
New Results on Local Inference RelationsRobert Givan and David McAllesterMIT Arti�cial Intelligence Laboratory545 Technology SquareCambridge Mass. 02139rlg@ai.mit.edudam@ai.mit.eduAbstractWe consider the concept of a local set of inference rules. A local ruleset can be automatically transformed into a rule set for which bottomup evaluation terminates in polynomial time. The local rule set transfor-mation gives polynomial time evaluation strategies for a large variety ofrule sets that can not be given terminating evaluation strategies by anyother known automatic technique. This paper discusses three new results.First, it is shown that every polynomial time predicate can be de�ned byan (unstrati�ed) local rule set. Second, a new machine recognizable sub-class of the local rule sets is identi�ed. Finally we show that locality, as aproperty of rule sets, is undecidable in general.
This paper appeared in KR-92. A postscript electronic source for this paper can be found inftp.ai.mit.edu:/pub/dam/kr92.ps. A bibtex reference can be found in internet �le ftp.ai.mit.edu:/pub/dam/dam.bib.1

1 INTRODUCTIONUnder what conditions does a given set of inference rules de�ne a computation-ally tractable inference relation? This is a syntactic question about syntacticinference rules. There are a variety of motivations for identifying tractable in-ference relations. First, tractable inference relations sometimes provide decisionprocedures for semantic theories. For example, the equational inference rules ofre
exivity, symmetry, transitivity, and substitutivity de�ne a tractable inferencerelation that yields a decision procedure for the entailment relation between setsof ground equations [Kozen, 1977], [Shostak, 1978]. Another example is the setof equational Horn clauses valid in lattice theory. As a special case of the resultsin this paper one can show (automatically) that validity of a lattice theoreticHorn clause is decidable in cubic time.Deductive data bases provide a second motivation for studying tractable in-ference relations. A deductive data base is designed to answer queries usingsimple inference rules as well as a set of declared data base facts. The inferencerules in a deductive data base usually de�ne a tractable inference relation. Theinference rules are usually of a special form known as a datalog program. Adatalog program is a set of �rst order Horn clauses that do not contain functionsymbols. Any datalog program de�nes a tractable inference relation [Ullman,1988], [Ullman, 1989]. Recently there has been interest in generalizing the in-ference rules used in deductive databases beyond the special case of datalogprograms. In the general case, where function symbols are allowed in Hornclause inference rules, a set of inference rules can be viewed as a Prolog pro-gram. Considerable work has been done on \bottom up" evaluation strategiesfor these programs and source to source transformations that make such bot-tom up evaluation strategies more e�cient [Naughton and Ramakrishnan, 1991][Bry, 1990]. The work presented here on local inference relations can be viewedas an extension of these optimization techniques. For example, locality testingprovides an automatic source to source transformation on the inference rules forequality (symmetry, re
exivity, transitive, and substitution) that allows themto be completely evaluated in a bottom-up fashion in cubic time. We do notknow of any other automatic transformation on inference rules that provides aterminating evaluation strategy for this rule set.A third motivation for the study of tractable inference relations is the rolethat such relations can play in improving the e�ciency of search. Many practicalsearch algorithms use some form of incomplete inference to prune nodes in thesearch tree [Knuth, 1975], [Mackworth, 1977], [Pearl and Korf, 1987]. Incom-plete inference also plays an important role in pruning search in constraint logicprogramming [Ja�ar and Lassez, 1987], [van Hentenryck, 1989], [McAllester andSiskind, 1991]. Tractable inference relations can also be used to de�ne a notionof \obvious inference" which can then be used in \Socratic" proof veri�cationsystems which require proofs to be reduced to obvious steps [McAllester, 1989],2

[Givan et al., 1991].As mentioned above, inference rules are syntactically similar to �rst orderHorn clauses. In fact, most inference rules can be syntactically represented bya Horn clause in sorted �rst order logic. If R is a set of Horn clauses, � isa set of ground atomic formulas, and � is a ground atomic formula, then wewrite � `R � if � [R ` � in �rst order logic. We write `R rather thanj=R because we think of R as a set of syntactic inference rules and `R as theinference relation generated by those rules. Throughout this paper we use theterm \rule set" as a synonym for \set of Horn clauses". Technically this phraserefers to a �nite set of Horn clauses. We give nontrivial conditions on R whichensure that the inference relation `R is polynomial time decidable.As noted above, a rule set R that does not contain any function symbols iscalled a datalog program. It is well known that the inference relation de�ned bya datalog program is polynomial time decidable. Vardi and Immerman indepen-dently proved, in essence, that datalog programs provide a characterization ofthe complexity class P | any polynomial time predicate on �nite data bases canbe written as a datalog program provided that one is given a successor relationthat de�nes a total order on the domain elements [Vardi, 1982], [Immerman,1986], [Papadimitriou, 1985].Although datalog programs provide an interesting class of polynomial timeinference relations, the class of tractable rule sets is much larger than the classof datalog programs. First of all, one can generalize the concept of a datalogprogram to the concept of a super�cial rule set. We call a set of Horn clausessuper�cial if any term that appears in the conclusion of a clause also appearsin some antecedent of that clause. A super�cial rule set has the property thatforward chaining inference does not introduce new terms. Super�cial rule setsprovide a di�erent characterization of the complexity class P . While datalogprograms can encode any polynomial time predicate on �nite data bases, super-�cial rule sets can encode any polynomial time predicate on �rst order terms.Let P be a predicate on �rst order terms constructed from a �nite signature. Wede�ne the DAG size of a �rst order term t to be the number of distinct termsthat appear as subexpressions of t.1 It is possible to show that if P can becomputed in polynomial time in sum of the the DAG size of its arguments thenP can be represented by a super�cial rule set. More speci�cally, we prove herethat for any such predicate P on k �rst order terms there exists a super�cial ruleset R such that P(t1; t2; : : : tk) if and only if Input(t1; t2; : : : tk) `R Acceptwhere Input is a predicate symbol and Accept is a distinguished propositionsymbol. The characterization of P in terms of super�cial rule sets di�ers fromImmerman's characterization of P in terms of datalog programs in two ways.First, the result is stated in terms of predicates on terms rather than predicates1The DAG size of a term is the size of the Directed Acyclic Graph representation of theterm. 3

