New Results on Local Inference Relations

Robert Givan and David McAllester
MIT Artificial Intelligence Laboratory
545 Technology Square
Cambridge Mass. 02139
rlg@ai.mit.edu
dam@ai.mit.edu

Abstract

We consider the concept of a local set of inference rules. A local rule
set can be automatically transformed into a rule set for which bottom
up evaluation terminates in polynomial time. The local rule set transfor-
mation gives polynomial time evaluation strategies for a large variety of
rule sets that can not be given terminating evaluation strategies by any
other known automatic technique. This paper discusses three new results.
First, it is shown that every polynomial time predicate can be defined by
an (unstratified) local rule set. Second, a new machine recognizable sub-
class of the local rule sets is identified. Finally we show that locality, as a
property of rule sets, is undecidable in general.

This paper appeared in KR-92. A postscript electronic source for this paper can be found in

ftp.ai.mit.edu:/pub/dam /kr92.ps. A bibtex reference can be found in internet file ftp.ai.mit.edu:/pub/dam/dam.bib.

1 INTRODUCTION

Under what conditions does a given set of inference rules define a computation-
ally tractable inference relation? This is a syntactic question about syntactic
inference rules. There are a variety of motivations for identifying tractable in-
ference relations. First, tractable inference relations sometimes provide decision
procedures for semantic theories. For example, the equational inference rules of
reflexivity, symmetry, transitivity, and substitutivity define a tractable inference
relation that yields a decision procedure for the entailment relation between sets
of ground equations [Kozen, 1977, [Shostak, 1978]. Another example is the set
of equational Horn clauses valid in lattice theory. As a special case of the results
in this paper one can show (automatically) that validity of a lattice theoretic
Horn clause is decidable in cubic time.

Deductive data bases provide a second motivation for studying tractable in-
ference relations. A deductive data base is designed to answer queries using
simple inference rules as well as a set of declared data base facts. The inference
rules in a deductive data base usually define a tractable inference relation. The
inference rules are usually of a special form known as a datalog program. A
datalog program 1is a set of first order Horn clauses that do not contain function
symbols. Any datalog program defines a tractable inference relation [Ullman,
1988], [Ullman, 1989]. Recently there has been interest in generalizing the in-
ference rules used in deductive databases beyond the special case of datalog
programs. In the general case, where function symbols are allowed in Horn
clause inference rules, a set of inference rules can be viewed as a Prolog pro-
gram. Considerable work has been done on “bottom up” evaluation strategies
for these programs and source to source transformations that make such bot-
tom up evaluation strategies more efficient [Naughton and Ramakrishnan, 1991]
[Bry, 1990]. The work presented here on local inference relations can be viewed
as an extension of these optimization techniques. For example, locality testing
provides an automatic source to source transformation on the inference rules for
equality (symmetry, reflexivity, transitive, and substitution) that allows them
to be completely evaluated in a bottom-up fashion in cubic time. We do not
know of any other automatic transformation on inference rules that provides a
terminating evaluation strategy for this rule set.

A third motivation for the study of tractable inference relations is the role
that such relations can play in improving the efficiency of search. Many practical
search algorithms use some form of incomplete inference to prune nodes in the
search tree [Knuth, 1975], [Mackworth, 1977], [Pear] and Korf, 1987]. Incom-
plete inference also plays an important role in pruning search in constraint logic
programming [Jaffar and Lassez, 1987], [van Hentenryck, 1989], [McAllester and
Siskind, 1991]. Tractable inference relations can also be used to define a notion
of “obvious inference” which can then be used in “Socratic” proof verification
systems which require proofs to be reduced to obvious steps [McAllester, 1989],

[Givan et al., 1991].

As mentioned above, inference rules are syntactically similar to first order
Horn clauses. In fact, most inference rules can be syntactically represented by
a Horn clause in sorted first order logic. If R is a set of Horn clauses, ¥ is
a set of ground atomic formulas, and ® is a ground atomic formula, then we
write ¥ Fgr ®if YU R F @ in first order logic. We write g rather than
Er because we think of R as a set of syntactic inference rules and kg as the
inference relation generated by those rules. Throughout this paper we use the
term “rule set” as a synonym for “set of Horn clauses”. Technically this phrase
refers to a finite set of Horn clauses. We give nontrivial conditions on E which
ensure that the inference relation Fg 1s polynomial time decidable.

As noted above, a rule set R that does not contain any function symbols is
called a datalog program. It is well known that the inference relation defined by
a datalog program is polynomial time decidable. Vardi and Immerman indepen-
dently proved, in essence, that datalog programs provide a characterization of
the complexity class P — any polynomial time predicate on finite data bases can
be written as a datalog program provided that one is given a successor relation
that defines a total order on the domain elements [Vardi, 1982], [Immerman,

1986], [Papadimitriou, 1985].

