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Abstract

Enforced hill-climbing is an effective deterministic hill-
climbing technique that deals with local optima using
breadth-first search (a process called “basin flooding”). We
propose and evaluate a stochastic generalization of enforced
hill-climbing for online use in goal-oriented probabilistic
planning problems. We assume a provided heuristic func-
tion estimating expected cost to the goal with flaws such as
local optima and plateaus that thwart straightforward greedy
action choice. While breadth-first search is effective in ex-
ploring basins around local optima in deterministic problems,
for stochastic problems we dynamically build and solve a lo-
cal Markov-decision process model of the basin in order to
find a good escape policy exiting the local optimum.

We evaluate our proposal in a wide range of recent proba-
bilistic planning-competition benchmark domains. For eval-
uation, we show that stochastic enforced hill-climbing pro-
duces better policies than greedy action choice for value func-
tions derived in two very different ways. First, we propose a
novel heuristic function derived from the ideas in the effec-
tive re-planner FF-Replan. This new “controlled-randomness
FF heuristic” is the deterministic FF heuristic computed on
the simple determinization of the probabilistic problem that
makes available a deterministic transition wherever a proba-
bilistic transition was possible. Our results show that stochas-
tic enforced hill-climbing with this heuristic significantly out-
performs simply greedily following the heuristic, and also
substantially outperforms FF-Replan. We additionally eval-
uate our technique on automatically learned value functions
that on their own perform at the state-of-the-art when used
to construct a greedy policy, and again show significant im-
provement over greedy action selection.

Introduction

Heuristic estimates of distance-to-the-goal have long been
used in deterministic search and deterministic planning.
Such estimates typically have flaws such as local extrema
and plateaus that limit their utility. Methods such as sim-
ulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983;
Cerny 1985) and A* (Nilsson 1980) search have been de-
veloped for handling flaws in heuristics. More recently, ex-
cellent practical results have been obtained by “flooding” lo-
cal optima using breadth-first search; this method is called
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“enforced hill-climbing”. (Hoffmann and Nebel 2001)

The immediate goal of enforced hill-climbing is to find
a descendant that is strictly better than the current state in
heuristic value by performing a local search. The planner
then moves to that descendant and repeats this process. The
effectiveness of enforced hill-climbing is demonstrated by
the success of the planner FF (Hoffmann and Nebel 2001).

Enforced hill-climbing is not defined for probabilistic
problems, due to the stochastic outcomes of actions. In the
presence of stochastic outcomes, finding descendants of bet-
ter values no longer implies the existence of a policy that
reaches those descendants with high probability. One may
argue that FF-Replan (Yoon, Fern, and Givan 2007)—a cur-
rent top performer for probabilistic planning benchmarks—
uses enforced hill-climbing during its call to FF; however,
the enforced hill-climbing process is used on a determinized
problem, and FF-Replan does not use any form of hill climb-
ing directly in the stochastic problem. In fact, FF-Replan
does not consider the outcome probabilities at all.

One problem to consider in generalizing enforced hill-
climbing to stochastic domains is that the solution to a de-
terministic problem is typically concise, a sequential plan;
in contrast, the solution to a stochastic problem is a policy
(action choice) for all possibly reached states. The essential
motivation for hill-climbing is to avoid storing exponential
information during search, and even the explicit solution to
a stochastic problem cannot be directly stored while respect-
ing this motivation. For this reason, we limit consideration
to the online setting, where the solution to the problem is a
single action, for the current state. After this action is com-
mitted to and executed, the planner then has a new online
problem to solve (possibly retaining some information from
the previous solution). Our approach generalizes directly to
the construction of offline policies in situations where space
to store such policies is available.

We propose a novel tool for stochastic planning by gener-
alizing enforced hill-climbing to stochastic domains. Rather
than seeking a sequence of actions deterministically leading
to a better state, our method constructs a breadth-first local
Markov Decision Process (MDP) around the current state
and seeks a policy that expects to exit this MDP with a better
valued state. When such a policy is found, the method exe-
cutes the policy until the local MDP is exited. Critical to this
process is the direct incorporation of the probabilistic model



in finding the desired policy. Here, we find this policy us-
ing value iteration on the local MDP, where the only rewards
are the heuristic values assigned at the exits. As in enforced
hill-climbing, breadth-first expansion around a state occurs
only when there is no action available with Q-value (rela-
tive to the heuristic) achieving the current state’s heuristic
value. Note that although stochastic enforced hill-climbing
is an explicit statespace technique, it can be suitable for use
in astronomically large statespaces if the heuristic used is in-
formative enough to limit the size of the local MDPs needed
to find expected heuristic improvement.

