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Abstract

In this paper, we first present a key approximation result forzero-sum, discounted Markov games, providing
bounds on the state-wise loss and the loss in the sup norm resulting from using approximateQ-functions. Then
we extend the policy rollout technique for MDPs to Markov games. Using our key approximation result, we prove
that, under certain conditions, the rollout technique gives rise to a policy that is closer to the Nash equilibrium
than the base policy. We also use our key result to provide an alternative analysis of a second sampling approach
to Markov games known as sparse sampling. Our analysis implies the (already known) result that, under certain
conditions, the policy generated by the sparse-sampling algorithm is close to the Nash equilibrium. We prove that
the amount of sampling that guarantees these results is independent of the state-space–size of the Markov game.

I. INTRODUCTION

Previous work on Markov Decision Processes (MDPs) has provided many algorithms, such
as value iteration and policy iteration, for finding (approximately) optimal policies for MDPs
[1], and extensions of these algorithms for large state spaces [2], [3], [4], [5], [6], [7], [8].

Markov games are a natural multi-controller extension of MDPs for which the notion of
a Nash equilibrium [9], where each player’s policy is a “bestresponse” to the other players’
policies, is a widely accepted notion of optimality.

Patek and Bertsekas have established the convergence of value iteration and policy iteration
for stochastic shortest-path games [10]. These algorithmsrequire time at least polynomial in
the state-space cardinality, and hence are impractical forMarkov games with large state spaces.
Previous online algorithms from the reinforcement-learning community are also impractical in
large state spaces [11], [12], [13], [14].

Large state space MDP approaches include structure exploitation, value-function approxima-
tion, and sampling methods. Here, we focus on sampling algorithms, but for Markov games.
The sampling algorithms we consider involve drawing randomsamples to estimate, for each
possible initial action pair, the value of taking that initial action pair, and then either acting
optimally, or following some given policy pair. We call thisact “estimating theQ-function”
(for the policy pair, if any). The resultingQ-function estimate defines a matrix game for the
current state, and a current action is then chosen (possiblystochastically) by finding a (possibly
mixed) Nash equilibrium for this game.

Our aim is to evaluate the policies that are formed using this“Nash look-ahead” technique.
We present a key approximation result for discounted zero-sum games that provides bounds on
the loss of the Nash look-ahead policy constructed using a sampledQ-function estimation. A
similar result was given by Singh and Yee [15] for MDPs, usinga different technique, but, as
we will elaborate later, our result is more general, even as applied to MDPs, and can be used to
infer a variant of the Singh and Yee result.

We then present two particular sampling algorithms. The first algorithm is an extension of
the policy-rollout algorithm developed by Bertsekas and Castanon [4]. This algorithm starts
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with a pair of base policies, and produces a new policy by rolling out the base-policy pair.
Using our approximation result, we establish that, under certain conditions, with finitely many
finite-horizon samples, the new policy is closer to the Nash-optimal policy than the original
policy. The number of samples required is independent of state-space size—even the MDP
specialization of this result is new.

The second algorithm we present is the sparse-sampling Mrkov-game algorithm presented
by Kearns et al. [16]. Kearns et al. proved that one can perform an amount of sampling that is
independent of the size of the state space to obtain a near-Nash stochastic policy for a Markov
game. We provide an alternate analysis of this result, leaveraging our main approximation
theorem again.

II. DEFINITIONS, NOTATION, AND TECHNICAL BACKGROUND

In the rest of the paper, we use�(S) to denote the probability measures over the aS. We
use bold-face fonts to indicate random variables. For real functionsf andg on domainD , we
write f � g to indicate thatf(x) � g(x) for everyx in D . We writejf j1 for supx2D jf(x)j.

A zero-sum, discounted Markov game between playersA andB with a discount factor
 is a
tuplehX; A ; B ;T; R; x0i, whereX is the (countable) state space,A (B ) is the finite action space
for playerA (B), T : X� A � B ! �(X) is the transition function,R : X� A � B ! R is the
reward function, andx0 2 X is the initial state. The aim ofA (B) is to maximize (minimize)
the 
-discounted cumulative reward. Letf(x; a; b) be a random state resulting from taking
action pairha; bi in statex, as specified byT.

