
FEATURE-DISCOVERING APPROXIMATE VALUE ITERATION METHODS

A Technical Report

Submitted to the ECE Department

of

Purdue University

by

Jia-Hong Wu and Robert Givan

School of Electrical and Computer Engineering

465 Northwestern Ave.

Purdue University

West Lafayette, IN 47907

November, 2004

- ii -

- iii -

TABLE OF CONTENTS

Page

LIST OF FIGURES : v

ABSTRACT : vii

1 Introduction : 1

2 Technical Background: 3

2.1 Markov Decision Processes: 3

2.2 Decision Tree Classification: 5

3 Feature Construction for MDPs: 7

4 Experiments : 9

5 Conclusions and Future Work: 13

6 Acknowledgement: 15

LIST OF REFERENCES : 17

- iv -

- v -

LIST OF FIGURES

Figure Page

4.1 Score (average number of lines erased in 2,000 games) plot for the learned
features and randomly generated features in8� 8 Tetris domain. For refer-
ence, the maximum score for the human-selected feature set from [2] was
91. : 11

4.2 Bellman error for SysAdmin domain (10 nodes).: : : : : : : : : : : : : 12

- vi -

- vii -

ABSTRACT

We study the problem of automatically selecting problem features to use in approxi-

mately representing value in Markov decision processes. Wepropose and evaluate a sim-

ple approach reducing the problem of selecting a new featureto standard classification

learning—we learn a classifier that predicts the sign of the Bellman error over a training

set of states. By iteratively adding new classifiers as features with this method, training be-

tween iterations with TD-learning, we find a Tetris feature set that outperforms randomly

constructed features significantly, and obtains a score of about one-third of the highest

score obtained by using a carefully hand-constructed feature set. We also show that features

learned with this method outperform those learned with the previous method of Patrascu et

al. [1] on the same SysAdmin domain used for evaluation there.

- viii -

- 1 -

1. Introduction

Decision-theoretic planning and reinforcement learning methods facing astronomically

large state spaces typically rely on approximately represented value functions (see, e.g., [2,

3]). Many such approximate representations rely on an appropriate set of problem features;

for example, by taking a weighted combination of the featurevalues as the value function

[4]. Human engineering of the problem features used has repeatedly proven critical to the

success of the resulting system, e.g. in [5].

Here, we study the problem of automatically selecting problem features for use in ap-

proximately representing value in Markov decision processes. We focus our initial work

on this problem on binary features, i.e., mappings from state to Boolean values. We view

each such feature as a set of states, those states where the feature is true.

We propose and evaluate a simple, greedy approach to finding new binary features for a

linear-combination value estimate. Our heuristic approach assumes an initial “base” value

estimate described by a linear approximation where the weights have already been tuned

to minimize Bellman error. We attempt to reduce the Bellman error magnitude of this

value estimate further by learning a new feature that is truein statespace regions of positive

statewise Bellman error and correspondingly false in regions of negative statewise Bellman

error, or vice versa. The learning problem generated is a standard supervised classification

problem, and for this work we address this problem using the decision-tree learner C4.5

[6].

One view of this approach is that we are conducting approximate value iteration with

an added mechanism for extending the available feature set.Given an initial feature set,

imaging a sufficient period of approximate value iteration (or any similar weight adjustment

method) to achieve convergence of the approximation to a value function~V . We can think

of the approximate value iteration process as “stuck”, in that it can represent~V but not the

- 2 -

Bellman update of~V . (Of course, this assumes that the updates being performed would find~V if they could represent it, which is only heuristically true.) We are then trying to induce

features to enable representation of the Bellman update of~V , so that the approximate value

iteration process can continue to reduce Bellman error, with the larger feature space.

If the learner succeeds in capturing features that describethe statespace regions of pos-

itive and negative Bellman error, we can guarantee that adding these features makes avail-

able weight assignments closer to the Bellman update of the base value estimate. Our

practical method retrains the weights including the new feature(s), using TD-learning, and

then repeats the process of selecting a new feature.

