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Abstract

In this paper, we first present a key approximation resulz&o-sum, discounted Markov games, providing
bounds on the state-wise loss and the loss in the sup noritimgsiitom using approximaté)-functions. Then
we extend the policy rollout technique for MDPs to Markov gesmUsing our key approximation result, we prove
that, under certain conditions, the rollout technique gikise to a policy that is closer to the Nash equilibrium
than the base policy. We also use our key result to providétamative analysis of a second sampling approach
to Markov games known as sparse sampling. Our analysisémshie (already known) result that, under certain
conditions, the policy generated by the sparse-samplgayithm is close to the Nash equilibrium. We prove that
the amount of sampling that guarantees these results ipéndent of the state-space—size of the Markov game.

. INTRODUCTION

Previous work on Markov Decision Processes (MDPs) has geoMmany algorithms, such
as value iteration and policy iteration, for finding (approately) optimal policies for MDPs
[1], and extensions of these algorithms for large stateespi, [3], [4], [5], [6], [7], [8].

Markov games are a natural multi-controller extension of RéCfor which the notion of
a Nash equilibrium [9], where each player’s policy is a “bestponse” to the other players’
policies, is a widely accepted notion of optimality.

Patek and Bertsekas have established the convergenceuefitexition and policy iteration
for stochastic shortest-path games [10]. These algoritieasire time at least polynomial in
the state-space cardinality, and hence are impracticM&mkov games with large state spaces.
Previous online algorithms from the reinforcement-leagrecommunity are also impractical in
large state spaces [11], [12], [13], [14].

Large state space MDP approaches include structure expboif value-function approxima-
tion, and sampling methods. Here, we focus on sampling iéhgos, but for Markov games.
The sampling algorithms we consider involve drawing rand@amples to estimate, for each
possible initial action pair, the value of taking that iaitaction pair, and then either acting
optimally, or following some given policy pair. We call théet “estimating the)-function”
(for the policy pair, if any). The resultin@-function estimate defines a matrix game for the
current state, and a current action is then chosen (postithastically) by finding a (possibly
mixed) Nash equilibrium for this game.

Our aim is to evaluate the policies that are formed using‘td&sh look-ahead” technique.
We present a key approximation result for discounted zam-games that provides bounds on
the loss of the Nash look-ahead policy constructed usingrgkeal Q-function estimation. A
similar result was given by Singh and Yee [15] for MDPs, usangjfferent technique, but, as
we will elaborate later, our result is more general, everpasied to MDPs, and can be used to
infer a variant of the Singh and Yee result.

We then present two particular sampling algorithms. The dilgorithm is an extension of
the policy-rollout algorithm developed by Bertsekas andt@aon [4]. This algorithm starts
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with a pair of base policies, and produces a new policy bynglbut the base-policy pair.

Using our approximation result, we establish that, undgageconditions, with finitely many

finite-horizon samples, the new policy is closer to the Nagtimal policy than the original

policy. The number of samples required is independent aé-space size—even the MDP
specialization of this result is new.

The second algorithm we present is the sparse-samplingwWgime algorithm presented
by Kearns et al. [16]. Kearns et al. proved that one can pmror amount of sampling that is
independent of the size of the state space to obtain a nesr#Machastic policy for a Markov
game. We provide an alternate analysis of this result, la@weg our main approximation
theorem again.

[I. DEFINITIONS, NOTATION, AND TECHNICAL BACKGROUND

In the rest of the paper, we u$ES) to denote the probability measures over thg. alVe
use bold-face fonts to indicate random variables. For wgattfionsf andg on domainD, we
write f < g to indicate thatf (x) < g(x) for everyx in D. We write | | for sup,p | f ()]

A zero-sum, discounted Markov game between playeasd B with a discount factot is a
tuple(X, A, B, T, R, z), whereX is the (countable) state spade(B) is the finite action space
for playerA (B), ¥ : X x A x B — II(X) is the transition function : X x A x B — R is the
reward function, and, € X is the initial state. The aim ofl (B) is to maximize (minimize)
the v-discounted cumulative reward. L¢tx,a,b) be a random state resulting from taking
action pair{a, b) in stater, as specified b{f.