on databases. Second, unlike the datalog characterization, no separate totalorder on domain elements is required.Super�cial rule sets are a special case of the more general class of local rulesets [McAllester, 1993]. A set R of Horn clauses is local if whenever � `R �there exists a proof of � from � such that every term in the proof is mentionedin � or �. If R is local then `R is polynomial time decidable. All super�cialrule sets are local but many local rule sets are not super�cial. The set of thefour inference rules for equality is local but not super�cial. The local inferencerelations provide a third characterization of the complexity class P . Let P be apredicate on �rst order terms constructed from a �nite signature. If P can becomputed in polynomial time in the sum of the DAG size of its arguments thenthere exists a local rule set R such that for any terms t1, t2, : : : tk we have thatP(t1; t2; : : : tk) if and only if `R P (t1; t2; : : : tk) where P is a predicatesymbol representing P. Note that no super�cial rule set can have this propertybecause forward chaining inference from a super�cial rule set can not introducenew terms. We �nd the characterization of polynomial time predicates in termsof local rule sets to be particularly pleasing because it yields a direct mappingfrom semantic predicates to predicates used in the inference rules.Unlike super�ciality, locality can be di�cult to recognize. The set of fourinference rules for equality is local but the proof of this fact is nontrivial. For-tunately, there are large classes of mechanically recognizable local rule sets. Anotion of a bounded local rule set is de�ned in [McAllester, 1993] and a pro-cedure is given which will automatically recognize the locality of any boundedlocal rule set. The set of the four basic rules for equality is bounded local.As another example of a bounded local rule set we give the following rules forreasoning about a monotone operator from sets to sets.x � xx � y; y � z) x � zx � y) f(x) � f(y)Let Rf be this set of inference rules for a monotone operator.There is a simple source to source transformation on any local rule set thatconverts the rule set to a super�cial rule set without losing completeness. Forexample consider the above rules for a monotone operator. We can transformthese rules so that they can only derive information about terms explicitly men-tioned in the query. To do this we introduce another predicate symbol M (withthe intuitive meaning \mentioned"). The rules can be rewritten as follows.M(f(x))) M(x)x � y) M(x)4

x � y) M(y)M(x)) x � xM(x); M(y); M(z); x � y; y � z) x � zM(f(x)); M((f(y)); x � y) f(x) � f(y)Let this transformed rule set be R0f . Note that R0f is super�cial and hencebottom up (forward chaining) evaluation must terminate in polynomial time.2Then to determine if � `Rf t � u we determine, by bottom up evaluation,whether fM(t); M(u)g [� `R0f t � u. An analogous transformation applies toany local rule set.A variety of other bounded local rule sets are given [McAllester, 1993]. Asan example of a rule set that is local but not bounded local we give the followingrules for reasoning about a lattice. x � xx � y; y � z) x � zx � x_yy � x_yx � z; y � z) x_y � zx^y � xx^y � yz � x; z � y) z � x^yThese rules remain local when the above monotonicity rule is added. Withor without the monotonicity rule, the rule set is not bounded local.In this paper we construct another machine-recognizable subclass of the localrule sets which we call inductively local rule sets. All of the bounded local rulesets given in [McAllester, 1993] are also inductively local. The procedure forrecognizing inductively local rule sets has been implemented and has been usedto determine that the above rule set is inductively local. Hence the inferencerelation de�ned by the rules is polynomial time decidable. Since these rules arecomplete for lattices this result implies that validity for lattice theoretic Hornclauses is polynomial time decidable.We been able to show that there are bounded local rule sets which arenot inductively local, although our examples are somewhat arti�cial. We havenot found any natural examples of local rule sets that fail to be inductively2For this rule set bottom up evaluation can be run to completion in cubic time.5