Stochastic enforced hill-climbing can be applied to any
heuristic function. We test the technique on a broad range of
domains from the first two international probabilistic plan-
ning competitions. We select two very different heuristic
functions: First we use a novel heuristic function based
on the determinization from the successful re-planner FF-
Replan. This new “controlled-randomness FF heuristic” is
the FF heuristic (Hoffmann and Nebel 2001) computed on
the FF-Replan determinization of the probabilistic problem.
Our results show that stochastic enforced hill-climbing with
this heuristic outperforms FF-Replan substantially, and also
outperforms simply greedily following the heuristic. We
additionally evaluate our technique on value functions pro-
duced by a relational feature-learning method in (Wu and
Givan 2007). These value functions have been shown to per-
form at the state-of-the-art when used to construct a greedy
policy. We again show improvement over greedy selection
when using these value functions as the heuristic.

Technical Background and Related Work

Goal-oriented Markov decision processes We give a
brief review of Markov decision processes (MDPs) special-
ized to goal-region objectives. For more detail, see (Bert-
sekas and Tsitsiklis 1996) and (Sutton and Barto 1998).

A stochastic shortest path Markov decision process
(MDP) M is a tuple (S, A, R,T) with finite state and ac-
tion spaces S and A, reward function R : S x A x S — R,
and a transition probability function T : S x A — P(S) that
maps (state, action) pairs to probability distributions over S.
To avoid discounting while still assigning finite value to each
state, we require that S contain a zero-reward absorbing state
1,i.e., suchthat R(L,a,s) =0and T'(L,a, L) =1 forall
s € Sand a € A, and that there is some policy (as defined
below) from any state leading to L. with probability 1.

Goal-oriented MDPs are MDPs where there is a subset
G C S of the statespace, containing 1, such that: (1)
R(g,a,s’) is zero whenever g € G and minus one other-
wise, and (2) T'(g,a, L) isone foralla € Aand g € G.

Given policy m : S — A for an MDP, the value func-
tion V7 (s) gives the expected cumulative reward obtained
from state s selecting action () at each state encountered'.

1Formally, we have restricted consideration to domains where
some policy reaches a goal state with probability one from all
states, to avoid discounting. In practice we can and do handle dead-
end states by assigning them large negative values if they are recog-
nized by simple reachability tests, and by adjusting the parameters
for our algorithm as discussed in subsection “Deadend handling.”

There is at least one optimal policy 7* for which V™ (s), ab-
breviated V*(s), is no less than V™ (s) at every state s, for
any other policy 7. The following “Q function” evaluates
an action a with respect to a value function V' by using V' to
estimate the value after action a is applied,

Q(s,a,V) = Z T(s,a,s)[R(s,a,s") + V(s')].
s’eS

Recursive Bellman equations use Q() to describe V* and
V™ as follows. First, V™(s) = Q(s,n(s),V™). Then,
V*(s) = maxgea Q(s,a, V*). Also using Q(), we can se-
lect an action greedily relative to any value function. The
policy Greedy (V') selects, at any state s, a randomly selected
action from arg max,c 4 Q(s,a, V).

Value iteration iterates the operation V'(s) =
maxqea Q(s,a,V), computing the “Bellman update”
V' from V, producing a sequence of value functions
converging to V'*, regardless of the initial V' used, as shown
by Bertsekas for a similar formulation in (Bertsekas 1995).

While goal-based MDP problems can be directly spec-
ified as above, they may also be specified exponentially
more compactly using planning languages such as PPDDL
(Younes et al. 2005), as used in our experiments. Our tech-
nique below avoids converting the PPDDL problem explic-
itly into the above form, but constructs a sequence of smaller
problems of this form modeling heuristic flaws.

