FEATURE-DISCOVERING APPROXIMATE VALUE ITERATION METHODS

A Technical Report
Submitted to the ECE Department
of
Purdue University
by

Jia-Hong Wu and Robert Givan

School of Electrical and Computer Engineering
465 Northwestern Ave.
Purdue University

West Lafayette, IN 47907

November, 2004

TABLE OF CONTENTS

Page

LISTOFFIGURES e %
ABSTRACT Vil
1 Introduction 1
2 Technical Background 3
2.1 Markov DecisionProcesses. L. 3
2.2 Decision Tree Classification. 5

3 Feature ConstructionforMDPs 7
4 EXperiments. 9
5 Conclusionsand FutureWork 13
6 Acknowledgement 15

LISTOFREFERENCES o o 17

-iv -

LIST OF FIGURES

Figure Page

4.1 Score (average number of lines erased in 2,000 gameg$dptbe learned
features and randomly generated featureés;r8 Tetris domain. For refer-
ence, the maximum score for the human-selected featurecset2] was

4.2 Bellman error for SysAdmin domain (10 nodes).. 12

-Vi-

- Vii -

ABSTRACT

We study the problem of automatically selecting problentuiess to use in approxi-
mately representing value in Markov decision processespipose and evaluate a sim-
ple approach reducing the problem of selecting a new featustandard classification
learning—we learn a classifier that predicts the sign of te#nBan error over a training
set of states. By iteratively adding new classifiers as featwith this method, training be-
tween iterations with TD-learning, we find a Tetris featuee that outperforms randomly
constructed features significantly, and obtains a scorebofitaone-third of the highest
score obtained by using a carefully hand-constructed feaet. We also show that features
learned with this method outperform those learned with tlegipus method of Patrascu et

al. [1] on the same SysAdmin domain used for evaluation there

- Viii -

1. Introduction

Decision-theoretic planning and reinforcement learnirgghnds facing astronomically
large state spaces typically rely on approximately repregskvalue functions (see, e.g., [2,
3]). Many such approximate representations rely on an gpjate set of problem features;
for example, by taking a weighted combination of the feataieies as the value function
[4]. Human engineering of the problem features used hasitegly proven critical to the
success of the resulting system, e.g. in [5].

Here, we study the problem of automatically selecting pobfeatures for use in ap-
proximately representing value in Markov decision proess3Ne focus our initial work
on this problem on binary features, i.e., mappings fromesi@aBoolean values. We view
each such feature as a set of states, those states wherattire fs true.

We propose and evaluate a simple, greedy approach to findimdpimary features for a
linear-combination value estimate. Our heuristic appnassumes an initial “base” value
estimate described by a linear approximation where the v®igave already been tuned
to minimize Bellman error. We attempt to reduce the Bellmamremagnitude of this
value estimate further by learning a new feature that isitrséatespace regions of positive
statewise Bellman error and correspondingly false in regaf negative statewise Bellman
error, or vice versa. The learning problem generated isralata supervised classification
problem, and for this work we address this problem using #@sibn-tree learner C4.5
[6].

One view of this approach is that we are conducting approb@malue iteration with
an added mechanism for extending the available featureGieen an initial feature set,
imaging a sufficient period of approximate value iterationgny similar weight adjustment
method) to achieve convergence of the approximation towevainctionV’. We can think

of the approximate value iteration process as “stuck”, &t thcan represenit but not the

-2-

Bellman update of’. (Of course, this assumes that the updates being performeld find

V if they could represent it, which is only heuristically tru&Ve are then trying to induce
features to enable representation of the Bellman upddte b that the approximate value
iteration process can continue to reduce Bellman erroh thig larger feature space.

If the learner succeeds in capturing features that destirdstatespace regions of pos-
itive and negative Bellman error, we can guarantee thaigdtiese features makes avail-
able weight assignments closer to the Bellman update of #ise balue estimate. Our
practical method retrains the weights including the newuieds), using TD-learning, and
then repeats the process of selecting a new feature.