An A-policy �A for playerA is a sequence of maps��Ai : X ! �(A ), i � 0, specifying
the probability distribution with which actions are chosenby A at timei. If ��Ai = ��A0 for
all i, then the policy is said to be stationary. We similarly defineB-policies. Given map�A : X ! �(A ), we use the bold-face notation�A(x) to denote a random variable that has
distribution�A(x). Given a policy� for either player, we use the notation��k to denote thek’th
member of the sequence�. When the policy� is stationary, we will omit the subscriptk.

Given a pair of policiesh�A; �Bi and statex, we define the value functionV�A;�B(x) as
expected value of the reward sum

P1k=0 
kR(xk;��Ak (xk);��Bk (xk)), wherex0 = x, andxk+1 = f(xk;��Ak (xk);��Bk (xk)). The space of value functionsV : X ! R is denoted byV.
Given anA-policy �A, a corresponding best-response policy forB is defined as aB-policy�B that minimizes valueV�A;�B(x) of the game in each statex, given thatA plays policy�A. We denote the set of all the best-response policies forB by brB(�A). Similarly, we definebrA(�B). A pair of policiesh�A; �Bi is said to constitute a Nash equilibrium, if�B 2 brB(�A)

and�A 2 brA(�B), in which case we writeV � for V�A;�B . We call such policiesNash policies
for the respective players.

For anyA-policy �A (or B-policy �B), we define the security levelV s�A (or V s�B ) as the
minimum over all~�B of V�A;~�B(x) (or max~�A V~�A;�B(x), respectively). We compare policies
via security levels, so thatA-policy ~�A is better thanA-policy �A in statex, if V s~�A(x) �V s�A(x), and is state-wise better ifV s~�A � V s�A. We say that policy~�A is better than policy�A
in the sup norm if

��V � � V s~�A��1 � ��V � � V s�A��1.
ForV : X ! R, and policiesh�A; �Bi, defineT , T��Ak ;��Bk , andT k�A;�B .(TV )(x) = maxz2�(A ) minb2B E [R(x; z; b) + 
V (f(x; z; b))℄ :(T��Ak ;��Bk V )(x) = E hR(x;��Ak (x);��Bk (x)) + 
V (f(x;��Ak (x);��Bk (x)))i ; so that(T 0�A;�BV )(x) = V (x); and (T k�A;�BV )(x) = (T k�1�A;�B(T��Ak ;��Bk V ))(x):

For a stationary policy pairh�A; �Bi, we will use the short-hand notationT�A;�B 4= T 1�A;�B .



TheQ-functionQ�A�B : X � A � B ! R for a pair of stationary policiesh�A; �Bi, is defined
asQ�A;�B(x; a; b) = E �R(x; a; b) + 
V�A;�B(f(x; a; b))�, and we writeQ for the space of
functionsQ : X�A �B ! R. Also, for Nashh�A; �Bi, we denoteQ�A;�B(�; �; �) byQ�(�; �; �).
We call a random variable that takes values inQ astochasticQ-function.

LetNash(M(�; �)) be an operator that for any matrixM(�; �) 2 RjA j�jB j computes a probabil-
ity distribution pairh�A; �Bi that achieves a Nash equilibrium for the zero-sum matrix game
[9] described byM(�; �). The operatorNashVal(M(�; �)) returns the value of the game when
theNash(M(�; �)) distributions are used by the players to play the matrix gameM(�; �). Nash
andNashVal can be computed in time polynomial in their argument sizes. LetNashA(M) andNashB(M) compute probability distributions used by the respective players at an equilibrium.

Throughout this paper, we assume that the reward function isbounded, i.e.,jR(x; a; b)j �Rmax for someRmax 2 R and allx 2 X, a 2 A , andb 2 B . The value function for anyh�A; �Bi satisfies, at anyx 2 X, jV�A;�B(x)j � Vmax 4= Rmax=(1� 
). We also writee for the
value function whose value is 1 for every state.