An A-policy 74 for player A is a sequence of maps;A : X — II(A), i > 0, specifying
the probability distribution with which actions are chodsnA at time:. If u;TA = ugA for
all i, then the policy is said to be stationary. We similarly defigigoolicies. Given map
p 1 X — II(A), we use the bold-face notatign’(z) to denote a random variable that has
distribution; (). Given a policyr for either player, we use the notatipfi to denote thé'th
member of the sequenee When the policyr is stationary, we will omit the subscript

Given a pair of policiegr*, 7”) and stater, we define the value functiol, 4 ,z(z) as
expected value of the reward supm,-, VR (@, p (1), pr (@), wherez, = z, and
T = F@p, uf (z), ui” (z1)). The space of value functions : X — R is denoted byy.

Given anA-policy 74, a corresponding best-response policy fois defined as @-policy
78 that minimizes valué/, 1 s (x) of the game in each statg given thatA plays policy
7. We denote the set of all the best-response policie®foy brB (7). Similarly, we define
brA (7). A pair of policies(w*, ) is said to constitute a Nash equilibriumzif € brB(74)
andr® € brA(7*), in which case we writé* for V4 5. We call such policiedlash policies
for the respective players.

For any A-policy 7 (or B-policy 7”), we define the security leval, (or V%;) as the
minimum over all7” of V,4 ;5 (z) (Or max;a Vza .5 (x), respectively). We compare policies
via security levels, so that-policy 7 is better thanA-policy 7 in statez, if V3, (z) >
V*, (r), and is state-wise betterif’, > V*,. We say that policyr* is better than policyr4
inthe sup norm ifV* — V| < [V* = V3.

ForV : X — R, and policiegr 4, 75), defineT, THZA’MEB, andeAJrB.

(TV)(z) = zgln%i) Iglg]élE (R(z,2,b) +yV(f(z,2,0))].

(T2 V@) = B[Rl uf (@) 1" () + 9V (F (o, 0 (@), 0 (@), s0 that

(12 5V)(x) = V(x), and (TfAJBV)(:c):(T:;;B(T%A,%BV))(:E).

For a stationary policy paitr*, 7%), we will use the short-hand notatidf 4 5 = T s



TheQ-function@,4,5 : X x A x B — R for a pair of stationary policiegr*, ), is defined
as Q4 .5(x,a,0) = E [R(x,a,b) +vVya .5(f(z,a,b))], and we writeQ for the space of
functions@ : Xx A x B — R. Also, for Nash(7*, %), we denote), a s (-, -, ) by Q*(-, -, ).
We call a random variable that takes value®ia stochastia)-function

LetNash(M (-, -)) be an operator that for any mataX(-, -) € R*/*IBl computes a probabil-
ity distribution pair(u*, 1?) that achieves a Nash equilibrium for the zero-sum matrixegam
[9] described byM (-, -). The operatoNashVal(A(-,-)) returns the value of the game when
the Nash(M (-, -)) distributions are used by the players to play the matrix ganfe -). Nash
andNashVal can be computed in time polynomial in their argument size$Nash 4 (/) and
Nash (M) compute probability distributions used by the respectieggrs at an equilibrium.

Throughout this paper, we assume that the reward functibousided, i.e.|R(z, a,b)| <
Ry for someR,.. € Rand allz € X, a € A, andb € B. The value function for any
(4, wP) satisfies, atany € X, |V .5 (2)] < Vinax = Riax/(1 — 7). We also writee for the
value function whose value is 1 for every state.

We prove the following technical background propositianghie full paper, following anal-
ogous proofs for MDPs by others [1], [17]. Helé(-) andV”(-) are arbitrary value functions,
and(r4, v8) is an arbitrary policy pair.

Proposition 1.Supposé/ (z) < V'(z) for all z € X. We then havéT*V)(z) < (T*V')(z)
forallz € X. Also, we have(T}, V) (z) < (T}, 5V')(x), forallz € X.

Proposition 2.For anyr € R, ande the unit value function defined above,

(TH(V +re)(2) = (THV) (@) +7%r, and(T5 1 (V +re)) (2) = (T 7s V) (2) + 77

Proposition 3.sup,. inf5(T5%  »V)(z) = (T*V)().

Proposition 4.(Value iteration converge$my .. (TVV) (zy) = V*(zp).