Local Markov decision processes Given a heuristic func-
tion h : S — R estimating V* for a MDP M =
(S,A,R,T), ie., estimating negated distance to the ab-
sorbing state, we define the sub-MDP induced by state set
S’ C S to be the MDP that equals M inside S’, but gives
terminal reward according to h upon exiting S’. Formally,
the sub-MDP induced by S” and h is given by (S, A, R', T"),
where R’ and T" are given as follows. Let s be any state in
S and a any action in A. For any state s’ € S’, we take
R'(s',a,s) =0and T'(s',a,s) = T(s',a, s). For any state
xin S —5', R'(z,a,s) = h(z) and T'(z,a, L) = 1. We
refer to the number of states reachable from S’ in zero or
one steps as the “size of the sub-MDP induced by S’”.

The rough motivation for setting action rewards to zero
for the analysis within S is that such actions are being con-
sidered by our method to remediate a flawed heuristic; the
cumulative negative action reward paid to reach a state of
higher heuristic value is a measure of the magnitude of the
flaw in the heuristic, but we remove this reward from the
analysis in order to directly express the subgoal of “reach-
ing a state with higher heuristic value”. Instead of diluting
this subgoal by adding in negative action rewards, our meth-
ods seek the “shortest” path to a heuristic improvement by
enlarging S’ in a breadth first manner. The resulting breadth-
first expansion of S’ generalizes if needed to uniform-cost
expansion to handle more general action costs.?

We defer more formal algorithmic treatment of deadend domains
for future work, but note that some domains evaluated in this paper
do contain unavoidable deadends.

2 Also note that in this zero-reward undiscounted setting, greed-
ily acting based upon the converged value function is not guaran-
teed to achieve that value. It is necessary to remember the action



Note: technically, we seek to “climb” in “value”, even
though we think of heuristics as measuring distance to the
goal. We simply use the negative value of the distance-to-go
heuristic as our value function.

Related work Stochastic enforced hill-climbing dynami-
cally constructs local MDPs to find a local policy leading
to heuristically better state regions. The concept of form-
ing sub-MDPs, or “envelopes”, and using them to facilitate
probabilistic planning has been used in previous research
such as (Bonet and Geffner 2006; Dean et al. 1995), which
we briefly review here.

The envelope-based method in (Dean et al. 1995) starts
with a partial policy in a restricted area of the problem (the
“envelope”), then iteratively improves the solution quality
by changing the envelope and recomputing the partial policy.
The typical assumption of implementing this method is to
have an initial trajectory from the starting state to the goal,
generated by some stochastic planner.

Another line of work (Barto, Bradtke, and Singh 1995;
Hansen and Zilberstein 2001; Bonet and Geffner 2006) starts
from only the initial state in an envelope, iteratively ex-
pands the envelope by expanding states according to state
values and using dynamic programming methods to backup
state values, until some convergence criterion is reached.
Stochastic enforced hill-climbing can be viewed as repeat-
edly deploying the envelope method with the goal, each
time, of improving on the heuristic estimate of distance to
go. For a good h function, most invocations result in trivial
one-step envelopes; however, when local optima or plateaus
are encountered, the envelope may need to grow to locate a
stochastically reachable set of exits.

All of the above referenced previous search methods have
constructed envelopes seeking a high quality policy to the
goal rather than our far more limited and relatively inexpen-
sive goal of basin escape. Preliminary experiments with one
such recent previous technique, LDFS (Bonet and Geffner
2006), on the domains and heuristics used for evaluation in
this paper gave poor results. Our results derive from on-
line greedy exploitation of the heuristic rather than the more
expensive offline computation of converged values proving
overall (near) optimality. LDFS, for example, will com-
pute/check values for at least all states reachable under the
optimal policy (even if given V* as input) and possibly
vastly many others as well during the computation.

Stochastic Enforced Hill Climbing

Deterministic enforced hill-climbing (Hoffmann and Nebel
2001) searches for a strictly improving successor state and
returns a path from the initial state to such a successor. This
path is an action sequence that guarantees reaching the de-
sired successor. In a stochastic environment, there may be
no single improved descendant that can be reached with
probability one, as the actions may have multiple stochas-
tic outcomes. Thus, in stochastic enforced hill-climbing,

which first achieved the converged value during value iteration, for
each state, and take that action in preference to others that may look
equal in greedy value due to zero-cost cycles.

we generalize the idea of searching for a single strictly im-
proved successor state to finding a policy that expects to
improve on the heuristic value of the initial state inside a
dynamically constructed sub-MDP. As formalized in “Local
Markov decision processes” above, the sub-MDP ignores
the negative action rewards paid to reach such improved
states; the secondary goal of minimizing these costs is em-
bodied by constructing the smallest sub-MDP enabling suc-
cess, as described formally below. Note that, in contrast to
replanning techniques, with this approach the system adjusts
to the uncertainty in action outcomes without replanning.