Although datalog programs provide an interesting class of polynomial time
inference relations, the class of tractable rule sets is much larger than the class
of datalog programs. First of all, one can generalize the concept of a datalog
program to the concept of a superficial rule set. We call a set of Horn clauses
superficial if any term that appears in the conclusion of a clause also appears
in some antecedent of that clause. A superficial rule set has the property that
forward chaining inference does not introduce new terms. Superficial rule sets
provide a different characterization of the complexity class P. While datalog
programs can encode any polynomial time predicate on finite data bases, super-
ficial rule sets can encode any polynomial time predicate on first order terms.
Let P be a predicate on first order terms constructed from a finite signature. We
define the DAG size of a first order term ¢ to be the number of distinct terms
that appear as subexpressions of ¢.!' Tt is possible to show that if P can be
computed in polynomial time in sum of the the DAG size of its arguments then
P can be represented by a superficial rule set. More specifically, we prove here
that for any such predicate P on k first order terms there exists a superficial rule
set R such that P(ty, ta, ... &) if and only if Input(¢y, ¢2, ... tx) Fr Accept
where Input is a predicate symbol and Accept is a distinguished proposition
symbol. The characterization of P in terms of superficial rule sets differs from
Immerman’s characterization of P in terms of datalog programs in two ways.
First, the result is stated in terms of predicates on terms rather than predicates

1The DAG size of a term is the size of the Directed Acyclic Graph representation of the
term.

on databases. Second, unlike the datalog characterization, no separate total
order on domain elements is required.

Superficial rule sets are a special case of the more general class of local rule
sets [McAllester, 1993]. A set R of Horn clauses is local if whenever © Fg ®
there exists a proof of @ from X such that every term in the proof is mentioned
in ¥ or ®. If R is local then Fg is polynomial time decidable. All superficial
rule sets are local but many local rule sets are not superficial. The set of the
four inference rules for equality is local but not superficial. The local inference
relations provide a third characterization of the complexity class P. Let P be a
predicate on first order terms constructed from a finite signature. If P can be
computed in polynomial time in the sum of the DAG size of its arguments then
there exists a local rule set R such that for any terms ¢1, ¢, ... {x we have that
P(t1, ta, ... &) if and only if g P(t1, ta, ... t;) where P is a predicate
symbol representing P. Note that no superficial rule set can have this property
because forward chaining inference from a superficial rule set can not introduce
new terms. We find the characterization of polynomial time predicates in terms
of local rule sets to be particularly pleasing because it yields a direct mapping
from semantic predicates to predicates used in the inference rules.

Unlike superficiality, locality can be difficult to recognize. The set of four
inference rules for equality 1s local but the proof of this fact is nontrivial. For-
tunately, there are large classes of mechanically recognizable local rule sets. A
notion of a bounded local rule set is defined in [McAllester, 1993] and a pro-
cedure is given which will automatically recognize the locality of any bounded
local rule set. The set of the four basic rules for equality is bounded local.
As another example of a bounded local rule set we give the following rules for
reasoning about a monotone operator from sets to sets.

r<zx

<y y<:izma<:
v <y= flx) < fy)

Let R; be this set of inference rules for a monotone operator.

There is a simple source to source transformation on any local rule set that
converts the rule set to a superficial rule set without losing completeness. For
example consider the above rules for a monotone operator. We can transform
these rules so that they can only derive information about terms explicitly men-
tioned in the query. To do this we introduce another predicate symbol M (with
the intuitive meaning “mentioned”). The rules can be rewritten as follows.

H(f(x)) = H(z)
r<y= M)

r <y =Huy)

Mz)= 2 <u
M(z), M(y), M(2), e <y, y<z=>a <2
M(f(2)), M((f(y), « <y = f(x) < f(y)

Let this transformed rule set be R}. Note that R} is superficial and hence
bottom up (forward chaining) evaluation must terminate in polynomial time.?
Then to determine if ¥ Fpg, ¢ < u we determine, by bottom up evaluation,
whether {M(¢), M(u)} UX I—R} t < u. An analogous transformation applies to

any local rule set.

A variety of other bounded local rule sets are given [McAllester, 1993]. As
an example of a rule set that is local but not bounded local we give the following
rules for reasoning about a lattice.

z < x,z <y = z < Ay

These rules remain local when the above monotonicity rule is added. With
or without the monotonicity rule, the rule set is not bounded local.