Proposition 5.1imy (T % 5 V) (20) = Va8 (20)-

Proposition 6.For stationaryr® andn®?, V,a s = Tya ;5V,a 5.

Proposition 7.The Nash value of the game satisfies Bellman’s equations 1'V'*.

Proposition 8.Supposel’ and V' are bounded. For alk € N, we then have that
mMax,cx ‘(T’“V) (x) — (TkV’)(a:)‘ < AP maxgex [V(x) — V'(2)].

Proposition 9.Let X,..., Xy be i.i.d. random variables satisfyin ;| < X,..x and
EX; = p. Then,P || £ XX, X, - u‘ <A| 21— de NN

[1l. AN APPROXIMATION RESULT FORMARKOV GAMES
A. The Concept of Look-ahead

Policy selection in MDP problems typically critically inik@s a process of one-step look-
ahead relative to a given (possibly estimated) value fonctiollowed by a maximization to
select the best action. This process selects the actiomthaerform the best if future value
is given by the specified value function.

The corresponding process in Markov games is more cometic@ne step look-ahead can
integrate the system dynamics to convert a given value iinmabto a@)-function; however,
maximization is insufficient for action selection, as thgpopent action is unknown. Our ap-
proach to analyzing Markov games leverages the idea th&l thaction defines a matrix game
in the current state. This matrix game can be solved to ge¢quilibrium action distribution”
analogous to the maximal-valued action in the MDP case, (geg. [10]). Here, we are con-
cerned with evaluating the effect of sampling error on thsulteng policy improvement—we
have a stochastiQ-function rather than &)-function. Analysis of the effects of sampling is
critical for large state-space games, where exact poliggravement and/or policy iteration
simply cannot be carried out in practice.



We now formally define the important concept of one-step {abkad for Markov games
in the presence of sampling; this look-ahead function cdswve given distribution/” over
Q-functions (typically, from a sampling algorithm) into asthibution over actions. Given a
distribution F' overQ, theone-step look-ahead polid¢yokahead A (F") for A is the policy that
chooses actions in stateaccording to the probability distributiafi Nash 4 (Q(x, -, -)), where
Q is aQ-valued random variable with distributidn.

The stochastically described mat@Xz, -, -) can be viewed as a matrix-game encapsulation
of the expected future following each available action paid thelookaheadA(F") policy
chooses its actions by solving this game. Now suppose thatwe an algorithm that takes as
an input the current state and outputs a random mattM < RI*/* Bl distributed as specified
by F in statez. Then the policy7* (and7?) can be generated as follows. At every decision
epoch, observe the current statand generate a random matfid using the given algorithm,
and compute the distributiolash 4(M), and choose an actianaccording this distribution.
The sampling algorithms we consider use this techniquedoerating policies.

B. The Main Theorem

Our main theorem provides bounds on the state-wise lossredffvhen following a pol-
icy selected by Nash look-ahead using samgefiinctions. When the samplég-functions
are generated from a particular base policy pair (rathar byaestimating the optimal value
directly), as in policy rollout, the theorem also gives bdsion the change in loss in the sup
norm, relative to that base policy pair. Our result for distied Markov games is more general
than the MDP result proven by Singh and Yee [15] in four aspect
1. We extend their MDP result to Markov games.

2. We relax their finite—state-space restriction to allowrtable state-spaces
3. Our result applies to approximatiagfunctions of arbitrary policies, not jug}*.
4. Their proof does not support any bound on the sup-nornabtee look-ahead policy.

Because of aspects 3 and 4, we use a different proof methathrbyrivially extending the
techniques of [10] to include bounds on the effect§efunction approximation.

Theorem 1Let 74 be a stationary policy forl, and letr? be a best-response policy for
74, Let F be aQ-function distribution such that an§ distributed according td’ satisfies
Qs (z,-,-) — Q(x,+,)| . < e foranyz € X, with probability at least — ¢, and is a.s.
bounded by,..x, i-€., P[|Q|so < Vinax] = 1. Let@ = lookaheadA(F). Then
1. V*,(x) is bounded above by?, (z) + 2(e + 20Viax) /(1 — ) for all » € X, and
2. |V* = V24|« is bounded above by(|V* — V2,|o) + 2(€ + 20Vinax) /(1 — 7).