We present pseudo-code for stochastic enforced hill-
climbing in Figure 1, and explain the terminology used in
the pseudo-code next. The algorithm assumes a non-positive
heuristic function A : S — R as input that assigns zero to
all goal states. Stochastic enforced hill-climbing iteratively
builds and solves sub-MDPs and seeks improved policies
inside such sub-MDPs®. Each sub-MDP is induced as de-
fined previously by a state set I' together with the heuristic
function h. We use two parameters k and « to control the
aggressiveness with which the sub-MDPs are constructed in
an attempt to escape the local optimum or plateau. The hori-
zon parameter k limits the number of steps from the entry
state sg; the heuristic radius parameter « limits the heuristic
distance from h(sg) that states in the sub-MDP may have,
representing the energy barrier to escape. We assume some
schedule for selecting more and more aggressive values of
k and « to construct increasingly large sub-MDP problems
seeking an exit. Our algorithm applies to any such schedule.

For any pair (k, @) in the schedule, we define a state set
[o. For any «, we define Lo, (s0) = {so}. We define an
operation Extend on a state set to be Extend(T") = {s’ | s €
I'3a € A, P(s,a,s’) > 0}. We can then iteratively extend
I'io to be F(k+l)a(50) = I'ga U {S/ S E:ctend(l“ka) |
h(s") = h(so)| < a}.

Thus, in line 6 of Figure 1 , value iteration is conducted
for increasingly large sub-MDPs around sy, seeking a policy
improving h(sg)*. Depending on the schedule chosen for &
and «, implementation choices may allow reuse of states-
pace and value information as larger MDPs are constructed,
expanding on smaller ones. The implementation may also
proceed down the schedule without value iteration when no
new states of high value are added to the sub-MDP.

Early termination The primary termination condition for
repeated sub-MDP construction is the discovery of a policy
improving on the heuristic estimate of the initial state. How-
ever, for flawed heuristic functions that overestimate state
value, especially in domains with unavoidable deadends,
this may not be possible. For this reason, in practice, the al-
gorithm stops enlarging sub-MDPs when user-specified re-
source limits are exceeded.

3Note that we must avoid building the full MDP explicitly as it
is exponentially large.

“Given the negative-reward-per-step structure of a goal-
oriented MDP, h() is an estimate of (negated) expected distance
to the goal, so this subgoal corresponds to seeking a policy that
expects to move closer to the goal.



Stochastic enforced hill-climbing

1. Repeat

2 // for some schedule of (k, o) pairs (ki, cv;)

3 S0 «— current state

4. 1=1T=T%a

5. Repeat

6 V'« Value iteration in sub-MDP(I",h)

7 1=14+1,T =Tk,

8 Until V(so) > h(so) or resource consumption exceeds
user-set limits

9. Follow Greedy(V) until exit I or a state visited o times

10.  If h(new current state) < h(so), take random walk of
w steps

11. Until goal achieved

Figure 1: Pseudo-code for stochastic enforced hill-climbing.

Once a sub-MDP is constructed assigning V' (so) > h(so)
or exceeding the resource limits, the system executes the
greedy policy within the sub-MDP until the policy exits the
sub-MDP. Again, in practice, we impose a bound ¢ on the
number of times a state may be repeated during the execu-
tion. If the greedy policy execution terminates in a state with
poor heuristic value (worse than h(sg)), our method adds a
random walk of length w; this additional random walk al-
lows our method to retain some of the beneficial properties
of random exploration in domains where heuristic flaws are
too large for MDP analysis.

Deadend handling The implementation tested in this pa-
per adds ad-hoc handling of dead-end states, which can be
incompletely identified by the heuristics we use. Recog-
nized dead-ends are assigned a large negative value 7. Also,
once a dead-end state is detected in a problem, we set a min-
imum sub-MDP size of 500 states for every sub-MDP con-
structed for that problem (to reduce the chance of greedily
falling into a dead-end). Also, because dead-ends break our
termination guarantee based on improving on h(sg), for any
sub-MDP that contains a known dead-end state, we termi-
nate sub-MDP growth once a good exit is discovered (with
h greater than h(sg)) and the sub-MDP size is at least 2000.