We prove the following technical background propositions in the full paper, following anal-
ogous proofs for MDPs by others [1], [17]. Here,V (�) andV 0(�) are arbitrary value functions,
andh�A; �Bi is an arbitrary policy pair.

Proposition 1.SupposeV (x) � V 0(x) for all x 2 X. We then have(T kV )(x) � (T kV 0)(x)
for all x 2 X. Also, we have(T k�A;�BV )(x) � (T k�A;�BV 0)(x), for all x 2 X.

Proposition 2.For anyr 2 R, ande the unit value function defined above,(TK(V + re))(x) = (TKV )(x) + 
Kr; and(TK�A;�B(V + re))(x) = (TK�A;�BV )(x) + 
Kr:
Proposition 3.sup�A inf�B(TK�A;�BV )(x) = (TKV )(x):
Proposition 4.(Value iteration converges)limN!1(TNV )(x0) = V �(x0):
Proposition 5.limN!1(TN�A;�BV )(x0) = V�A;�B(x0):
Proposition 6.For stationary�A and�B, V�A;�B = T�A;�BV�A;�B :
Proposition 7.The Nash value of the game satisfies Bellman’s equation,V � = TV �.
Proposition 8.SupposeV and V 0 are bounded. For allk 2 N , we then have thatmaxx2X ��(T kV )(x)� (T kV 0)(x)�� � 
kmaxx2X jV (x)� V 0(x)j :
Proposition 9.Let X1; : : : ;XN be i.i.d. random variables satisfyingjX ij � Xmax andEX i = �. Then,P h��� 1N PNi=1X i � ���� � �i � 1� 4e��2N=8X2max :

III. A N APPROXIMATION RESULT FORMARKOV GAMES

A. The Concept of Look-ahead

Policy selection in MDP problems typically critically involves a process of one-step look-
ahead relative to a given (possibly estimated) value function, followed by a maximization to
select the best action. This process selects the action thatwill perform the best if future value
is given by the specified value function.

The corresponding process in Markov games is more complicated. One step look-ahead can
integrate the system dynamics to convert a given value function into aQ-function; however,
maximization is insufficient for action selection, as the opponent action is unknown. Our ap-
proach to analyzing Markov games leverages the idea that theQ function defines a matrix game
in the current state. This matrix game can be solved to get an “equilibrium action distribution”
analogous to the maximal-valued action in the MDP case (e.g., see [10]). Here, we are con-
cerned with evaluating the effect of sampling error on the resulting policy improvement—we
have a stochasticQ-function rather than aQ-function. Analysis of the effects of sampling is
critical for large state-space games, where exact policy improvement and/or policy iteration
simply cannot be carried out in practice.



We now formally define the important concept of one-step look-ahead for Markov games
in the presence of sampling; this look-ahead function converts a given distributionF overQ-functions (typically, from a sampling algorithm) into a distribution over actions. Given a
distributionF overQ , theone-step look-ahead policylookaheadA(F ) for A is the policy that
chooses actions in statex according to the probability distributionE NashA(Q(x; �; �)), whereQ is aQ -valued random variable with distributionF .

The stochastically described matrixQ(x; �; �) can be viewed as a matrix-game encapsulation
of the expected future following each available action pair, and thelookaheadA(F ) policy
chooses its actions by solving this game. Now suppose that wehave an algorithm that takes as
an input the current statex, and outputs a random matrixM 2 RjA j�jB j distributed as specified
by F in statex. Then the policy~�A (and~�B) can be generated as follows. At every decision
epoch, observe the current statex and generate a random matrixM using the given algorithm,
and compute the distributionNashA(M), and choose an actiona according this distribution.
The sampling algorithms we consider use this technique for generating policies.

B. The Main Theorem

Our main theorem provides bounds on the state-wise loss suffered when following a pol-
icy selected by Nash look-ahead using sampledQ-functions. When the sampledQ-functions
are generated from a particular base policy pair (rather than by estimating the optimal value
directly), as in policy rollout, the theorem also gives bounds on the change in loss in the sup
norm, relative to that base policy pair. Our result for discounted Markov games is more general
than the MDP result proven by Singh and Yee [15] in four aspects:
1. We extend their MDP result to Markov games.
2. We relax their finite–state-space restriction to allow countable state-spaces1.
3. Our result applies to approximatingQ-functions of arbitrary policies, not justQ�.
4. Their proof does not support any bound on the sup-norm lossof the look-ahead policy.