Proof. Let 72 € brB(7*) be a stationary best-response policyrth Let us denote by a
stochasti@)-function having distributiorF’. We wish to compare the security levelof, i.e.,
V.4 .2, With the security level achieved by, i.e., V; ;5, and show that the latter approxi-
mately dominates the former. To do so, we define an “appraelyiancreasing sequence of
“approximately” intermediate value functions, startinghathe expected value of the “look-
ahead game” described by tig¥x, -, -) matrix, and ending at the security level . Let
Vi(x) be ENashVal(Q(z,-,-)) andVk 1 beTsa ;5 Vi.

This sequence necessarily converges to the security lewele-it remains to show that the
sequence is approximately increasing, and thapproximately dominates the security level
of 74, analyzing how the approximation bounds sum over the seguatie start with latter.

1We believe that, with suitable regularity assumptionss thsult extends immediately to continuous state spacesebdo
not explore that claim further here.



Let us denote the evef®(z, -, ) — Q4 .5(,-, )| < € by €. Then, by our choice of’,
we haveP [¢] > 1 — ¢. Also, we denote the complement eventdy Thus,P[¢¢] < §. Now,

Vilo) = ENeshVal(@(e,r ) = E | ax min Qe 1)|Q)

> |win £ Qe (0).0)]] ¢] Ple
@C} Pl

> BlminE [Q(x,;ﬂA(x), b)\Q] ‘03] (1 - P[€]) — P[€] Vigas

| beB

+E {mlnE [Q( WA(x):b)‘Q]

beB

> F mmE[QW oz ,m“(x),b)—e\Q] ‘@] — 26V

beB

= E V?T'A,ﬂ'B (l‘)‘@] — € — 25Vmax - V;A (CU) — € — 25Vmax;

where the first step follows by our choice®t and7?, and the next to last step follows from
the fact that no policy can outperform the best-responsieyeal®. We now show that the
sequence of value functions is approximately increasitagtisg with the preliminary obser-
vation that, whenQ(z, -,-) — Q4 ,5(z,-,-)| < € (i.e., the event occurs), we have, for any
r e X, a€hA andb € B,
E[R(z,a,0) +vVi(f(z,a,b))] E[R(z,a,0) + V74 (f (2, a,0)) — (€ + 26Vinax)]
Qra z5(x,a,0) — y(€ 4+ 26Vimax)
Q(z,a,b) — e — y(e + 20Viax)-
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Vi(x) — (14 ) (€ + 20Vimax), by the definitions oi/() andV;.



Using this fact, Propositions 1 and 2 imply that for &ll> 1, Vi > Vg — %11 + ) (e +
20Vimax)e. Also, as shown abové; > V*, — (e + 20Vi,ax)e. Then, by Proposition 5,

Vie = lim Vi > Vi s — (€+20Vina)e (Zv (1 +7)(6+25Vmax)>

K—o0

2(€ + 20Vinax) .

> Vi S

We now turn to bounding the loss in the sup norm with thesestdﬂttv1 TV?,. Then, we
haveVy(z) = NashVal(Q ,5(,-,-)). Now, when|Q(z,-,") — Q a WB( ')|oo < e(ie.,
the event® occurs), we havéNashVal(Q(z, -, -)) — Nash\/al(@r a5, -))| < €. Thus,

Vi(z) — V/(z)] = |E NashVal(Q (x,,))—T%whvaHQﬂaﬂ%xf,)ﬂ
< FE|NashVal(Q(z,-,-)) — NashVal(Q, .5 (x, ))|
= E [|NashVal(Q(z,-,-)) — NashVal(Q,a .5 (z, -, - H@
+E [| NashVal(Q(z, -, ")) — NaﬁW%KQW7@ - H@ﬂ 1
< e+ 20Vax

But then,V*(z) > V2, (x) > Vi () — W ) > () — AE20ne) This holds for all

r € X. Now, when combined with Proposition 8 and the fact thiat= 7'V*,, this gives

2(€ + 20Vinax) i

(e + 20 Vi
et 20Vma) ey i

(I—7) B

IV. PoLicy ROLLOUT FOR MARKOV GAMES

|V*_VfrsA|oo < |V*_V1,|oo+

A. The Algorithm

Policy rollout is a recently developed technique used fdicgamprovement in MDPs [4].
The technique starts with a base policy, and uses samplidgtésmine the&)-function of that
policy. It then uses thig)-function for one-step look-ahead to choose optimal astiohhe
policy resulting from this technique is shown in [4] to be norge than the base policy for a
wide class of MDPs.