local. Inductively local rule sets provide a variety of mechanically recognizablepolynomial time inference relations.In this paper we also settle an open question from our previous analysis[McAllester, 1993] and show that locality as a general property of rule sets isundecidable. Hence the optimization of logic programs based on the recognitionof locality is necessarily a somewhat heuristic process.2 BASIC TERMINOLOGYIn this section we give more precise de�nitions of the concepts discussed in theintroduction.De�nition: A Horn clause is a �rst order formula of the form 	1 ^	2 ^ � � � ^ 	n) � where � and the 	i are atomic formulas. Forany set of Horn clauses R, any �nite set � of ground terms, and anyground atomic formula �, we write � `R � whenever � [U (R) `� in �rst order logic where U (R) is the set of universal closures ofHorn clauses in R.There are a variety of inference relations de�ned in this paper. For anyinference relation ` and sets of ground formulas � and � we write � ` � if� ` 	 for each 	 in �.The inference relation `R can be given a more direct syntactic characteriza-tion. This syntactic characterization is more useful in determining locality.De�nition: A derivation of � from � using rule set R is a sequenceof ground atomic formulas 	1; 	2; : : : 	n such that 	n is � andfor each 	i there exists a Horn clause �1 ^�2 ^ : : :^�k) 	0 in Rand a ground substitution � such that �[0] is 	i and each formulaof the form �[�i] is either a member of � or a formula appearing inearlier in the derivation.Lemma: � `R � if and only if there exists a derivation of � from� using the rule set R.The following restricted inference relation plays an important role in theanalysis of locality.De�nition: We write � ` R � if there exists a derivation of �from � such that every term appearing in the derivation appears asa subexpression of � or as a subexpression of some formula in �.6

Lemma: For any �nite rule set R the inference relation ` R ispolynomial time decidable.Proof: Let n be the number of terms that appear as subexpressions of � or aformula in �. If P is a predicate of k arguments that appears in the inferencerules R then there are at most nk formulas of the form P (s1; : : : sk) such that� ` R P (s1; : : : sk). Since R is �nite there is some maximum arity over all thepredicate symbols that appear in R. The total number of formulas that can bederived under the restrictions in the de�nition of ` R is order nk where k isthe maximum arity of the predicates in R.Clearly, if � ` R � then � `R �. But the converse does not hold in general.By de�nition, if the converse holds then R is local.De�nition([McAllester, 1993]): The rule set R is local if therestricted inference relation ` R is the same as the unrestrictedrelation `R.Clearly, if R is local then `R is polynomial time decidable.3 CHARACTERIZING P WITH SUPERFI-CIAL RULESIn this section we consider predicates on �rst order terms that are computablein polynomial time. The results stated require a somewhat careful de�nition ofa polynomial time predicate on �rst order terms.De�nition: A polynomial time predicate on terms is a predicate Pon one or more �rst order terms which can be computed in polyno-mial time in the sum of the DAG sizes of its arguments.Super�cial Rule Set Representation Theorem: If P is a poly-nomial time predicate on �rst order terms then there exists a su-per�cial rule set R such that for any �rst order terms t1; : : : ; tn,we have that P is true on arguments t1; : : : ; tn if and only ifINPUT(t1; : : : ; tn) `R ACCEPT.As an example consider the Acyclic predicate on directed graphs | thepredicate which is true of a directed graph if that graph has no cycles. It iswell known that acyclicity is a polynomial time property of directed graphs.This property has a simple de�nition using super�cial rules with one level ofstrati�cation | if a graph is not cyclic then it is acyclic. The above theorem7

implies that the acyclicity predicate can be de�ned by super�cial rules withoutany strati�cation. The unstrati�ed rule set for acyclicity is somewhat complexand rather than give it here we sketch a proof of the above general theorem.The proof is rather technical, and casual readers are advised to skip to the nextsection.We only consider predicates of one argument. The proof for predicates withof higher arity is similar. Let P be a one argument polynomial time predicateon terms, i.e., a predicate on terms such that one can determine in polynomialtime in the DAG size of a term t whether or not P(t) holds. We construct adata base that represents the term t. For each subterm s of t we introducea data base individual cs, i.e., a new constant symbol unique to the term s.We have assumed that the predicate P is only de�ned on terms constructedfrom a �xed �nite signature, i.e., a �xed �nite set of constant and functionsymbols. We will consider constants to be functions of no arguments. Foreach function symbol f of n arguments in this �nite signature we introduce adatabase relation Qf of n+1 arguments, i.e., Qf is a n+1-ary predicate symbol.Now for any term t we de�ne �t to be the set of ground formulas of the formQf (cf(s1:::sn); cs1 ; : : : ; csn) where f(s1; : : : ; sn) is a subterm of t (possiblyequal to t). The set �t should be viewed as a data base with individuals cs andrelations Qf . Let � be a set of formulas of the form S(cs; cu) where s and uare subterms of t such that S represents a successor relation on the individualsof �t, i.e., there exists a bijection � from the individuals of �t to consecutiveintegers such that S(s; u) is in � if and only if �(u) = �(s) + 1. The resultof Immerman and Vardi [Immerman, 1986], [Vardi, 1982] implies that for anypolynomial time property of the set �t [� there exists a datalog program Rsuch that �t[� has the given property if and only if �t [� `R ACCEPT. Sincethe term t can be easily recovered from the set �t, there must exist a datalogprogram R such that �t [� `R ACCEPT if and only if P(t). We can assumewithout loss of generality that no rule in R can derive new formulas involvingthe data base predicates Qf .We now add to the rule set R super�cial rules that construct analogues ofthe formulas in �t and �. First we de�ne a mentioned predicate M such thatM(s) is provable if and only if s is a subterm of t.INPUT(t)) M(t)M(f(x1; : : : ; xn))) MxiThe second rule is a schema for all rules of this form where f is one of the�nite number of function symbols in the signature and xi is one of the variablesx1; : : : ; xn. Now we give rules that simulate the formula set �t.M(f(x1; : : : ; xn))) Qf (f(x1; : : : ; xn); x1; : : : ; xn)8