We have found surprisingly little previous work in this area. Patrascu et al. [1] give a

linear programming technique for selecting new features toreduce theL1 error of the ap-

proximation. Our technique works instead directly to reduce the Bellman error magnitude,

but relies on classification learning. We show below that ourtechnique empirically out-

performs this previous work on the planning domain used in their evaluation. Specifically,

we require fewer new features to achieve the same Bellman error, and can achieve a lower

overall Bellman error given enough features.

We also evaluate our technique in the computer-game domain of Tetris. Starting from

a constant value function based on only the uniformly true feature, our technique can add

features automatically to produce performance that is significantly better than a randomly

constructed feature set, and is at about one-third of the performance of a carefully hand-

constructed feature set.

In what follows, we first provide technical background on Markov decision processes

and value-function approximation, then describe our technique for inducing new features to

reduce approximation error, and finally present empirical results on two domains showing

improvement over the state of the art, before concluding.

- 3 -

2. Technical Background

2.1 Markov Decision Processes

We define here our terminology for Markov decision processes. For a more thorough

discussion of Markov decision processes, see [2] and [3]. A Markov decision process

(MDP)D is a tuple(S;A;R; T) where state spaceS is a finite set of states, action spaceA
is a finite set of actions,R : S�A�S ! R is the reward function, andT : S�A! P(S) is

the transition probability function that maps (state, action) pairs to probability distributions

overS. R(s1; a; s2) represents how much immediate reward is obtained by taking actiona
from states1 and ending up in states2. T (s1; a; s2) represents the probability of ending up

in states2 if the actiona is taken from states1.
A policy � for an MDP is a mapping� : S ! A. Given policy�, the value functionV �(s) gives the expected discounted reward obtained starting from states and selecting

action�(s) at each state encountered. Rewards after the first time step are discounted by

a factor
 where0 �
 < 1. A Bellman equation relatesV � at any states and successor

statess0: V �(s) =Xs02S T (s; �(s); s0)[R(s; �(s); s0) +
V �(s0)℄:
There is at least one optimal policy�� for whichV ��(s), abbreviatedV �(s), is no less thanV �(s) at every states, for any other policy�. Another Bellman equation governsV �:V �(s) = maxa2AXs02S T (s; a; s0)[R(s; a; s0) +
V �(s0)℄:
From any value functionV , we can compute a policy Greedy(V) that selects, at any states, the greedy look-ahead actionargmaxa2APs02S T (s; a; s0)[R(s; a; s0) +
V (s0)℄. The

policy Greedy(V �) is an optimal policy. Value iterationiterates the operationV 0(s) =maxa2APs02S T (s; a; s0)[R(s; a; s0) +
V (s0)℄, computingV 0 from V , producing a se-

quence of value functions converging toV �, regardless of the initialV used.

- 4 -

We define the statewise Bellman errorE(V; s) for a value functionV at a states to bemaxa2APs02S T (s; a; s0)[R(s; a; s0) +
V (s0)℄� V (s). We will be inducing new features

based on the sign of the statewise Bellman error. The sup-norm distance of a value functionV from the optimal value functionV � can be bounded using the Bellman error magnitude,

which is defined asmaxs2S jE(V; s)j.
Linear Approximation of Value Functions. We assume that the states of the MDP have

structure. In particular, we assume a state is a vector of basic properties with Boolean,

integer, or real values, and that the state space is the set ofall such vectors. We call these

basic propertiesstate attributes. This factored form for states is essential to enable compact

representation of approximate value functions.

A common solution to the problem of representing value functions (e.g., value itera-

tion) in very large, structured state spaces is to approximate the valueV (s) with a linear

combination of features extracted froms, i.e., as~V (s) =Ppi=0wifi(s), wherewi is a real-

valuedweightfor theith featurefi(s). Our goal is to find featuresfi (each mapping states

to boolean values) and weightswi so that~V closely approximatesV �.
Many methods have been proposed to select weightswi for linear approximations [7, 8].