In this paper we construct another machine-recognizable subclass of the local
rule sets which we call inductively local rule sets. All of the bounded local rule
sets given in [McAllester, 1993] are also inductively local. The procedure for
recognizing inductively local rule sets has been implemented and has been used
to determine that the above rule set is inductively local. Hence the inference
relation defined by the rules is polynomial time decidable. Since these rules are
complete for lattices this result implies that validity for lattice theoretic Horn
clauses 1s polynomial time decidable.

We been able to show that there are bounded local rule sets which are
not inductively local, although our examples are somewhat artificial. We have
not found any natural examples of local rule sets that fail to be inductively

2For this rule set bottom up evaluation can be run to completion in cubic time.

local. Inductively local rule sets provide a variety of mechanically recognizable
polynomial time inference relations.

In this paper we also settle an open question from our previous analysis
[McAllester, 1993] and show that locality as a general property of rule sets is
undecidable. Hence the optimization of logic programs based on the recognition
of locality is necessarily a somewhat heuristic process.

2 BASIC TERMINOLOGY

In this section we give more precise definitions of the concepts discussed in the
introduction.

Definition: A Horn clause is a first order formula of the form ¥; A
Uy A AV, = ® where ® and the ¥; are atomic formulas. For
any set of Horn clauses R, any finite set X of ground terms, and any
ground atomic formula @, we write ¥ g & whenever ¥ U U(R)
® in first order logic where U(R) is the set of universal closures of
Horn clauses in R.

There are a variety of inference relations defined in this paper. For any
inference relation F and sets of ground formulas ¥ and ' we write ¥ + T if
¥ F W for each ¥ in I'.

The inference relation Fg can be given a more direct syntactic characteriza-
tion. This syntactic characterization is more useful in determining locality.

Definition: A derivation of & from X using rule set R is a sequence
of ground atomic formulas ¥y, ¥y, ... ¥, such that ¥, is & and
for each ¥; there exists a Horn clause @1 A©Oy A .. . AO, = ¥ in R
and a ground substitution o such that o[¥'] is ¥; and each formula
of the form ¢[0;] is either a member of ¥ or a formula appearing in
earlier in the derivation.

Lemma: ¥ Fgr @ if and only if there exists a derivation of ® from
3 using the rule set R.

The following restricted inference relation plays an important role in the
analysis of locality.

Definition: We write ¥ Hpg ® if there exists a derivation of ®
from ¥ such that every term appearing in the derivation appears as
a subexpression of ¢ or as a subexpression of some formula in X.

Lemma: For any finite rule set R the inference relation Hpg s
polynomial time decidable.

Proof: Let n be the number of terms that appear as subexpressions of ® or a
formula in X. If P is a predicate of k& arguments that appears in the inference
rules R then there are at most n* formulas of the form P(s1, ... sp) such that
Y Hpg P(s1, ... s;). Since R is finite there is some maximum arity over all the
predicate symbols that appear in R. The total number of formulas that can be
derived under the restrictions in the definition of H g is order n® where k is
the maximum arity of the predicates in R. m

Clearly, if ¥ H g ® then ¥ Fgr ®. But the converse does not hold in general.
By definition, if the converse holds then R is local.

Definition([McAllester, 1993]): The rule set R is local if the
restricted inference relation H g 1s the same as the unrestricted
relation Fg.

Clearly, if R is local then kg is polynomial time decidable.

3 CHARACTERIZING P WITH SUPERFI-
CIAL RULES

In this section we consider predicates on first order terms that are computable
in polynomial time. The results stated require a somewhat careful definition of
a polynomial time predicate on first order terms.

Definition: A polynomial time predicate on termsis a predicate P
on one or more first order terms which can be computed in polyno-
mial time in the sum of the DAG sizes of its arguments.

Superficial Rule Set Representation Theorem: If P is a poly-
nomial time predicate on first order terms then there exists a su-
perficial rule set R such that for any first order terms ¢y, ..., i,
we have that P is true on arguments ¢;, ..., ¢, if and only if
INPUT({1, ..., t,) Fr ACCEPT.

As an example consider the Acyclic predicate on directed graphs — the
predicate which 1s true of a directed graph if that graph has no cycles. It is
well known that acyclicity is a polynomial time property of directed graphs.
This property has a simple definition using superficial rules with one level of
stratification — if a graph is not cyclic then it 1s acyclic. The above theorem

implies that the acyclicity predicate can be defined by superficial rules without
any stratification. The unstratified rule set for acyclicity 1s somewhat complex
and rather than give it here we sketch a proof of the above general theorem.
The proof is rather technical, and casual readers are advised to skip to the next
section.

