have constructed a complete proof system for a non-standard syntax for �rstorder logic. This proof system has the simultaneous features that proofs are shortand yet, if our conjectures are correct, the acceptability of a proof is quickly ver-i�able. The proofs in our system are so short that Schubert's steamroller can beproved in a single line, by far the shortest known proof in a proof system withpolynomial time checkable proofs.The conciseness of the proofs in our proof system appears to be due to thepower (and conjectured locality) of the inference rules given in �gure 1. Thispower appears to depend fundamentally on the use of a non-standard syntax toexpress the inference rules|just what aspect of the new syntax makes this addedexpression possible is unclear, but one relevant observation is that the quanti�erfree fragment of the new syntax can express many facts which require quanti�ers inclassical syntax (e.g. (every man mammal)). Our experience indicates that the de-cision procedure for the inference relation ` M immediately solves the vast majorityof inference problems that can be stated in the fragment of Montagovian syntaxthat does not contain �-quanti�ers.4 The statement of Schubert's steamroller inMontagovian syntax contains only a single �-quanti�er | a quanti�er needed torepresent the English anaphora \itself". Three instantiations of this quanti�er areneeded in the solution of Schubert's steamroller. Our one-line solution speci�esthe objects on which the quanti�er is to be instantiated | the focus-on premisesin the one-line solution control the use of the instantiation rules 34 and 35.4We conjecture that validity in the �-free fragment of our Montagovian syntax is decidable,although it is known that the inference rules in �gure 1 are not complete for �-free Montagovianformulas. 10



The inference relation de�ned by the inference rules in �gure 1 appears not tohave any de�nition in the classical syntax of �rst order logic. Thus, Montagoviansyntax appears to play an essential role in the speci�cation of the inference relationand therefore in the construction of the a Socratic sequent system with extremelyconcise proofs. Although this suggests that natural language syntax plays animportant role in human reasoning, it seems su�cient to merely claim that aspectsof natural language syntax can be used to build powerful inference algorithms.References[Bibel et al., 1987] W. Bibel, R. Letz, and J. Schumann. Bottom-up enhancementsof deductive systems. In Proceedings of the Fourth International Conference onArti�cial Intelligence and Information Control Systems of Robots, pages 1{9.North-Holland, Amsterdam, Netherlands, October 1987.[Cohn, 1984] A. G. Cohn. A note concerning the axiomatization of schubert'ssteamroller in many sorted logic. In Alvey IKBS Inference Research ThemeWorkshop, pages 14{21. Alvey Directorate, London, England, September 1984.[Cohn, 1989] A. G. Cohn. Taxonomic reasoning with many-sorted logics. Arti�cialIntelligence Review, 3(2-3):89{128, 1989.[Crawford and Kuipers, 1989] J. M. Crawford and Benjamin Kuipers. Towards atheory of access-limited logic for knowledge representation. In First Interna-tional Conference on Principles of Knowledge PUBLISHER = Morgan Kauf-mann Publishers, Representation and Reasoning, pages 67{78, 1989.[Davies, 1988] N. Davies. Schubert's steamroller in a natural deduction theoremprover. In Proceedings of Computer Society Specialist Group on Expert Systems,pages 89{102. Cambridge University Press, Cambridge, UK, December 1988.[McAllester and Givan, 1989] D. McAllester and R. Givan. Natural language syn-tax and �rst order inference. Memo 1176, MIT Arti�cial Intelligence Laboratory,October 1989. To Appear in AIJ.[McAllester et al., 1989] D. McAllester, R. Givan, and T. Fatima. Taxonomic syn-tax for �rst order inference. In Proceedings of the First International Conferenceon Principles of Knowledge Representation and Reasoning, pages 289{300, 1989.To Appear in JACM.[McAllester, 1989] David A. McAllester. Ontic: A Knowledge Representation Sys-tem for Mathematics. MIT Press, 1989.11
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