Because of aspects 3 and 4, we use a different proof method, bynon-trivially extending the
techniques of [10] to include bounds on the effects ofQ-function approximation.

Theorem 1.Let �A be a stationary policy forA, and let�B be a best-response policy for�A. Let F be aQ-function distribution such that anyQ distributed according toF satisfies��Q�A;�B(x; �; �)�Q(x; �; �)��1 < �, for anyx 2 X, with probability at least1 � Æ, and is a.s.
bounded byVmax, i.e.,P [jQj1 � Vmax℄ = 1. Let ~�A = lookaheadA(F ). Then
1. V s�A(x) is bounded above byV s~�A(x) + 2(�+ 2ÆVmax)=(1� 
) for all x 2 X, and
2. jV � � V s~�Aj1 is bounded above by
(jV � � V s�Aj1) + 2(�+ 2ÆVmax)=(1� 
).

Proof. Let ~�B 2 brB(~�A) be a stationary best-response policy to~�A. Let us denote byQ a
stochasticQ-function having distributionF . We wish to compare the security level of�A, i.e.,V�A;�B , with the security level achieved by~�A, i.e.,V~�A;~�B , and show that the latter approxi-
mately dominates the former. To do so, we define an “approximately” increasing sequence of
“approximately” intermediate value functions, starting with the expected value of the “look-
ahead game” described by theQ(x; �; �) matrix, and ending at the security level of~�A. LetV1(x) beE NashVal(Q(x; �; �)) andVK+1 beT~�A;~�BVK.

This sequence necessarily converges to the security level of ~�A—it remains to show that the
sequence is approximately increasing, and thatV1 approximately dominates the security level
of �A, analyzing how the approximation bounds sum over the sequence. We start with latter.1We believe that, with suitable regularity assumptions, this result extends immediately to continuous state spaces, but we do
not explore that claim further here.



Let us denote the eventjQ(x; �; �)� Q�A;�B(x; �; �)j1 < � by E. Then, by our choice ofF ,
we haveP [E℄ > 1� Æ. Also, we denote the complement event byE
. Thus,P [E
℄ < Æ. Now,V1(x) = E NashVal(Q(x; �; �)) = E � max�A2�(A ) minb2B E �Q(x;�A; b)��Q��� E �minb2B E hQ(x;��A(x); b)��Qi ���E�P [E℄+ E �minb2B E hQ(x;��A(x); b)��Qi ���E
�P [E
℄� E �minb2B E hQ(x;��A(x); b)��Qi ���E� (1� P [E
℄)� P [E
℄Vmax� E �minb2B E hQ�A;�B(x;��A(x); b)� ���Qi ���E�� 2ÆVmax= E hV�A;�B(x)���Ei� �� 2ÆVmax = V s�A(x)� �� 2ÆVmax;
where the first step follows by our choice of~�A and~�B, and the next to last step follows from
the fact that no policy can outperform the best-response policy �B. We now show that the
sequence of value functions is approximately increasing, starting with the preliminary obser-
vation that, whenjQ(x; �; �)� Q�A;�B(x; �; �)j < � (i.e., the eventE occurs), we have, for anyx 2 X, a 2 A , andb 2 B ,E [R(x; a; b) + 
V1(f(x; a; b))℄ � E [R(x; a; b) + 
V s�A(f(x; a; b))� 
(� + 2ÆVmax)℄= Q�A;�B(x; a; b)� 
(� + 2ÆVmax)� Q(x; a; b)� �� 
(� + 2ÆVmax):
Now, writing �(Q; x) for NashA(Q(x; �; �)), and noting that�~�A(x) isE NashA(Q(x; �; �)),V2(x) = (T~�A;~�BV1)(x) = E hR(x;�~�A(x);�~�B(x)) + 
V1(f(x;�~�A(x);�~�B(x)))i= E hE hR(x;�(Q; x);�~�B(x)) + 
V1(f(x;�(Q; x);�~�B(x)))��Qii= E hE hR(x;�(Q; x);�~�B(x)) + 
V1(f(x;�(Q; x);�~�B(x)))��Qi ���EiP [E℄+ E hE hR(x;�(Q; x);�~�B(x)) + 
V1(f(x;�(Q; x);�~�B(x)))��Qi ���E
iP [E
℄� E hE hR(x;�(Q; x);�~�B(x)) + 
V1(f(x;�(Q; x);�~�B(x)))��Qi ���EiP [E℄� P [E
℄Vmax� E hE hQ(x;�(Q; x);�~�B(x))��Qi ���EiP [E℄� �� 
(� + 2ÆVmax)� P [E
℄Vmax� E hE hQ(x;�(Q; x);�~�B(x))��Qii� �� 
(�+ 2ÆVmax)� 2P [E
℄Vmax� E �min�B E �Q(x;�(Q; x);�B(x))��Q��� �� 
(�+ 2ÆVmax)� 2ÆVmax= V1(x)� (1 + 
)(�+ 2ÆVmax); by the definitions of�() andV1:



Using this fact, Propositions 1 and 2 imply that for allK � 1, VK+1 � VK � 
k�1(1 + 
)(�+2ÆVmax)e. Also, as shown above,V1 � V s�A � (�+ 2ÆVmax)e. Then, by Proposition 5,V s~�A = limK!1VK � V s�A;�B � (�+ 2ÆVmax)e� 1Xk=0 
k(1 + 
)(�+ 2ÆVmax)! e� V s�A � 2(�+ 2ÆVmax)1� 
 e:
We now turn to bounding the loss in the sup norm with these tools. LetV 01 = TV s�A. Then, we
haveV 01(x) = NashVal(Q�A;�B(x; �; �)). Now, whenjQ(x; �; �) � Q�A;�B(x; �; �)j1 < � (i.e.,
the eventE occurs), we havejNashVal(Q(x; �; �))� NashVal(Q�A;�B(x; �; �))j < �. Thus,jV1(x)� V 01(x)j = jE NashVal(Q(x; �; �))� NashVal(Q�A;�B(x; �; �))j� EjNashVal(Q(x; �; �))� NashVal(Q�A;�B(x; �; �))j= E �jNashVal(Q(x; �; �))� NashVal(Q�A;�B(x; �; �))j��E�P [E℄+E �jNashVal(Q(x; �; �))� NashVal(Q�A;�B(x; �; �))j��E
�P [E
℄� � + 2ÆVmax:
But then,V �(x) � V s~�A(x) � V1(x)� (1+
)(�+2ÆVmax)1�
 � V 01(x)� 2(�+2ÆVmax)1�
 . This holds for allx 2 X. Now, when combined with Proposition 8 and the fact thatV 01 = TV s�A, this givesjV � � V s~�Aj1 � jV � � V 01 j1 + 2(�+ 2ÆVmax)(1� 
) � 
jV � � V s�Aj1 + 2(�+ 2ÆVmax)(1� 
) :

IV. POLICY ROLLOUT FOR MARKOV GAMES

A. The Algorithm

Policy rollout is a recently developed technique used for policy improvement in MDPs [4].
The technique starts with a base policy, and uses sampling todetermine theQ-function of that
policy. It then uses thisQ-function for one-step look-ahead to choose optimal actions. The
policy resulting from this technique is shown in [4] to be no worse than the base policy for a
wide class of MDPs.

In this section, we extend the policy rollout technique to zero-sum, discounted Markov
games with bounded rewards. As we have two players, we use twobase policies, one for
each player. Using these two policies, and a model for the Markov game, we estimate theQ-function for the pair of policies, and then we use thisQ-function for one-step look-ahead,
solving the matrix game defined by theQ-function in the current state. Figure 1 displays the
rollout algorithm for Markov games in detail. In this figure,the functionnextState(x; a; b)
returns a random state as specified by the transition law of the Markov game, when actiona
is used byA and actionb is used byB in statex. The stochastic algorithm takes two policiesh�A; �Bi, an integerN specifying the number of sample paths to be used, a finite horizonH,
and the current statex as inputs, and outputs an actiona 2 A for playerA. Thus, the algorithm
generates a mixed policy~�A for A. As we will prove shortly, under certain conditions, the
policy ~�A is better than the policy�A. All the results in this section are stated and proven,
without loss of generality, for playerA.