Now we write rules that simulate the formula set �, i.e., that de�ne a succes-sor relation on the terms in t. We start by de�ning a simple subterm predicateSu such that Su(s; u) is provable if s and u are subterms of t such that s is asubterm of u. M(x)) Su(x; x)M(f(x1; : : : ; xn)); Su(y; xi)) Su(y; f(x1; : : : ; xn)). Next we de�ne a \not equal" predicate NE such that NE(s; u) is provableif and only if s and u are distinct subterms of the input t.M(f(x1; : : : ; xn)); M(g(y1; : : : ; ym)))NE(f(x1; : : : ; xn); g(y1; : : : ; ym))M(f(x1; : : : ; xi; : : : xn));f(x1; : : : ; yi; : : : xn);NE(xi; yi))NE(f(x1; : : : ; xi; : : : xn);f(x1; : : : ; yi; : : : xn))In the �rst rule f and g must be distinct function symbols and in the secondrule xi and yi occur at the same argument position and all other arguments tof are the same in both terms. Next we de�ne a \not in" predicate NI suchthat NI(s; u) if s is not a subterm of u. We only give the rules for constantsand functions of two arguments. The rules for functions of other numbers ofarguments are similar. In the following rule c must be a constant.NE(s; c)) NI(s; c)NE(z; f(x; y));NI(z; x);NI(z; y)) NI(z; f(x; y))Now for any subterm s of the input we simultaneously de�ne a three place\walk" relation W (s; u; w) and a binary \last" relation L(s; u). W (s; u w)will be provable if s and u are subterms of w and u is the successor of s in a leftto right preorder traversal of the subterms of w with elimination of later dupli-cates. L(s; u) will be provable if s is the last term of the left to right preordertraversal of the subterms of u, again with elimination of later duplicates. Inthese de�nitions, we also use the auxiliary three place relation W 0, which canbe viewed as \try to conclude W , checking for duplicates". Once again, c mustbe a constant. 9

M(f(x; y)))W (f(x; y); x; f(x; y))M(f(x; y)); W (u; v; x))W (u; v; f(x; y))M(f(x; y)); NI(y; x);L(s; x))W (s; y; f(x; y))M(f(x; y)); W (u; v; y))W 0(u; v; f(x; y))W 0(u; v; f(x; y));NI(u; x); NI(v; x))W (u; v; f(x; y))W 0(u; v; f(x; y));W 0(v; w; f(x; y));Su(v; x))W 0(u; w; f(x; y))) L(c; c)M(f(x; y)); L(ylast; y);NI(ylast; x)) L(ylast; f(x; y))M(f(x; y)); Su(y; x);L(xlast; x)) L(xlast; f(x; y))L(ylast; y); Su(ylast; x);NI(y; x);W 0(flast; ylast; f(x; y));NI(flast; f(x; y))) L(flast; f(x; y))Finally we de�ne the successor predicate S.INPUT(z); W (x; y; z)) S(x; y)Let R0 be the the datalog program R plus all of the above super�cial rules.We now have that �t [� `R ACCEPT if and only if INPUT(t) `R0 ACCEPT andthe proof is complete.4 CHARACTERIZINGPWITH LOCAL RULESUsing the theorem of the previous section one can provide a somewhat di�erentcharacterization of the complexity class P in terms of local rule sets.Local Rule Set Representation Theorem: If P is a polynomialtime predicate on �rst order terms then there exists a local rule set10

R such that for any �rst order terms t1; : : : ; tn, we have that P istrue on arguments t1; : : : ; tn if and only if `R P (t1 : : : tn) whereP is a predicate symbol representing P .Before giving a proof of this theorem we give a simple example of a local ruleset for a polynomial time problem. Any context free language can be recognizedin cubic time. This fact is easily proven by giving a translation of grammarsinto local rule sets. We represent a string of words using a constant symbolfor each word and the binary function CONS to construct terms that representlists of words. For each nonterminal symbol A of the grammar we introduce apredicate symbol PA of two arguments where PA(x y) will indicate that x andy are strings of words and that y is the result of removing a pre�x of x thatparses as category A. For each production A! c where c is a terminal symbolwe construct a rule with no antecedents and the conclusion PA(CONS(c; x) x).For each grammar production A! BC we have the following inference rule.PB(x y) ^ PC(y z)! PA(x z)Finally, we let P be a monadic predicate which is true of strings generated bythe distinguished start nonterminal S of the grammar and add the followingrule. PS(x NIL)) P (x)Let R be this set of inference rules. R is a local rule set, although the proofof locality is not entirely trivial. The rule set R also has the property that`R P (x) if and only if x is a string in the language generated by the givengrammar. General methods for analyzing the order of running time of local rulesets can be used to immediately give that these clauses can be run to completionin order n3 time where n is the length of the input string.3 We have implementeda compiler for converting local rule sets to e�cient inference procedures. Thiscompiler can be used to automatically generate a polynomial time parser fromthe above inference rules.We now prove the above theorem for local inference relations from the pre-ceding theorem for super�cial rule sets. By the preceding theorem there mustexist a super�cial rule set R such that for any �rst order terms t1, t2, : : : tkwe have that P(t1; t2; : : : tn) if and only if INPUT(t1; t2; : : : tk) `R ACCEPTwhere INPUT is a predicate symbol and ACCEPT is a distinguished propositionsymbol. For each predicate symbol Q of m arguments appearing in R let Q0 bea new predicate symbol of k + m arguments. We de�ne the rule set R0 to bethe rule set containing the following clauses.� Input0(x1; : : : xk; x1; : : : xk)3An analysis of the order of running time for decision procedures for local inference relationsis given in [McAllester, 1993]. 11