We have found surprisingly little previous work in this ardatrascu et al. [1] give a
linear programming technique for selecting new featuregduce the., error of the ap-
proximation. Our technique works instead directly to rezltiee Bellman error magnitude,
but relies on classification learning. We show below thatteaghnique empirically out-
performs this previous work on the planning domain usedeir tvaluation. Specifically,
we require fewer new features to achieve the same Bellman amd can achieve a lower
overall Bellman error given enough features.

We also evaluate our technique in the computer-game domdietas. Starting from
a constant value function based on only the uniformly triaues, our technique can add
features automatically to produce performance that isifsigntly better than a randomly
constructed feature set, and is at about one-third of thipeance of a carefully hand-
constructed feature set.

In what follows, we first provide technical background on ktar decision processes
and value-function approximation, then describe our teghenfor inducing new features to
reduce approximation error, and finally present empirieaullts on two domains showing

improvement over the state of the art, before concluding.

2. Technical Background

2.1 Markov Decision Processes

We define here our terminology for Markov decision process®s a more thorough
discussion of Markov decision processes, see [2] and [3]. &kg\v decision process
(MDP) D is atuple(S, A, R, T)) where state spaceis a finite set of states, action spate
is a finite set of actiond : Sx Ax.S — Risthe reward function, arfl : Sx A — P(S)is
the transition probability function that maps (state,@cipairs to probability distributions
overS. R(sy,a, s9) represents how much immediate reward is obtained by takitigre:
from states; and ending up in state. 7'(s1, a, so) represents the probability of ending up
in states, if the actiona is taken from state;.

A policy for an MDP is a mapping : S — A. Given policyr, the value function
V7 (s) gives the expected discounted reward obtained starting ftates and selecting
actionr(s) at each state encountered. Rewards after the first time sefiszounted by
a factory where0 < v < 1. A Bellman equation relateg™ at any state and successor

statess’:
V(s) =Y T(s,m(s),s)[R(s,7(s),s) + V().

s'eS
There is at least one optimal poliey for which V™ (), abbreviated’*(s), is no less than

V'™ (s) at every state, for any other policyr. Another Bellman equation goveris:

V*(s) = max T(s,a,s)[R(s,a,s") +~yV*(s)].
s'es

From any value functio’, we can compute a policy Greedy) that selects, at any state
s, the greedy look-ahead actiamg max,c4 Y .57 (5,a,s)[R(s,a,s") + vV (s')]. The
policy GreedyV*) is an optimal policy. Value iterationiterates the operatiol”’(s) =
MaXeea Y geg 1 (5,0,)[R(s,a,s") + vV (s')], computingV” from V, producing a se-

guence of value functions converginghtd, regardless of the initidl” used.

-4 -

We define the statewise Bellman eri(V, s) for a value functiorl” at a states to be
MaXaea Y gcq1(5,0,8)[R(s,a,s) +~yV(s)] — V(s). We will be inducing new features
based on the sign of the statewise Bellman error. The sup-d@tance of a value function
V from the optimal value functiofv* can be bounded using the Bellman error magnitude,

which is defined asmax;cs |[F(V, s)|.

Linear Approximation of Value Functions. We assume that the states of the MDP have
structure. In particular, we assume a state is a vector o€ lpmeperties with Boolean,
integer, or real values, and that the state space is the séitsafch vectors. We call these
basic propertiestate attributesT his factored form for states is essential to enable compac
representation of approximate value functions.

A common solution to the problem of representing value fiomst (e.g., value itera-
tion) in very large, structured state spaces is to appraobariee valuel’(s) with a linear
combination of features extracted fromi.e., asV' (s) = 327, w; fi(s), wherew; is a real-
valuedweightfor theith featuref;(s). Our goal is to find feature§ (each mapping states
to boolean values) and weights so thatl” closely approximates ™.

Many methods have been proposed to select wetghtsr linear approximations [7, 8].
Here, we use a heuristic temporal-difference (TD) learmmaghod described in [2] that
has performed well in our experiments. Other training méshzan be substituted and this

choice is orthogonal to our main purpose.