Here, we use a heuristic temporal-difference (TD) learningmethod described in [2] that

has performed well in our experiments. Other training methods can be substituted and this

choice is orthogonal to our main purpose.

The TD method we deploy constructs a fixed-length sequence ofvalue functionsV 1,V 2, . . . ,V T , and returns the last one. Each value functionV � is defined by weight valuesw�0 , w�1 , . . . ,w�p asV �(s) = Ppi=0w�i fi(s). Value functionV �+1 is constructed fromV �
by drawing a training set of trajectories1 under the policy Greedy(V �) and updating the

weights according to this training set as follows.

Let s1, s2,. . . ,sn be a trajectory. Define the weight update for theith weight and state

occurrencesj 6= sn in this trajectory to be�fi(sj)Pn�1m=j �m�jdm, wheredm is defined as
 ~V (sm+1) +R(sm; �(sm); sm+1)� ~V (sm). Here,� is the learning rate parameter and� is

1The source of this set is a parameter of the algorithm, and it could for example be drawn by sampling initial
states from some state distribution and then simulating� to some horizon from each initial state.

- 5 -

the parameter for TD learning as defined in [7]. Then, for eachi, the weight updates for all

states in all trajectories are averaged and then added tow�i to getw�+1i .

2.2 Decision Tree Classification

A detailed discussion of classification using decision trees can be found in [9]. A de-

cision tree is a binary tree with internal nodes labelled by state attributes (and, in our case,

learned features), and leaves labelled with classes (in ourcase, either zero or one). A path

through the tree from the root to a leaf with labell identifies a partial assignment to the state

attributes—each state consistent with that partial assignment is viewed as labelledl by the

tree. We learn decision trees from training sets of labelledstates using the well known

C4.5 algorithm [6]. This algorithm induces a tree greedily matching the training data from

the root down. We use C4.5 to induce new features—the key to our algorithm is how we

construct suitable training sets for C4.5 so that the induced features are useful in reducing

Bellman error.

- 6 -

- 7 -

3. Feature Construction for MDPs

We propose a simple method for constructing new features given a current set of fea-

tures and an MDP for which we desire an approximation ofV �. We first use TD-learning,

as described above, to select heuristically best weights toapproximateV � with ~V based on

the current feature set. We then use the sign of the statewiseBellman error at each state

as an indication of whether the state is undervalued or overvalued by the current approxi-

mation. If we can identify a collection of undervalued states (ideally, all such states) as a

new feature, then assigning an appropriate positive weightto that feature should reduce the

Bellman error magnitude. The same effect should be achievedby identifying overvalued

states with a new feature and assigning a negative weight. Wenote that the domains of

interest are generally too large for statespace enumeration, so we will need classification

learning to generalize the notions of overvalued and undervalued across the statespace from

training sets of sample states. Also, to avoid blurring the concepts of overvalued and un-

dervalued with each other, we discard states with statewiseBellman error near zero from

either training set.

More formally, we draw a training set of states� from which we will select training

subsets�+ and�� for learning new features. The training set� can either be drawn

uniformly at random from the state space, or drawn by collecting all states in sample

trajectories starting at uniformly random start states under a policy of interest (typically

Greedy(~V)). If using trajectories, each trajectory must be terminated at some horizon. The

horizon and the size of� are parameters of our algorithm.

For each states in �, we compute the statewise Bellman errorE(~V ; s). We then discard

from � those statess with statewise Bellman error near zero, i.e., those states for whichjE(~V ; s)j < Æ for a non-negative real-valued parameterÆ, and then divide the remaining

states into sets�+ and�� according to the sign ofE(~V ; s). So,�+ is the setfsjE(~V ; s) �Æg and�� is the setfsjE(~V ; s) � �Æg.