In this section, we extend the policy rollout technique toozeum, discounted Markov
games with bounded rewards. As we have two players, we usé#s®e policies, one for
each player. Using these two policies, and a model for thekMagame, we estimate the
Q-function for the pair of policies, and then we use tgQigunction for one-step look-ahead,
solving the matrix game defined by thefunction in the current state. Figure 1 displays the
rollout algorithm for Markov games in detail. In this figurthe functionnextState(x, a, b)
returns a random state as specified by the transition laweoMéarkov game, when action
is used byA and actiorb is used byB in stater. The stochastic algorithm takes two policies
(4, 7B), an integerV specifying the number of sample paths to be used, a finitz tr#i
and the current stateas inputs, and outputs an actiore A for playerA. Thus, the algorithm
generates a mixed policy* for A. As we will prove shortly, under certain conditions, the
policy 74 is better than the policy. All the results in this section are stated and proven,
without loss of generality, for playet.

In the main result of this section, we bound the state-wissg ilw performance due to rollout,
and establish overall improvement in the sup norm due toublvith appropriate choice of

B N, andH.



Function:rollout(n, 7%, N, H, 1)
input: policyr* for A, policy 7? for B, number of sampled, horizonH, stater
output: actiorn € A
1. For each paifa,b),a € Ajb € B,andi=1..., N, let
q;(a, b) R(z,a,b) + vestVal(r?, 78 H, nextState(z, a, b))
2. Letg(a,b) = &> ,_ 1ql(a b)
3. Return a random actian € A according to distributioiNash 4(g(-, -))

Function:estVal(74, 78, H, )

input: policyr4 for A, policy 7% for B, horizonH, stater
output: a sampled estimate Bf4 .5 ()

1. If H=0,return0

2. Choose according tqu™ (z), andb according tqu™” (z)

3. ReturnR(z, a, b) + yestVal(r?, 78 H—1, nextState(z, a, b))

Fig. 1. The rollout algorithm

B. A Policy Improvement Result

In this section we prove that, when called with appropriaemeters, the policy obtained
using the algorithm in Figure 1 is an improvement over theslyadicy. Note that the rollout
algorithm uses sampling to generate a stochastic estig(atg of Q.4 .5 (z,-,-)—denote
this estimatey, (-, ). By combining independent estimatgs-, -), for each state, we get a
random@-function@Q,,. Let F}, be the distribution fo,,. Then, the policyr* generated by
the rollout algorithm idookahead A (F},). Our analysis in this section relies on examining the
properties exhibited b§) ., and its distributionf .

Theorem 1 implies that i, is a sufficiently accurate approximation @f 4 ,s(-,-, ), for
7P € brB(7?), then7rA is no worse tham* in the sup norm. This can be seen by choosing

to be(1 —7)?|V* — Vi |w/4 andd to be(1 — 7)?|V* — V5, |w/(8Vimax) in Theorem 1, to get
Ve - Vﬁ—A|OO < 7|V* = Vialoo + % = (wzrl) V' = Vil < V7

This inequality is strict, giving a strict contraction, wieverr is not already a Nash policy,
so that|V* — V%, | is non-zera.

We now turn to giving sufficient conditions on the samplingibon H and the number of
samplesV to achieve the and¢ values just given, so that policy improvement is guaranteed
Let 74 be a non-Nash policy fad (so that\ V=V, \OO > 0). Let7? be a corresponding best-
response policy. Let* be the mixed policy resulting from usingllout(74, 72, N, H, z), at
every stater, for some integersy andH. Lete ando be chosen as above. Now, for any input
statez, and for eaclhy, (-, -) defined in Step 1 of the rollout algorithm (see Figure 1), weeha
|Qra (@, ) —Eq;(-,-)| . < 7" ™ Vinax < 7" Vinax. Also, from Proposition 9, it follows that
for the stochastic estimatg( ) defined above, we haJg, — Eq;| < ¢/2, for anyi, with
probability at least — e ¢*V/32Viax