� All clauses of the formQ01(x1; : : : xk; t1;1; : : : t1;m1) ^ � � �^Q0n(x1; : : : xk; tn;1; : : : tn;mn))W 0(x1; : : : xk; s1; : : : sj)where the clauseQ1(t1;1; : : : t1;m1)^� � �̂ Qn(tn;1; : : : tn;mn))W (s1; : : : sj)is in R.� The clause Accept0(x1; : : : xk)) P (x1; : : : xk).Given the above de�nition we can easily show that `R0 Q0(t1; : : : tk; s1; : : : sm)if and only if Input(t1; : : : tk) `R Q(s1; : : : sm). Therefore, it follows thatInput(t1; : : : tk) `R Accept if and only if `R0 P (t1; : : : tk). It remains onlyto show that R0 is local. Suppose that � `R0 �. We must show that � ` R0 �.Let t1, : : : tk be the �rst k arguments in �. Every inference based on R0 involvesformulas which all have the same �rst k arguments. Given that � `R0 � wemust have that �0 `R0 � where �0 is the set of formulas in � that have t1, : : :tk as their �rst k arguments. Let �00 be and �0 be the result of replacing eachformula Q0(t1; : : : tk; s1; : : : ; sm) by Q(s1; : : : ; sm). Since �0 `R0 � we musthave fInput(t1; : : : tk)g [�00 `R �0. But since R is super�cial this impliesthat every term in the derivation underlying fInput(t1; : : : tk)g [�00 `R �0either appears in some ti or appears in �00. This implies that every term in thederivation appears in either �0 or �. This implies � ` R0 �.5 ANOTHERCHARACTERIZATIONOF LO-CALITYIn this section we give an alternate characterization of locality. This charac-terization of locality plays an important role in both the de�nition of boundedlocal rule sets given in [McAllester, 1993] and in the notion of inductively localrule sets given here.De�nition: A bounding set is a set � of ground terms such thatevery subterm of a member of � is also a member of �.De�nition: A ground atomic formula 	 is called a label formula ofa bounding set � if every term in 	 is a member of �.De�nition: For any bounding set �, we de�ne the inference relation` R;� to be such that � ` R;� � if and only if there exists aderivation of � from � such that every formula in the derivation isa label formula of the term set �.12

We have that � ` R � if and only if � ` R;� � where � is the set of allterms appearing as subexpressions of � or formulas in �. The inference relation` R;� can be used to give another characterization of locality. Suppose that Ris not local. In this case there must exist some � and � such that � 6` R � but� `R �. Let � be the set of terms that appear in � and �. We must have� 6` R;� �. However, since � `R � we must have � ` R;�0 � for some �nitesuperset �0 of �. Consider \growing" the bounding set one term at a time,starting with the terms that appear in � and �.De�nition: A one step extension of a bounding set � is a groundterm � that is not in � but such that every proper subterm of � isa member of �.De�nition: A feedback event for R consists of a �nite set � ofground formulas, a ground formula �, a bounding set � containingall terms that appear in � and �, and a one step extension � of �such that � ` R;�[f�g � but � 6` R;� �.By abuse of notation, a feedback event will be written as � ` R;�[f�g �.Lemma([McAllester, 1993]): R is local if and only if there areno feedback events for R.Proof: First note that if R has a feedback event then R is not local | if� ` R;�[f�g � then � `R � but if � 6` R;� � then � 6` R �. Converselysuppose that R is not local. In there case there is some � and � such that� 6` R � but � ` R;� � for some �nite �. By considering a least such � onecan show that a feedback event exists for R.The concepts of bounded locality and inductive locality both involve theconcept of a feedback event. We can de�ne bounded locality by �rst de�ningCR(�;�) to be the set of of formulas 	 such that � ` R;� 	. R is boundedlocal if it is local and there exists a natural number k such that whenever� ` R;�[f�g 	 there exists a derivation of 	 from CR(�;�) such that everyterm in the derivation is a member of � [f�g and such that the derivation isno longer than k. As mentioned above, the set of the four basic inference rulesfor equality is bounded local and there exists a procedure which can recognizethe locality of any bounded local rule set. The de�nition of inductive locality issomewhat more involved and is given in the next section.6 INDUCTIVE LOCALITYTo de�ne inductive locality we �rst de�ne the notion of a feedback template.A feedback template represents a set of potential feedback events. We also13