In the main result of this section, we bound the state-wise loss in performance due to rollout,
and establish overall improvement in the sup norm due to rollout with appropriate choice of�B, N , andH.



Function:rollout(�A; �B; N;H; x)
input: policy�A for A, policy�B for B, number of samplesN , horizonH, statex
output: actiona 2 A
1. For each pairha; bi, a 2 A ; b 2 B , andi = 1 : : : ; N , letqi(a; b) = R(x; a; b) + 
 estVal(�A; �B; H; nextState(x; a; b))
2. Letq(a; b) = 1N Pi=1 qi(a; b)
3. Return a random actiona 2 A according to distributionNashA(q(�; �))
Function:estVal(�A; �B; H; x)
input: policy�A for A, policy�B for B, horizonH, statex
output: a sampled estimate ofV�A;�B(x)
1. If H = 0, return 0
2. Choosea according to��A(x), andb according to��B(x)
3. ReturnR(x; a; b) + 
 estVal(�A; �B; H�1; nextState(x; a; b))

Fig. 1. The rollout algorithm

B. A Policy Improvement Result

In this section we prove that, when called with appropriate parameters, the policy obtained
using the algorithm in Figure 1 is an improvement over the base policy. Note that the rollout
algorithm uses sampling to generate a stochastic estimateq(�; �) of Q�A;�B(x; �; �)—denote
this estimateqx(�; �). By combining independent estimatesqx(�; �), for each statex, we get a
randomQ-functionQro. LetFro be the distribution forQro. Then, the policy~�A generated by
the rollout algorithm islookaheadA(Fro). Our analysis in this section relies on examining the
properties exhibited byQro and its distributionFro.

Theorem 1 implies that ifFro is a sufficiently accurate approximation ofQ�A;�B(�; �; �), for�B 2 brB(�A), then~�A is no worse than�A in the sup norm. This can be seen by choosing�
to be(1� 
)2��V � � V s�Aj1=4 andÆ to be(1� 
)2��V � � V s�Aj1=(8Vmax) in Theorem 1, to getjV � � V s~�Aj1 � 
 jV � � V s�Aj1 + 2(�+2ÆVmax)(1�
) = �
+12 � jV � � V s�Aj1 � jV � � V s�Aj1:
This inequality is strict, giving a strict contraction, whenever�A is not already a Nash policy,
so thatjV � � V s�Aj1 is non-zero2.

We now turn to giving sufficient conditions on the sampling horizonH and the number of
samplesN to achieve the� andÆ values just given, so that policy improvement is guaranteed.
Let �A be a non-Nash policy forA (so that

��V ��V s�A��1 > 0). Let�B be a corresponding best-
response policy. Let~�A be the mixed policy resulting from usingrollout(�A; �B; N;H; x), at
every statex, for some integersN andH. Let � andÆ be chosen as above. Now, for any input
statex, and for eachqi(�; �) defined in Step 1 of the rollout algorithm (see Figure 1), we have��Q�A;�B(x; �; �)�Eqi(�; �)��1 � 
H+1Vmax < 
HVmax: Also, from Proposition 9, it follows that
for the stochastic estimateqx(�; �) defined above, we have

��qx � Eqi��1 < �=2; for anyi, with

probability at least1� e��2N=32V 2max .
We now chooseH so that

��Q�A;�B(x; �; �) � Eqi(�; �)��1 < 
HVmax � �=2; andN so that��qx�Eqi��1 < �=2;with probability at least1�Æ, by ensuring thate��2N=32V 2max < Æ. WithH >log(�=2Vmax)=(log 
) andN > �32V 2max(log Æ)=�2;we then havejQ�A;�B(x; �; �)�qx(�; �)j1 <� with probability at least1 � Æ. This holds for every statex 2 X. Noting that the randomQ-functionQro is defined byqx at each statex, independently, we then have thatQro satisfiesjQ�A;�B(x; �; �)�Qro(x; �; �)j1 < � with probability at least1� Æ.2In addition to this guarantee on the change in the sup-norm, Theorem 1 also provides a bound on the state-wise loss for any
choice of� andÆ.