The TD method we deploy constructs a fixed-length sequenwaloé functions/’!,

V2, ...,VT, and returns the last one. Each value funclithis defined by weight values
wy, wy, ..., wl asVi(s) = 30 w! f;(s). Value functionV?*+! is constructed froni’?

by drawing a training set of trajectorfeander the policy Greedy?) and updating the
weights according to this training set as follows.

Let sy, s9,..., 8, be a trajectory. Define the weight update for itlteweight and state
occurrences; # s, in this trajectory to bex f;(s;) Z”m;lj A™id,., whered,, is defined as

YV (Sms1) + R(Sms T(5m)s Sma1) — V(sm). Here,a is the learning rate parameter ahis

1The source of this set is a parameter of the algorithm, armlittcfor example be drawn by sampling initial
states from some state distribution and then simulatitggsome horizon from each initial state.

-5-

the parameter for TD learning as defined in [7]. Then, for eatiie weight updates for all

B+1
P

states in all trajectories are averaged and then addzeﬁ to getw

2.2 Decision Tree Classification

A detailed discussion of classification using decisiondregn be found in [9]. A de-
cision tree is a binary tree with internal nodes labelledthyesattributes (and, in our case,
learned features), and leaves labelled with classes (icase, either zero or one). A path
through the tree from the root to a leaf with labalentifies a partial assignment to the state
attributes—each state consistent with that partial agseg is viewed as labellddoy the
tree. We learn decision trees from training sets of labediades using the well known
C4.5 algorithm [6]. This algorithm induces a tree greedilgtaming the training data from
the root down. We use C4.5 to induce new features—the keyrtalgorithm is how we
construct suitable training sets for C4.5 so that the inddeatures are useful in reducing

Bellman error.

3. Feature Construction for MDPs

We propose a simple method for constructing new featuremngavcurrent set of fea-
tures and an MDP for which we desire an approximatiofr tf We first use TD-learning,
as described above, to select heuristically best weighgppeoximaté’* with V based on
the current feature set. We then use the sign of the stat®eitsman error at each state
as an indication of whether the state is undervalued or akeed by the current approxi-
mation. If we can identify a collection of undervalued stafieleally, all such states) as a
new feature, then assigning an appropriate positive wegthiat feature should reduce the
Bellman error magnitude. The same effect should be achibyadentifying overvalued
states with a new feature and assigning a negative weightndéthat the domains of
interest are generally too large for statespace enumeramwe will need classification
learning to generalize the notions of overvalued and uradeed across the statespace from
training sets of sample states. Also, to avoid blurring thiecepts of overvalued and un-
dervalued with each other, we discard states with stateBedlenan error near zero from
either training set.

More formally, we draw a training set of stat&sfrom which we will select training
subsets:, and ¥ _ for learning new features. The training setcan either be drawn
uniformly at random from the state space, or drawn by cohgctll states in sample
trajectories starting at uniformly random start statesemralpolicy of interest (typically
Greed)(f/)). If using trajectories, each trajectory must be termidatesome horizon. The
horizon and the size df are parameters of our algorithm.

For each statein &, we compute the statewise Bellman erf{ii, s). We then discard
from X those states with statewise Bellman error near zero, i.e., those states/hich
|E(V,s)| < 6 for a non-negative real-valued parameteand then divide the remaining
states into sets, and¥_ according to the sign df(V, s). So,%, is the sef{s|E(V, s) >
6} andy._ is the set{s|F(V,s) < —6}.

-8-

We note that computing statewise Bellman error exactly naolve a summation over
the entire state space, whereas our fundamental motigatgpuire avoiding such summa-
tions. In many MDP problems of interest, the transition maéiris sparse in a way that set
of states reachable in one step with non-zero probabiligynall, for any current state. In
such problems, statewise Bellman error can be computectigéiy using an appropriate
representation of’. More generally, wherT" is not sparse in this manner, the expecta-
tion can be effectively approximately evaluated by sangphext states according to the
distribution represented b34.

We then use:, as the positive examples alid as the negative examples for a super-
vised classification algorithm; in our case, C4.5 is usece Aypothesis space for classi-
fication is built from the primitive attributes defining th&ate space; in our case, we use
decision trees over these attributes. We can also integehidue roles ok, andX _, using
the latter as positive examples. In our experiments, we idartterchanging for every other
feature constructed.