Setup for Empirical Evaluation

Here, we prepare for our results section by describing the
parameters used for our method, the heuristics we will test
the method on, the domains in which the tests will be con-
ducted, and issues arising in interpreting the results.

Parameterizing the algorithm When implementing
stochastic enforced hill-climbing, we use a schedule of
choices for the horizon k and heuristic radius a parameters
that explores a sequence of more and more aggressive
heuristic radius values o, az, . . .. For each radius parame-
ter «;, a sequence of horizons k is considered 0, 1, . .., 104,
before extending the radius. We take o to be zero and
define subsequent ;1 as follows. Let y; be the smallest
heuristic radius value such that I'y,,, properly contains I'y,
forany kin 0,1,...,10¢. We then choose a;;+1 = 1.5 x y;.
If there is no such y;, stochastic enforced hill-climbing can-
not proceed further and the schedule terminates. The value

y; is easily computed during sub-MDP construction using
a;. Throughout our experiments, we terminate sub-MDP
construction (as in line 8 of table 1) when the size of the
sub-MDP exceeds 1.5 * 10° or the runtime to construct the
sub-MDP exceeds 1 minute. We set the limit on repeated
states during policy execution ¢ to 50 and the random walk
length w to 9. The value 7 assigned to recognized dead-end
states is set to —1.0 * 10°. We denote this implementation
running on heuristic h with SEH(h).

Goals of the evaluation Our empirical goal is to show
that stochastic enforced hill-climbing improves significantly
upon greedy following of the same heuristic (using the pol-
icy Greedy(h) as described in the technical background
above. We will show this is true both for a simple new
heuristic based on determinization, described below, and for
learned heuristics from previously published research. A
secondary goal of our evaluation is to show that the result
is strong in comparison to FF-Replan.

The Controlled-randomness FF heuristic We define a
novel heuristic function, the “controlled-randomness FF
heuristic” (CR-FF), as the FF heuristic (Hoffmann and
Nebel 2001) computed on the FF-Replan (Yoon, Fern, and
Givan 2007) determinization of the probabilistic problem”.
The determinization used in FF-Replan is constructed by
creating a new deterministic action for each possible out-
come of a stochastic action while ignoring the probability of
such outcome happening. This effectively allows the planner
to control the randomness in executing actions, making this
determinization a kind of relaxation of the problem. We use
the CR-FF heuristic in each domain as one kind of heuristic
function h in our experiments.

For our experiments with the CR-FF heuristic, we com-
pute the heuristic value h(s) as h(s) = —hq(s) where hg(s)
is the FF distance estimate (Hoffmann and Nebel 2001) of
s computed on the above determinization. We denote the
resulting heuristic F'.

Learned heuristics We also test stochastic enforced
hill-climbing on automatically generated value functions
from (Wu and Givan 2007), which on their own perform at
the state-of-the-art when used to construct a greedy policy.
We scale these value functions to fit the non-positive range
requirement of h discussed previously. These learned value
functions are currently available for only five of our test do-
mains, and so are only tested in those domains.

We note that these heuristics were learned for a dis-
counted setting without action costs and so are not a direct fit
to the negated “distance-to-go” formalization adopted here.
We are still able to get significant improvements from apply-
ing our technique. We denote the resulting heuristic L.

Domains considered We evaluate stochastic enforced
hill-climbing on a wide range of recent probabilistic

>The deterministic FF heuristic, described in (Hoffmann
and Nebel 2001), from FF planner version 2.3 available
at http://members.deri.at/"joergh/ff.html, computes a sequential
relaxed-plan length using a sequence of ordered subgoal steps.



| SEH(F) | Greedy(F) | SEH(L) | Greedy(L) | FF-R
Avgl | 0.947 0.364 0.857 0.760 0.828
Avg2 | 0.882 0.417 0.785

Figure 2: Average of average success ratios across testing domains.
Avgl represents the average across the five domains that all plan-
ners address, and Avg2 represents the average across all nine do-
mains for the indicated planners. FF-R abbreviates “FF-Replan.”

planning-competition benchmark domains. For each prob-
lem size tested in each domain, 30 problems are generated
from the given problem generator and results are averaged
over 30 attempts per problem. We use a length cutoff of
2000 for each attempt. Each attempt is given a time limit
of 30 minutes. We run our experiments on Intel Pentium 4
Xeon 2.8GHz machines.