Theorem 1 then implies that~�A (i.e., lookaheadA(Fro)) is better than�A in the sup norm.
Note that the values of the parametersN andH that guarantee this improvement are indepen-
dent of the state-space size—it is important that the improvement guarantee is on themean
performance of a sampling-based mixed policy, and that any particular execution of this policy
could be arbitrarily bad3. We have now proven the following theorem.

Theorem 2.Let �A be any non-Nash policy forA, and�B be a corresponding best-response
policy. Then there existN andH such that the mixed policy resulting from the rollout algo-
rithm using these parameters is better than�A in the sup norm. Moreover, the parametersN
andH are independent of the size of the state space,jXj.

V. SPARSESAMPLING FOR MARKOV GAMES

A. The Sparse Sampling Algorithm

Kearns et al. present a sparse-sampling technique for Markov games and prove that the
technique computes a near-optimal policy using an amount ofsampling independent of the
state-space size. We note, though, that the amount of sampling required is exponential in the
desired “accuracy”, so that the policy rollout technique ofthe previous section is generally
more practically useful.

Here, we show that the state-space independent near-optimality shown by Kearns et al. for
this algorithm is also a direct consequence of our main theorem (Theorem 1), providing a
distinct proof of their result. We start by presenting the algorithm carefully, for completeness.

The sparse-sampling algorithm for Markov games is straightforward, and is shown in Fig-
ure 2. Again the functionnextState(x; a; b) is used to sample a next state when actiona is
used byA and actionb is used byB in statex. Given the sampling widthN (the number
of samples at each level), sampling depthH, and the current statex, the algorithm builds
a sampling tree to estimateQ�(x; �; �), the optimalQ-function in the current state, and then
solves the resulting matrix game to generate a random actionto be taken in statex. LetQss
be a randomQ-function constructed by combining such independent estimates ofQ�(x; �; �)
in all statesx (such estimates are obtained by calling the functionestQ* in each state), and
let Fss denote its distribution. Then the policy generated bysele
tA
tion can be written as~�A = lookaheadA(Fss). We will show that, with the proper choice ofN andH, the stochas-
tic Q-functionQss approximatesQ� with arbitrary precision. Then near-optimality of~�A (the
policy generated by the algorithm) follows from Theorem 1.

B. Proof of Near-optimality

Now we will prove that algorithm presented in Figure 2 indeedcomputes a near-Nash policy.
Our development is very similar to that of Kearns et al. for MDPs [8]. Also, we deviate from
their line of argument by using Theorem 1, which we proved in Section III—we were unable
to use the MDP techniques in [8] to prove our result for Markovgames here.

Referring to Figure 2, defineQh(x; �; �) = estQ*(h;N; x). Then, for allh > 0, a 2 A , andb 2 B , Q0(x; a; b) = 0, andQh(x; a; b) = R(x; a; b) + 
N Px02Sa;b(x) NashVal(Qh�1(x0)).
Following Kearns et al. [8], given some� > 0, define�0 = Vmax and�h recursively as�h+1 = 
(�+ �h): Then we can bound�H with�H = �PHi=1 
i��+ 
HVmax � �1�
 + 
HVmax:

Analogous to Lemma 4 in Kearns et al. [8], we have the following result. We replicate and
adapt their proof here, for completeness.

Lemma 1.With probability at least1� 4(jA jjB jN + 1)he��2N=(8V 2max) we have thatjQ�(x; a; b)�Qh(x; a; b)j � �h:3A Chernoff-bound analysis can be used to give confidence intervals on the performance of single executions, of course.