- 8 -

We note that computing statewise Bellman error exactly can involve a summation over

the entire state space, whereas our fundamental motivations require avoiding such summa-

tions. In many MDP problems of interest, the transition matrix T is sparse in a way that set

of states reachable in one step with non-zero probability issmall, for any current state. In

such problems, statewise Bellman error can be computed effectively using an appropriate

representation ofT . More generally, whenT is not sparse in this manner, the expecta-

tion can be effectively approximately evaluated by sampling next states according to the

distribution represented byT .

We then use�+ as the positive examples and�� as the negative examples for a super-

vised classification algorithm; in our case, C4.5 is used. The hypothesis space for classi-

fication is built from the primitive attributes defining the state space; in our case, we use

decision trees over these attributes. We can also interchange the roles of�+ and��, using

the latter as positive examples. In our experiments, we do this interchanging for every other

feature constructed.

The concept resulting from supervised learning is then treated as a new feature for our

linear approximation architecture, with an initial weightof zero. The process can then be

repeated, of course, resulting in larger and larger featuresets, and, hopefully, smaller and

smaller Bellman error magnitude.

To conclude our description of our algorithm, we discuss setting the parameterÆ dy-

namically, once in each iteration of feature construction.Rather than directly specifyÆ, we

specifyÆ in terms of the standard deviation� of the statewise Bellman error over the same

distribution used in selecting states for the training set�. The value of� is easily estimated

by sampling the training distribution and computing the Bellman error. We then setÆ, at

each iteration, to be a fixed multiple� of �. This approach removesÆ as a parameter of the

algorithm, replacing it with the parameter�. This dynamic selection ofÆ allows adaptation

to the decrease in Bellman error magnitude over the run of thealgorithm.

- 9 -

4. Experiments

In this section, we present some experimental results for our feature construction algo-

rithm. We us two domains in the experiments. The first domain is an8� 8 game of Tetris

(Tetris). The second domain is a computer network optimization problem called SysAd-

min, which we use primarily in order to compare to the closestprevious related work; that

work [1] used SysAdmin as a testing domain. Both the state attributes and the learned

features in the experiments are binary features.

Tetris. For the Tetris domain, we start with 71 state attributes; 64 attributes which rep-

resent if the 64 squares are occupied or not, and 7 attributeswhich represent which of the

7 pieces is currently being dropped. We select training setsfor feature construction by

drawing trajectories from an initial state with an empty board and collecting 600,000 states

on these trajectories as�. The training sets for TD learning are selected by drawing 100

trajectories from an initial state with an empty board and allowing each trajectory to extend

to the end of the game. We draw the trajectories using the Greedy(~V) policy. The discount

factor
 is 0:9 for this experiment, and the parameter� is set to0:3. In addition,� is fixed

at 0 and� at 0:01. TD learning is assumed to converge after 1200 training setsare drawn;

at that point, a new feature is learned.

The results are shown in Figure 4.1. The score is determined by the average number

of lines erased during a sequence of games. The performance of the learned features are

evaluated by the 2,000-game average score for Greedy(~V) using the weights learned just

after TD-learning. Figure 4.1 displays the average of such evaluations over 4 separate

trials of feature learning. In addition, we also show in Figure 4.1 the result of using sets

of randomly generated features; such features are generated following the same procedure

described in the previous section, but label examples in thetraining set� randomly instead

of deciding the labeling by statewise Bellman error. Value functions constructed from

- 10 -

randomly generated features perform poorly, and do not showimprovement as the number

of features used increases. Thus, our use of statewise Bellman error to label the training

examples plays an important role in the performance of our feature construction algorithm.

We also tested TD learning on human-constructed features inthis domain. The features

we used in this case were provided by Bertsekas in [2]. These features are useful features

as considered by a human, and according to [2] they were selected after some testing. We

tested the performance of the weights learned after each TD iteration by running 2,000

games and taking the average score. The maximum 2,000-game average performance was

91, which was achieved after nearly 30,000 iterations of TD training. This performance

was substantially better than the best performance our learned feature set exhibited, which

was 29 (using 45 learned binary features).