In (Wu and Givan 2007), value functions are learned for
five domains:

e blocksworld and boxworld from the first international
probabilistic planning competition (IPPC);

o tireworld, zenotravel, and exploding blocksworld from
the second IPPC.

We use these five domains when evaluating both the CR-
FF heuristic and the learned value-function heuristic. We
additionally evaluate the following domains from the sec-
ond IPPC using CR-FF heuristic: Random, schedule, ele-
vators, and pitchcatch. For these four domains we take the
problems from the competition rather than use the problem
generators to generate new ones®.

For each problem in each domain we show three types of
measurement: success ratio (SR), average plan length over
only the successful attempts (Slen), and average runtime for
only the successful attempts (Stime). In blocksworld, box-
world, tireworld, zenotravel, and exploding blocksworld,
these per-problem results are aggregated by problem size to
compress the data. In addition, averaging across all prob-
lems in the domain, we also plot the overall success ratio,
overall average successful plan length, and overall average
runtime of successful attempts (labeled “A” on the x-axis).

Notes on interpreting the data It is very important to
note that successful plan length and successful runtime are
only appropriate to compare between planners when those
planners exhibit very similar success ratios (ideally near
1.0). Otherwise, differences in plan lengths may be due
to differences in the problems being solved rather than plan
quality. Plan lengths are shown in these cases only for very
coarse comparison. Some advantages for the SEH algorithm
occur in plan length and some in success ratio, mandating
careful data interpretation. Note: all runtime and plan length
results are presented on a logarithmic scale.

Empirical Results

Results summary For each heuristic function h evaluated,
we compare the greedy hill-climbing algorithm Greedy(h)

®We do this because for three of these “domains”, the problem
generators change the action set between instances, so reusing the
actual instances aids in consistency with the competition.

| SEH(F) | Greedy(F) | SEH(L) | Greedy(L) | FF-R
Avgl 1.598 2.60 1.525 8.180 2.494
Avg2 1.465 2.069 1.832

Figure 3: Average of “normalized average plan length” across do-
mains, where plan length is normalized by dividing by the best av-
erage plan length achieved by any planner in the domain in ques-
tion. We omit two domains (tireworld and exploding blocksworld)
where large variations in success rate makes successful length par-
ticularly misleading. Avgl represents the average across the three
domains that all planners address, and Avg2 represents the aver-
age across all seven domains for the indicated planners. FF-R
abbreviates “FF-Replan.”

and our stochastic-enforced-hillclimbing algorithm SEH(h)
to determine whether stochastic enforced hill-climbing im-
proves performance. We also show, on every plot, the per-
formance of a recent stochastic re-planner, FF-Replan, that
performs quite well in these benchmark domains.

In the first set of experiments, we evaluate the novel
heuristic F' defined above (in the section titled “The
controlled-randomness FF heuristic”’). In the results in the
next section, we show that SEH(F)) significantly outper-
forms Greedy(F) across seven of nine benchmark planning
domains, roughly equalling Greedy(F) in the other two do-
mains (tireworld and schedule).

In addition to nearly always significantly improving on
greedy hill-climbing, SEH(F') manages very similar perfor-
mance to FF-Replan (with small variations either way) in
three of the nine domains tested, and more dominant perfor-
mance in either success ratio or successful plan length in the
remaining six, making it a state-of-the-art approach to these
competition benchmark planning domains.

In a second set of experiments, we consider the learned
heuristic functions. Here, again, SEH(L) significantly
improves upon Greedy(L) in four of five domains, and
slightly improves Greedy(L) in the other domain (tire-
world). SEH(L) also outperforms FF-Replan in three
of five domains, but loses in zenotravel and exploding
blocksworld, where L itself is poor.

Because there is a lot of data shown across the 480 prob-
lem instances considered, we attempt in Figs. 2 and 3 a
very rough aggregation for concise comparison purposes.
We report the average success ratio for each of the five
approaches averaged across across all domains considered,
giving equal weight to each domain (combining all prob-
lem sizes within each domain). Likewise, we report the av-
erage across domains of “normalized average plan length”,
where plan length is normalized by dividing by the best av-
erage plan length achieved by any planner in the domain
in question. For the plan length average, we omit two do-
mains (tireworld and exploding blocksworld) where large
variations in success rate, even on single problems, makes
successful length particularly misleading.