The concept resulting from supervised learning is theni¢ckas a new feature for our
linear approximation architecture, with an initial weigiitzero. The process can then be
repeated, of course, resulting in larger and larger featetg, and, hopefully, smaller and
smaller Bellman error magnitude.

To conclude our description of our algorithm, we discussirsgthe parametes dy-
namically, once in each iteration of feature construct®ather than directly specity, we
specifys in terms of the standard deviationof the statewise Bellman error over the same
distribution used in selecting states for the training®sethe value ot is easily estimated
by sampling the training distribution and computing thelBan error. We then set, at
each iteration, to be a fixed multipteof o. This approach removeésas a parameter of the
algorithm, replacing it with the parameter This dynamic selection af allows adaptation

to the decrease in Bellman error magnitude over the run dditg@rithm.

4. Experiments

In this section, we present some experimental results fofeaiure construction algo-
rithm. We us two domains in the experiments. The first dom&aam8 x 8 game of Tetris
(Tetris). The second domain is a computer network optinongbroblem called SysAd-
min, which we use primarily in order to compare to the clogpesvious related work; that
work [1] used SysAdmin as a testing domain. Both the statéates and the learned
features in the experiments are binary features.

Tetris. For the Tetris domain, we start with 71 state attributes; t&dbates which rep-
resent if the 64 squares are occupied or not, and 7 attrilhesdh represent which of the
7 pieces is currently being dropped. We select training feetéeature construction by
drawing trajectories from an initial state with an empty iteband collecting 600,000 states
on these trajectories @ The training sets for TD learning are selected by drawin@ 10
trajectories from an initial state with an empty board aroveihg each trajectory to extend
to the end of the game. We draw the trajectories using thedyféfe) policy. The discount
factor~ is 0.9 for this experiment, and the parametgis set to0.3. In addition,\ is fixed
at0 anda at0.01. TD learning is assumed to converge after 1200 trainingaetslrawn;

at that point, a new feature is learned.

The results are shown in Figure 4.1. The score is determigegtidbaverage number
of lines erased during a sequence of games. The performdrlce lzarned features are
evaluated by the 2,000-game average score for G(é@dysing the weights learned just
after TD-learning. Figure 4.1 displays the average of su@iuations over 4 separate
trials of feature learning. In addition, we also show in Fegd.1 the result of using sets
of randomly generated features; such features are geddddli@ving the same procedure
described in the previous section, but label examples itré@ing set randomly instead

of deciding the labeling by statewise Bellman error. Valuactions constructed from

-10 -

randomly generated features perform poorly, and do not simprovement as the number
of features used increases. Thus, our use of statewise &ekmor to label the training
examples plays an important role in the performance of atufe construction algorithm.

We also tested TD learning on human-constructed featutbssidomain. The features
we used in this case were provided by Bertsekas in [2]. Them®ifes are useful features
as considered by a human, and according to [2] they weretsdlafter some testing. We
tested the performance of the weights learned after eachtérBtion by running 2,000
games and taking the average score. The maximum 2,000-garsgea performance was
91, which was achieved after nearly 30,000 iterations of fldining. This performance
was substantially better than the best performance oundedeature set exhibited, which
was 29 (using 45 learned binary features).

We note that the human-selected features are all intedeediaapparently giving the
human set a clear advantage (especially per feature). (Clmae approach for futher im-
provement in feature learning is to design a feature-legraipproach that can produce

integer-valued features.

SysAdmin. For the SysAdmin domain, two different kinds of topologies tested: 3-
legs and cycle. There are 10 nodes in each topology. We fahewsettings used in [1]
for testing this domain. The target of learning in this domiaito keep as many machines
operational as possible, since the number of operating imegkirectly affects the reward
for each step. Since there are only 10 nodes, the on/offsstdeach node is used as a basic
feature, which means there are a total of 1024 states. Wdysursp all states as the training
set for feature construction. To enable direct comparisding previous work in [1], we use
Bellman error magnitude to measure the performance of titarfe construction algorithm
here.