We now choosé! so that\@r a5z, ) = Bg;(-,-)|, < 7" Vimax < €/2, and N so that
la,—Eq;| _ < €/2, with probability at least — &, by ensuring that=<*/32Viex < 5. With H >
log(€/2Vinax)/(logy) andN > —32V;2_ (logd)/e*, we then havéQ 4 .5 (z, -, ) —q, (-, )]s <
e with probability at leastt — 6. This holds for every state € X. Noting that the random
Q-function@,, is defined byg, at each state, independently, we then have ti@}, satisfies
|Qra o5 (2,5 ) — Quo(,+, )| < € With probability at least — 4.

%|n addition to this guarantee on the change in the sup-nohagiem 1 also provides a bound on the state-wise loss for any
choice ofe andd.



Theorem 1 then implies that* (i.e., lookaheadA(F,,)) is better thanr* in the sup norm.
Note that the values of the parametéfsand H that guarantee this improvement are indepen-
dent of the state-space size—it is important that the imgmnt guarantee is on timeean
performance of a sampling-based mixed policy, and that anyqoilar execution of this policy
could be arbitrarily batl We have now proven the following theorem.

Theorem 2.Let 4 be any non-Nash policy fot, andr? be a corresponding best-response
policy. Then there exisiV and H such that the mixed policy resulting from the rollout algo-
rithm using these parameters is better thdnin the sup norm. Moreover, the parametafs
andH are independent of the size of the state sppage,

V. SPARSE SAMPLING FOR MARKOV GAMES
A. The Sparse Sampling Algorithm

Kearns et al. present a sparse-sampling technique for Magkmes and prove that the
technigue computes a near-optimal policy using an amoustofpling independent of the
state-space size. We note, though, that the amount of sagmelquired is exponential in the
desired “accuracy”, so that the policy rollout techniquetttd previous section is generally
more practically useful.

Here, we show that the state-space independent near-dipgisteown by Kearns et al. for
this algorithm is also a direct consequence of our main #graofTheorem 1), providing a
distinct proof of their result. We start by presenting thgoaithm carefully, for completeness.

The sparse-sampling algorithm for Markov games is stréoghvird, and is shown in Fig-
ure 2. Again the functiomextState(x, a,b) is used to sample a next state when actios
used byA and actionb is used byB in statex. Given the sampling widthiv (the number
of samples at each level), sampling depih and the current state, the algorithm builds
a sampling tree to estimatg*(z, -, -), the optimal@-function in the current state, and then
solves the resulting matrix game to generate a random aitiibe taken in state. Let Q.
be a randon)-function constructed by combining such independent egémofQ*(z, -, -)
in all statese (such estimates are obtained by calling the functien)” in each state), and
let Fis denote its distribution. Then the policy generatedsBlyctAction can be written as
74 = lookahead A (F). We will show that, with the proper choice &f and H, the stochas-
tic Q-function Q, approximates)* with arbitrary precision. Then near-optimality ®f (the
policy generated by the algorithm) follows from Theorem 1.

B. Proof of Near-optimality

Now we will prove that algorithm presented in Figure 2 indeechputes a near-Nash policy.
Our development is very similar to that of Kearns et al. for RHJ8]. Also, we deviate from
their line of argument by using Theorem 1, which we provedentt®n Ill—we were unable
to use the MDP techniques in [8] to prove our result for Margames here.

Referring to Figure 2, defin@" (z, -,-) = estQ"(h, N, x). Then, for allh > 0, a € A, and
beB Q°z,a,b) =0,andQ"(z,a,b) = R(z,a,b) + L > e, () NashVal(Q"~!(z")).