On these averages, SEH(F') is substantially better than
FF-Replan in both success ratio and average length. In ad-
dition, SEH(F') has a dramatically higher success rate than
Greedy(F'). For learned heuristics, SEH(L) gives a marked
improvement over Greedy(L) in overall average success ra-
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tio, and a dramatic improvement in the average length mea-
sure. SEH(L) also shows similar success ratio and much
shorter average length than FF-Replan.

Detailed results for the controlled FF heuristic In
Figs. 4 to 7, we present detailed results for the CR-FF heuris-
tic for the five domains handled by all planners.

When compared to Greedy(F'), SEH(F') has significantly
higher success ratio in blocksworld, boxworld, zenotravel,
and exploding blocksworld. In tireworld SEH(F') and
Greedy(F') are equal in success ratio.

When compared to FF-Replan, SEH(F') has significantly
higher success ratio in blocksworld, tireworld, and explod-
ing blocksworld. Note that these differences in success rate
make successful length comparisons misleading in these do-
mains. In boxworld, SEH(F) and FF-Replan have simi-
lar success ratio, but SEH(F') yields a significantly shorter
average successful plan length than FF-Replan. In zeno-
travel, both planners are equally successful in finding the
goals while FF-Replan is slightly shorter in plan length.
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Figure 6: Tireworld results for the CR-FF heuristic. Runtime re-
sults are omitted because all planners are completing each attempt
with an average of less than one second.
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Figure 7: Zenotravel and exploding blocksworld results for the
CR-FF heuristic. The problem size for zenotravel is 10 cities, 2
people, 2 aircraft.

In Figs. 8 to 11, we present detailed results for the CR-
FF heuristic for the four remaining domains, and we discuss
each briefly here. For these plots, each label on the x-axis
indicates the problem number from the second IPPC.

When compared to Greedy(F'), SEH(F') has significantly
higher success ratio in random, elevators, and pitchcatch,
though the advantage in random is present on only one of
fifteen problems. In schedule, SEH(F') and Greedy(F') ex-
hibit similar success ratios.

When compared to FF-Replan, SEH(F') performs sim-
ilarly in success ratio across two of the four domains
(random and elevators), and improves on FF-Replan in the
two others (schedule and pitchcatch). Also, SEH(F') finds
significantly shorter plans than FF-Replan in pitchcatch.

Detailed results for the learned heuristics In Figs. 12
to 15, we present detailed results for the learned heuristics
taken from (Wu and Givan 2007) for the five domains where
learned heuristics are available, and we discuss each briefly
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Figure 9: Elevators results for the CR-FF heuristic.

here’.

In blocksworld and boxworld, SEH(L) preserves the
high success ratio of Greedy(L) and significantly improves
the average successful plan length. SEH(L) improves
slightly on the success ratio of Greedy(L) in tireworld. Note
that in these three domains SEH(L) also significantly outper-
forms FF-Replan as Greedy(L) already has excellent perfor-
mance in these domains.

In zenotravel, SEH(L) again has significant improve-
ment on average successful plan length over Greedy(L). In
exploding blocksworld, the base heuristic Greedy(L) per-
forms so poorly as to provide inadequate guidance to SEH,
although SEH(L) is able to improve on Greedy(L) in 5
blocks problems. In both of these domains, FF-Replan out-
performs either hill-climbing method.

"We take the best-performing value functions used for compar-
ison purpose in that paper.
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Figure 10: Schedule results for the CR-FF heuristic.
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Figure 11: Pitchcatch results for the CR-FF heuristic.

Summary

We have proposed and evaluated stochastic enforced hill-
climbing, a novel generalization of the deterministic en-
forced hill-climbing from FF (Hoffmann and Nebel 2001).
Instead of finding a descendant that is strictly better than the
current state in heuristic value, we construct a local MDP
around any local optimum or plateau reached and seek a pol-
icy that expects to exit this MDP with a better valued state.
We have demonstrated that this approach provides substan-
tial improvement over greedy hill-climbing for fourteen dif-
ferent heuristics in nine different domains, created using two
different styles for heuristic definition. We have also demon-
strated the resulting planners are a substantial improvement
over FF-Replan (Yoon, Fern, and Givan 2007) in our exper-
iments.
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Figure 12: Blocksworld results for learned value functions.
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Figure 13: Boxworld results for learned value functions.
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