de�ne a backward chaining process which generates feedback templates from arule set R. We show that if there exists a feedback event for R then such anevent will be found by this backchaining process. Furthermore, we de�ne an\inductive" termination condition on the backchaining process and show that ifthe backchaining process achieves inductive termination then R is local.Throughout this section we let R be a �xed but arbitrary set of Horn clauses.The inference relation ` R;� will be written as ` � with the understandingthat R is an implicit parameter of the relation.We de�ne feedback templates as ground objects | they contain only ground�rst order terms and formulas. The process for generating feedback templatesis de�ned as a ground process | it only deals with ground instances of clausesin R. The ground process can be \lifted" using a lifting transformation. Sincelifting is largely mechanical for arbitrary ground procedures [McAllester andSiskind, 1991], the lifting operation is only discussed brie
y here.De�nition: A feedback template consists of a set of ground atomicformulas �, a multiset of ground atomic formulas �, a ground atomicformula �, a bounding set �, and a one step extension � of � suchthat � and every formula in � is a label formula of �, every formulain � is a label formula of � [f�g that contains �, and such that� [� ` �[f�g �.By abuse of notation a feedback template will be written as �;� ` �[f�g �.� is a multiset of ground atomic formulas, each of which is a label formula of�[f�g containing �, and such that the union of � and � allow the derivationof � relative to the bounding set � [f�g. A feedback template is a potentialfeedback event in the sense that an extension of � that allows a derivation ofthe formulas in � may result in a feedback event. The requirement that � bea multiset is needed for the induction lemma given below. Feedback templatesfor R can be constructed by backward chaining.Procedure for Generating a Template for R:1. Let 	1 ^ 	2 ^ � � � ^ 	n) � be a ground instance of a clausein R.2. Let � be a term that appears in the clause but does not appearin the conclusion � and does not appear as a proper subtermof any other term in the clause.3. Let � be a bounding set that does not contain � but doescontain every term in the clause other than �.4. Let � be the set of antecedents 	i which do not contain �.5. Let � be the set of antecedents 	i which do contain �.14

6. Return the feedback template �;� ` �[f�g �.We let T 0[R] to be the set of all feedback templates that can be derived fromR by an application of the above procedure. We leave it to the reader to verifythat T 0[R] is a set of feedback templates. Now consider a feedback template�;� ` �[f�g �. We can construct a new template by backward chaining from�;� ` �[f�g � using the following procedure.Procedure for Backchaining from �;� ` �[f�g �1. Let � be a member of �2. Let 	1^	2^ � � �^	n) � be a ground instance of a clause inR that has � as its conclusion and such that each 	i is a labelformula of � [f�g.3. Let �0 be � plus all antecedents 	i which do not contain �.4. Let �0 be � minus � plus all antecedents 	i which do contain�.5. Return the template �0;�0 ` �[f�g �.In step 4 of the above procedure, �0 is constructed using multiset operations.For example, if the multiset � contains two occurrences of �, then \� minus �"contains one occurrence of �. We need � to be a multiset in order to guaran-tee that backchaining operations commute in the proof of the induction lemmabelow|in particular, we will use the fact that if a sequence of backchainingoperations remove an element � of � at some point, then there exists a permu-tation of that sequence of backchaining operations producing the same resultingtemplate, but that removes � �rst.For any set T of feedback templates we de�ne B[T] to be T plus all tem-plates that can be derived from an element of T by an application of the abovebackchaining procedure. It is important to keep in mind that by de�nition B[T]contains T . We let Bn[T] be B[B[� � �B[T]]] with n applications of B.De�nition: A feedback template is called critical if � is empty.If �; ; ` �[f�g � is a critical template then � ` �[f�g �. If � 6` � �then � ` �[f�g � is a feedback event. By abuse of notation, a critical template�; ; ` �[f�g � such that � 6` � � will be called a feedback event. The fol-lowing lemma provides the motivation for the de�nition of a feedback templateand the backchaining process.Lemma: There exists a feedback event for R if and only if thereexists a j such that Bj[T 0[R]] contains a feedback event.15

Proof: To prove the above lemma suppose that there exists a feedback eventfor R. Let � ` �[f�g � be a minimal feedback event for R, i.e., a feedbackevent for R which minimizes the length of the derivation of � from � under thebounding set �[f�g. The fact that this feedback event is minimal implies thatevery formula in the derivation other than � contains �. To see this supposethat � is a formula in the derivation other than � that does not involve �. Wethen have � ` �[f�g � and � [f�g ` �[f�g �. One of these two must be afeedback event | otherwise we would have � ` � �. But if one of these is afeedback event then it involves a smaller derivation than � ` �[f�g � and thiscontradicts the assumption that � ` �[f�g � is minimal. Since every formulaother than � in the derivation underlying � ` �[f�g � contains �, the template�; ; ` �[f�g � can be derived by backchaining.The above lemma implies that if the rule set is not local then backchainingwill uncover a feedback event. However, we are primarily interested in thosecases where the rule set is local. If the backchaining process is to establishlocality then we must �nd a termination condition which guarantees locality.Let T be a set of feedback templates. In practice T can be taken to be Bj [T 0[R]]for some �nite j. We de�ne a \self-justi�cation" property for sets of feedbacktemplates and prove that if T is self-justifying then there is no n such that Bn[T]contain a feedback event. In de�ning the self-justi�cation property we treat eachtemplate in T as an independent induction hypothesis. If each template can be\justi�ed" using the set of templates as induction hypotheses, then the set T isself-justifying.De�nition: We write �;� ` T ;� � if T contains templates�1;�1 ` �[f�g 	1�2;�2 ` �[f�g 	2...�k;�k ` �[f�g 	kwhere each �i is a subset of �, each �i is a subset of � and � [f	1; 	2; : : : 	kg ` � �.De�nition: T is said to justify a template �;� ` �[f�g � if thereexists a � 2 � such that for each template �0;�0 ` �[f�g � gener-ated by backchaining from �;� ` �[f�g � by selecting � at step 1of the backchaining procedure we have �0;�0 ` T ;� �.De�nition: The set T is called self-justifying if every member ofT is either critical or justi�ed by T , and T does not contain anyfeedback events. 16