We note that the human-selected features are all integer-valued, apparently giving the

human set a clear advantage (especially per feature). Clearly one approach for futher im-

provement in feature learning is to design a feature-learning approach that can produce

integer-valued features.

SysAdmin. For the SysAdmin domain, two different kinds of topologies are tested: 3-

legs and cycle. There are 10 nodes in each topology. We followthe settings used in [1]

for testing this domain. The target of learning in this domain is to keep as many machines

operational as possible, since the number of operating machines directly affects the reward

for each step. Since there are only 10 nodes, the on/off status of each node is used as a basic

feature, which means there are a total of 1024 states. We simply use all states as the training

set for feature construction. To enable direct comparison to the previous work in [1], we use

Bellman error magnitude to measure the performance of the feature construction algorithm

here.

For the experiments that use the whole state space as a training set, the plot of aver-

age Bellman error for 10 separate trials over the number of features learned is shown in

Figure 4.2. We used
 equal to0:95, � equal to1, � equal to0:1 and� equal to 0. In

this experiment there are 50 trajectories drawn in each TD training set, each drawn from

- 11 -

Fig. 4.1.: Score (average number of lines erased in 2,000 games) plot for the learned fea-

tures and randomly generated features in8� 8 Tetris domain. For reference, the maximum

score for the human-selected feature set from [2] was 91.

- 12 -

Fig. 4.2.: Bellman error for SysAdmin domain (10 nodes).

a random initial state, and using trajectory length 2. TD learning was considered to have

converged after 8000 iterations.

Also included in Figure 4.2 are the results from [1]. We select the best result they show

(from various algorithmic approaches) from the 3-legs and cycle domains shown in their

paper (their “d-o-s” setting for the cycle domain and their “d-x-n setting” for the 3-legs

domain).

Compared to the results in [1], also shown here, our feature construction algorithm

achieves a lower Bellman error magnitude in these domains for the same number of fea-

tures, throughout, and a lower converged Bellman error magnitude when new features stop

improving that measure. This is another encouraging resultfor this proposed feature con-

struction algorithm.

- 13 -

5. Conclusions and Future Work

From the experiments, the results show that our feature construction algorithm can

generate features that show significantly better performance in8� 8 Tetris than randomly

constructed features, and can produce features that outperform the features produced by the

algorithms in [1] for the SysAdmin domain. However, our algorithm cannot learn a feature

set for8 � 8 Tetris that competes well with the human-constructed feature set provided in

[2].

Our technique depends critically on the generalization ability of the classification learner

to cope with large state spaces. The features generated by the feature-construction algo-

rithm currently are represented as decision trees. Although the experiments showed that

these features are useful in some problems, they are still hard to interpret. One goal for

designing a good feature-construction algorithm is to be able to produce features that are

understandable by humans. One way we are considering to improve our algorithm in this

direction is to use a relational classification algorithm combined with an interesting knowl-

edge representation instead of using C4.5 with decision trees.

- 14 -

- 15 -

6. Acknowledgement

The authors would like to thank Alan Fern for useful discussions and input.

- 16 -

- 17 -

LIST OF REFERENCES

[1] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier, and C. Guestrin. Greedy linear
value-approximation for factored markov decision processes. InAAAI, 2002.

[2] D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific,
1996.

[3] R. S. Sutton and A. G. Barto.Reinforcement Learning. MIT Press, 1998.

[4] R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation – a new computa-
tional technique in dynamic programming.Math. Comp., 17(8):155–161, 1963.

[5] G. Tesauro. Temporal difference learning and td-gammon. Comm. ACM, 38(3):58–68,
1995.

[6] J. R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[7] R. S. Sutton. Learning to predict by the methods of temporal differences.MLJ, 3:9–44,
1988.

[8] B. Widrow and M. E. Hoff Jr. Adaptive switching circuits.IRE WESCON Convention
Record, pages 96–104, 1960.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