Following Kearns et al. [8], given some > 0, defineay = Vi and oy, recursively as
apr1 = 7(A + «y). Then we can bound with

ag = <Zfi1 ”)/Z)\) + ’YHVmaX < ﬁ + f)/HVm&X.
Analogous to Lemma 4 in Kearns et al. [8], we have the follgyiasult. We replicate and

adapt their proof here, for completeness. ‘ ‘
Lemma 1.With probability at least — 4(|A||B|N + 1)"e=**N/®Viux) we have that

|Q*(x7a7 b) - Qh(l',a, b)| S ah-

3 A Chernoff-bound analysis can be used to give confidenceviaiteon the performance of single executions, of course.



Function:selectAction (N, H, )

input: sampling widthV, sampling depttH, current state:

output: actiomn

1. Return a random actian € A according tdNash 4 (estQ"(H, N, x))

Function:estQ"(H, N, z)
input: depthH, width N, stater
output: estimated)-function matrix@(a;, -, -) for statex
1. If H = 0, return zero matrix
2. For each paifa,b), « € A, b € B, let S, ,(x) be a multiset ofV next-state samples drawn
usingnextState(z, a, b)
3. For each paifa,b), a € Ajb € B, let
Q(z,a,b) = R(x,a,b) + N 2oweS, o) NashVal(estQ"(H—1, N, z'))

4. returnQ(z, -, )

Fig. 2. The sparse-sampling algorithm for Markov games

Proof. The argument is similar to that of Lemma 4 in [8], and is présein [18]. [ |

Recall that the stochast@-function Q, was constructed by combining independent esti-
mates of@Q* in each state. The estimate @f generated by the sparse-sampling algorithm in
statez is given byQ" (z, -, -). Hence, from Lemma 1 it is clear that for any statave have
1Q*(x,-,-) — Qu(x, -, )| < o with probability at least — 4(|A|[B|N + 1)% e~ N/ (8Viax),
Recall that we denote the distribution@f by F;.

But then, Theorem 1 implies that, given> 0, if Fy is a sufficiently accurate approximation
of Q*, then the policyr?: = lookaheadA (Fy) has a security level withig, of the Nash value
of the game. To see this, choas® be (1 — v)ep/4, 6 to be(1 — 7)eo/(8Vimax), andr* to be
some Nash policy for playet. Then, from Theorem 1, we have

2(€ + 20Vinax)
— LV .
oa(@) + 1= < Ws/é(x)—l—eo

With this background, we now move onto giving sufficient citiods on the sampling width
N and the sampling horizoH to guarantee that,, as described above approximafgswith
any given accuracy. Givefy > 0, lete andd be chosen as above. Choosand H such that
0 <A< (1—1)e/2andlog(e/2Vimax)/logy < H. Then, for any state, we have

|Q*(.T, K ) - st(x7 K )|OO

A
ol < ——}—*yHVmaX
L -7

<
< (e/2) +(e/2) = ¢

with probability at least —4(|A|[B| N +1) =" N/(8Viaax) . Now, as the expressiolt|A||[B| N +
1)H =2 N/(8Viax) goes to zero ad’ goes to infinity, there exists finitd such that, fo com-
puted as above, — 4(|A||B|N + 1)7e *N/(Viw) > 1 — §. Such a value of the sampling
width N along with the horizon length off described above ensures that the security level
of the resulting policy is withirg, of the Nash value of the game. Note that the values of the
parametersv andH that guarantee,-optimality are independent of the size of the state space.
Thus, we have proven the following Theorem.

Theorem 3.Given e > 0, there existN and H such that the policyi* generated by
selectAction(N, H, v, G, -) satisfies|V* — V7, | < e. Moreover, the values o and H
do not depend on the size of the state sp&e,



VI. CONCLUSIONS

We presented a key approximation result for discounted Magames with bounded re-
wards. This result establishes a bound on the state-wis¢has could be incurred from using
approximate)-functions for look-ahead. Our development of this resuithiore general than
similar pre-existing results, and is applicable to statecsp with countable cardinality. Using
this key approximation result, we discussed two sampliogrigues for Markov games. The
first technique—policy rollout—is our extension of the pglrollout technique for MDPs. We
proved that under appropriate conditions, the policy gatieer by the extended policy rollout
technique is closer to the Nash equilibrium than the baseypwl the sup norm. We also put
bound on the state-wise loss that could be incurred becduseng approximaté)-function.
The second technique is the sparse sampling techniquenpeddey Kearns et al. [16]. We
provided an alternate proof, using our new theorem, of K&aasult that, when used with ap-
propriate parameters, this technique produces a polityshbose to the Nash equilibrium with
desired accuracy. For both of the techniques, the amouaigpbng required to guarantee the
results presented in this paper is independent of the spatee size.
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