For the experiments that use the whole state space as axgyaiei, the plot of aver-
age Bellman error for 10 separate trials over the numberattifes learned is shown in
Figure 4.2. We used equal t00.95, n equal tol, « equal to0.1 and X\ equal to 0. In

this experiment there are 50 trajectories drawn in each aDitrg set, each drawn from

-11 -

35

—+— Learned Features (4 trials) —= Random Features (4 trials) ‘

30

2s : ,M
. "

15 /
10
4.”.".‘9‘.”.”.”.‘9‘.”.”.”.‘E‘TE".".".".".".".".‘ETE‘TE".".".".‘E'_.E".”.".".".".‘E‘.".".".".‘E‘.".”."."

012345678 91011121314 151617 18192021 2223 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45

Score

Number of Features

Fig. 4.1.: Score (average number of lines erased in 2,00@ggptot for the learned fea-
tures and randomly generated feature 8 Tetris domain. For reference, the maximum

score for the human-selected feature set from [2] was 91.

-12 -

10

| —&— 3 egs (10 trials) —— Cvcle (10 trials) —=— Patrascu 3degs —— Patrascu Cycle
i w
3 \\::\

= D

5 e
\\M&

3 e R —
N

2 \ﬁ‘ﬁ

Bellman Error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Features

Fig. 4.2.: Bellman error for SysAdmin domain (10 nodes).

a random initial state, and using trajectory length 2. TDné®y was considered to have
converged after 8000 iterations.

Also included in Figure 4.2 are the results from [1]. We selke best result they show
(from various algorithmic approaches) from the 3-legs ayalecdomains shown in their
paper (their “d-o-s” setting for the cycle domain and thel¥X*n setting” for the 3-legs
domain).

Compared to the results in [1], also shown here, our featansteuction algorithm
achieves a lower Bellman error magnitude in these domamnth&ésame number of fea-
tures, throughout, and a lower converged Bellman error magdgmwhen new features stop
improving that measure. This is another encouraging résuthis proposed feature con-

struction algorithm.

-13-

5. Conclusions and Future Work

From the experiments, the results show that our featuretwati®n algorithm can
generate features that show significantly better perfoomam8 x 8 Tetris than randomly
constructed features, and can produce features that éartpehe features produced by the
algorithms in [1] for the SysAdmin domain. However, our aigon cannot learn a feature
set for8 x 8 Tetris that competes well with the human-constructed feaget provided in
[2].

Our technique depends critically on the generalizatiolitgloif the classification learner
to cope with large state spaces. The features generatec dgature-construction algo-
rithm currently are represented as decision trees. Althdbg experiments showed that
these features are useful in some problems, they are gdtilltbainterpret. One goal for
designing a good feature-construction algorithm is to e &bproduce features that are
understandable by humans. One way we are considering towaur algorithm in this
direction is to use a relational classification algorithrmé&ined with an interesting knowl-

edge representation instead of using C4.5 with decisi@stre

-14 -

-15 -

6. Acknowledgement

The authors would like to thank Alan Fern for useful discassiand input.

-16 -

-17 -

LIST OF REFERENCES

[1] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutiliet,@nGuestrin. Greedy linear
value-approximation for factored markov decision proess$nAAAI, 2002.

[2] D. P. Bertsekas and J. N. Tsitsiklisleuro-Dynamic Programming. Athena Scientific,
1996.

[3] R. S. Sutton and A. G. BartdReinforcement Learning. MIT Press, 1998.

[4] R. Bellman, R. Kalaba, and B. Kotkin. Polynomial appmmstion — a hew computa-
tional technique in dynamic programminiglath. Comp., 17(8):155-161, 1963.

[5] G. Tesauro. Temporal difference learning and td-gamn@amm. ACM, 38(3):58-68,
1995.

[6] J. R. Quinlan.C4.5: Programsfor Machine Learning. Morgan Kaufmann, 1993.

[7] R. S. Sutton. Learning to predict by the methods of terapdifferencesMLJ, 3:9—44,
1988.

[8] B. Widrow and M. E. Hoff Jr. Adaptive switching circuit$RE WESCON Convention
Record, pages 96-104, 1960.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