Induction Theorem: If T is self-justifying then no set of the formBn[T] contains a feedback event.Proof: We must show that for every critical template �; ; ` �[f�g � in Bn[T]we have that � ` � �. The proof is by induction on n. Consider a criticaltemplate �; ; ` �[f�g � in Bn[T] and assume the theorem for all critical tem-plates in Bj[T] for j less than n. The critical template �; ; ` �[f�g � must bederived by backchaining from some template �0;�0 ` �[f�g � in T . Note that�0 must be a subset of �. If �0 is empty then �0 equals � and � ` � � becauseT is assumed not to contain any feedback events. If �0 is not empty then, sinceT is self justifying, there must exist some � in �0 such that for each template�00;�00 ` �[f�g � derived from �0;�0 ` �[f�g � by backchaining on � we have�00;�00 ` T ;� �. We noted above that backchaining operations commute. Bythe commutativity of backchaining steps there exists a backchaining sequencefrom �0;�0 ` �[f�g � to �; ; ` �[f�g � such that the �rst step in that se-quence is a backchaining step on �. Let �00;�00 ` �[f�g � be the template thatresults from this backchaining step from �0;�0 ` �[f�g �. Note that �00 is asubset of �. We must now have �00;�00 ` T ;� �. By de�nition, T must containtemplates �1;�1 ` �[f�g 	1�2;�2 ` �[f�g 	2...�k;�k ` �[f�g 	ksuch that each �i is a subset of �00, each �i is a subset of �00, and �00 [f	1; 	2; : : : 	kg ` � �. Note that each �i is a subset of �. Since �i isa subset of �00 there must be a sequence of fewer than n backchaining steps thatleads from �i;�i ` �[f�g 	i to a critical template �0i; ; ` �[f�g 	i. Note that�0i is a subset of �. This critical template is a member of Bj [T] for j less thann so we have �0i ` � 	i and thus � ` � 	i. But if � ` � 	i for each 	i, and� [f	1; 	2; : : : 	kg ` � �, then � ` � �.We now come the main de�nition and theorem of this section.De�nition: A rule set R is called inductively local if there existssome n such that Bn[T 0[R]] is self-justifying.Theorem: There exists a procedure which, given any �nite set Rof Horn clauses, will terminate with a feedback event whenever R isnot local, terminate with \success" whenever R is inductively local,and fail to terminate in cases where R is local but not inductivelylocal. 17

The procedure is derived by lifting the above ground procedure for com-puting Bn[T [R]]. Lifting can be formalized as a mechanical operation on ar-bitrary nondeterministic ground procedures [McAllester and Siskind, 1991]. Inthe lifted version the in�nite set Bj[T 0[R]] is represented by a �nite set of \tem-plate schemas" each of which consists of a template expression �;� ` �[f�g �involving variables plus a set of constraints on those variables.7 LOCALITY IS UNDECIDABLEWe prove that locality is undecidable by reducing the Halting problem. LetT be a speci�cation of a Turing machine. We �rst show one can mechanicallyconstruct a local rule set R with the property that the machine T halts if andonly if there exists a term t such that `RH(t) where H is a monadic predicatesymbol. Turing machine computations can be represented by �rst order termsand the formula H(t) intuitively states that t is a term representing a haltingcomputation of T .To prove this preliminary result we �rst construct a super�cial rule set S suchthat T halts if and only if there exists a term t such that INPUT(t) `SH(t). Themechanical construction of the super�cial rule set S from the Turing machineT is fairly straightforward and is not given here. We convert this super�cialrule set S to a local rule set R as follows. For each predicate symbol Q of marguments appearing in S let Q0 be a new predicate symbol of m+1 arguments.The rule set R will be constructed so that `R Q0(t; s1; : : : sm) just in caseInput(t) ` S Q(s1; : : : sm). We de�ne the rule set R to be the rule setcontaining the following clauses.� Input0(x)� All clauses of the formQ01(x; t1;1; : : : t1;m1) ^ � � �^Q0n(x; tn;1; : : : tn;mn))W 0(x; s1; : : : sj)where the clauseQ1(t1;1; : : : t1;m1)^� � �̂ Qn(tn;1; : : : tn;mn))W (s1; : : : sj)is in R.� The clause H0(x; x)) H(x).Given that `R Q0(t; s1; : : : sm) if and only if Input(t) `S Q(s1; : : : sm) itdirectly follows that Input(t) `S H(t) if and only if `R H(t). So the Turingmachine T halts if and only if `RH(t) for some term t. The proof that therule set R is local closely follows the proof of the Local Rule Set RepresentationTheorem proven above. 18