Function:sele
tA
tion(N;H; x)
input: sampling widthN , sampling depthH, current statex
output: actiona0
1. Return a random actiona 2 A according toNashA(estQ*(H;N; x))
Function:estQ*(H;N; x)
input: depthH, widthN , statex
output: estimatedQ-function matrixQ̂(x; �; �) for statex
1. If H = 0, return zero matrix
2. For each pairha; bi, a 2 A ; b 2 B , letSa;b(x) be a multiset ofN next-state samples drawn
usingnextState(x; a; b)
3. For each pairha; bi, a 2 A ; b 2 B , letQ̂(x; a; b) = R(x; a; b) + 
N Px02Sa;b(x)NashVal(estQ*(H�1; N; x0))
4. returnQ̂(x; �; �)

Fig. 2. The sparse-sampling algorithm for Markov games

Proof. The argument is similar to that of Lemma 4 in [8], and is presented in [18].
Recall that the stochasticQ-functionQss was constructed by combining independent esti-

mates ofQ� in each state. The estimate ofQ� generated by the sparse-sampling algorithm in
statex is given byQH(x; �; �). Hence, from Lemma 1 it is clear that for any statex, we havejQ�(x; �; �)�Qss(x; �; �)j1 � �H with probability at least1� 4(jA jjB jN + 1)He��2N=(8V 2max).
Recall that we denote the distribution ofQss byFss.

But then, Theorem 1 implies that, given�0 > 0, if Fss is a sufficiently accurate approximation
of Q�, then the policy�Ass = lookaheadA(Fss) has a security level within�0 of the Nash value
of the game. To see this, choose� to be(1� 
)�0=4, Æ to be(1� 
)�0=(8Vmax), and�A to be
some Nash policy for playerA. Then, from Theorem 1, we haveV � � V s�Ass(x) + 2(�+ 2ÆVmax)(1� 
) � V s�Ass(x) + �0:

With this background, we now move onto giving sufficient conditions on the sampling widthN and the sampling horizonH to guarantee thatFss as described above approximatesQ� with
any given accuracy. Given�0 > 0, let � andÆ be chosen as above. Choose� andH such that0 < � < (1� 
)�=2 andlog(�=2Vmax)= log 
 < H. Then, for any statex, we havejQ�(x; �; �)�Qss(x; �; �)j1 � �H � �1� 
 + 
HVmax� (�=2) + (�=2) = �
with probability at least1�4(jA jjB jN+1)H e��2N=(8V 2max). Now, as the expression4(jA jjB jN+1)He��2N=(8V 2max) goes to zero asN goes to infinity, there exists finiteN such that, forÆ com-
puted as above,1 � 4(jA jjB jN + 1)He��2N=(8V 2max) � 1 � Æ. Such a value of the sampling
width N along with the horizon length ofH described above ensures that the security level
of the resulting policy is within�0 of the Nash value of the game. Note that the values of the
parametersN andH that guarantee�0-optimality are independent of the size of the state space.
Thus, we have proven the following Theorem.

Theorem 3.Given � > 0, there existN and H such that the policy~�A generated bysele
tA
tion(N;H; 
;G; �) satisfiesjV � � V s~�Aj1 < �: Moreover, the values ofN andH
do not depend on the size of the state space,jXj.



VI. CONCLUSIONS

We presented a key approximation result for discounted Markov games with bounded re-
wards. This result establishes a bound on the state-wise loss that could be incurred from using
approximateQ-functions for look-ahead. Our development of this result is more general than
similar pre-existing results, and is applicable to state spaces with countable cardinality. Using
this key approximation result, we discussed two sampling techniques for Markov games. The
first technique—policy rollout—is our extension of the policy rollout technique for MDPs. We
proved that under appropriate conditions, the policy generated by the extended policy rollout
technique is closer to the Nash equilibrium than the base policy in the sup norm. We also put
bound on the state-wise loss that could be incurred because of using approximateQ-function.
The second technique is the sparse sampling technique presented by Kearns et al. [16]. We
provided an alternate proof, using our new theorem, of Kearns’ result that, when used with ap-
propriate parameters, this technique produces a policy that is close to the Nash equilibrium with
desired accuracy. For both of the techniques, the amount of sampling required to guarantee the
results presented in this paper is independent of the state-space size.
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