We have now constructed a local rule set R with the property that T halts ifand only if there exists some term t such that `RH(t). Now let R0 be R plus thesingle clauseH(x)) Halts where Halts is a new proposition symbol. We claimthat R0 is local if and only if T does not halt. First note that if T halts thenwe have `R0 Halts but 6` R0 Halts so R is not local. Conversely, supposethat T does not halt. In this case we must show that R0 is local. Suppose that� `R0 �. We must show that � ` R0 �. Suppose � is some formula otherthan Halts. In this case � `R0 � is equivalent to � `R �. Since R is localwe must have � ` R � and thus � ` R0 �. Now suppose � is the formulaHalts. If Halts is a member of � then the result is trivial so we assume thatHalts is not in �. Since � `R0 Halts we must have � `R0 H(c) for someterm c. To show � ` R0 Halts it now su�ces to show that c is mentionedin �. By the preceding argument we have � ` R H(c). Since the rule set Rwas generated by the construction given above, we have that every inferencebased on a clause in R is such that that every formula in the inference has thesame �rst argument. This implies that �0 ` R H(c) where �0 is the subset offormulas in � that have c as a �rst argument. We have assumed that T doesnot halt, and thus 6`R H(c). Hence �0 must not be empty. So � must mentionc and since � ` R H(c) we have � ` R0 Halts.8 OPEN PROBLEMSIn closing we note some open problems. There are many known examples ofrule sets which are not local and yet the corresponding inference relation ispolynomial time decidable. In all such cases we have studied there exists aconservative extension of the rule set which is local. We conjecture that forevery rule set R such that `R is polynomial time decidable there exists a localconservative extension of R. Our other problems are less precise. Can one �nda \natural" rule set that is local but not inductively local? A related questionis whether there are useful machine recognizable subclasses of the local rule setsother than the classes of bounded local and inductively local rule sets?AcknowledgementWe would like to thank Franz Baader for his invaluable input and discus-sions. Support for the work described in this paper was provided in part byMitsubishi Electric Research Laboratories, Inc. Support for the laboratory'sarti�cial intelligence research is provided in part by the Advanced ResearchProjects Agency of the Department of Defense under O�ce of Naval Researchcontract N00014-85-K-0124. Robert Givan is supported by a Fannie and JohnHertz graduate fellowship. 19

References[Bry, 1990] Francois Bry. Query evaluation in recursive databases: bottom-upand top-down reconciled. Data and Knowledge Engineering, 5:289{312, 1990.[Givan et al., 1991] Robert Givan, DavidMcAllester, and Sameer Shalaby. Nat-ural language based inference procedures applied to schubert's steamroller.In AAAI-91, pages 915{920. Morgan Kaufmann Publishers, July 1991.[Immerman, 1986] Neal Immerman. Relational queries computable in polyno-mial time. Information and Control, 68:86{104, 1986.[Ja�ar and Lassez, 1987] J. Ja�ar and J. L. Lassez. Constraint logic program-ming. In Proceedings of POPL-87, pages 111{119, 1987.[Knuth, 1975] Donald E. Knuth. Estimating the e�ciency of backtrack pro-grams. Mathematics of Computation, 29(129):121{136, January 1975.[Kozen, 1977] Dexter C. Kozen. Complexity of �nitely presented algebras. InProceedings of the Ninth Annual ACM Symposium on the Theory of Com-pututation, pages 164{177, 1977.[Mackworth, 1977] A. K. Mackworth. Consistency in networks of relations. Ar-ti�cial Intelligence, 8(1):99{181, 1977.[McAllester and Siskind, 1991] David Allen McAllester and Je�rey MarkSiskind. Lifting transformations. MIT Arti�cial Intelligence LaboratoryMemo 1343, 1991.[McAllester, 1989] David A. McAllester. Ontic: A Knowledge RepresentationSystem for Mathematics. MIT Press, 1989.[McAllester, 1993] D. McAllester. Automatic recognition of tractability in in-ference relations. JACM, 40(2):284{303, April 1993.[Naughton and Ramakrishnan, 1991] Je� Naughton and Raghu Ramakrishnan.Bottom-up evaluation of logic programs. In Jean-Louis Lassez and GordonPlotkin, editors, Computational Logic. MIT Press, 1991.[Papadimitriou, 1985] Christos H. Papadimitriou. A note on the expressivepower of prolog. EATCS Bulletin, 26:21{23, 1985.[Pearl and Korf, 1987] Judea Pearl and Richard Korf. Search techniques. Ann.Rev. Comput. Sci., 2:451{467, 1987.[Shostak, 1978] R. Shostak. An algorithm for reasoning about equality. Comm.ACM., 21(2):583{585, July 1978. 20

[Ullman, 1988] J. Ullman. Principles of Database and Knowledge-Base Systems.Computer Science Press, 1988.[Ullman, 1989] J. Ullman. Bottom-up beats top-down for datalog. In Pro-ceedings of the Eigth ACM SIGACT-SIGMOD-SIGART Symposium on thePrinciples of Database Systems, pages 140{149, March 1989.[van Hentenryck, 1989] Pascal van Hentenryck. Constraint Satisfaction in LogicProgramming. MIT Press, 1989.[Vardi, 1982] M. Vardi. Complexity of relational query languages. In 14th Sym-posium on Theory of Computation, pages 137{146, 1982.

21