We only consider predicates of one argument. The proof for predicates with
of higher arity is similar. Let P be a one argument polynomial time predicate
on terms, i.e., a predicate on terms such that one can determine in polynomial
time in the DAG size of a term ¢ whether or not P(¢) holds. We construct a
data base that represents the term ¢. For each subterm s of ¢ we introduce
a data base individual cg, i.e., a new constant symbol unique to the term s.
We have assumed that the predicate P is only defined on terms constructed
from a fixed finite signature, i.e., a fixed finite set of constant and function
symbols. We will consider constants to be functions of no arguments. For
each function symbol f of n arguments in this finite signature we introduce a
database relation @} of n+1 arguments, i.e., Q5 is a n+1-ary predicate symbol.
Now for any term ¢ we define 3; to be the set of ground formulas of the form
Qf(Ci(sy...sn)s Cs1r --+» Cs,) Where f(s1, ..., s,) is a subterm of ¢ (possibly
equal to t). The set X; should be viewed as a data base with individuals ¢, and
relations Q. Let T' be a set of formulas of the form S(c;, ¢,) where s and u
are subterms of ¢ such that S represents a successor relation on the individuals
of ¥y, i.e., there exists a bijection p from the individuals of ¥; to consecutive
integers such that S(s, u) is in T if and only if p(u) = p(s) + 1. The result
of Immerman and Vardi [Immerman, 1986], [Vardi, 1982] implies that for any
polynomial time property of the set X; U I' there exists a datalog program R
such that X; UT has the given property if and only if ¥, UTl' g ACCEPT. Since
the term ¢ can be easily recovered from the set X;, there must exist a datalog
program R such that ¥; UT Fpg ACCEPT if and only if P(¢). We can assume
without loss of generality that no rule in R can derive new formulas involving
the data base predicates (J;.

We now add to the rule set R superficial rules that construct analogues of
the formulas in ¥; and I'. First we define a mentioned predicate M such that
M(s) is provable if and only if s is a subterm of ¢.

INPUT(t) = M(2)
M(f(z1, ..., xn)) = My

The second rule is a schema for all rules of this form where f is one of the
finite number of function symbols in the signature and z; is one of the variables
z1, ..., £n. Now we give rules that simulate the formula set X;.

M(f(xz1, ..., @) = Qp(flor, ..., Tn), 21, ..., Tn)

Now we write rules that simulate the formula set I, i.e., that define a succes-
sor relation on the terms in . We start by defining a simple subterm predicate
Su such that Su(s, u) is provable if s and u are subterms of ¢ such that s is a
subterm of u.

M(z) = Su(z, z)

M(f(z1, ..., 2n)), Suly, ;) = Suly, flz1, ..., z))

Next we define a “not equal” predicate N E such that N E(s, u) is provable
if and only if s and u are distinct subterms of the input ¢.

M(f(zy, ooy 20) M(g(yt, - oy Um)) =
NE(f(x1, ...y za), 9(y1, - -y Um))
M(f(e1, oo, @i, o0 ®0)),
fler, o0y 4iy oo),

NE(z;, yi) =
NE(f(x1, ..., @5y ... Tpn),

fler, o0 vy oo)

In the first rule f and g must be distinct function symbols and in the second
rule z; and y; occur at the same argument position and all other arguments to
f are the same in both terms. Next we define a “not in” predicate NI such
that N1(s, u) if s is not a subterm of u. We only give the rules for constants
and functions of two arguments. The rules for functions of other numbers of
arguments are similar. In the following rule ¢ must be a constant.

NE(s, ¢) = NI(s, ¢)

NE(z, f(z,y)),
NI(z, z),
NI(z,y) = NI(z, f(z, y))

Now for any subterm s of the input we simultaneously define a three place
“walk” relation W (s, u, w) and a binary “last” relation L(s, u). W(s, u w)
will be provable if s and u are subterms of w and u 1s the successor of s in a left
to right preorder traversal of the subterms of w with elimination of later dupli-
cates. L(s, u) will be provable if s is the last term of the left to right preorder
traversal of the subterms of u, again with elimination of later duplicates. In
these definitions, we also use the auxiliary three place relation W', which can
be viewed as “try to conclude W checking for duplicates”. Once again, ¢ must
be a constant.

M(f(z,) = W(f(x, v), =, flz, y)
M(f($’ y))’ W(u’ v, $) = W(ua v, f(l‘, y))

M(f(x, y)), NIy, z),
L(s, x) = W(s, y, f(x, y))

M(f($’ y))’ W(u’ v, y) = W/(ua v, f(xa y))

W/(Ua v, f(l‘, y))’
NI(u, ®), NI(v,) = W(u, v, f(z, y))

W' (u, v, f(z, y)),
W' (v, w, f(z, y)),
Su(v,) = W'(u, w, f(x, y))
= L(c, ¢)
M(f(z, y)), L(ylast, y),
Nli(ylast,) = L(ylast, f(z, y))

H(f(z, y)), Suly, x),
L(xlast,) = L(zlast, f(z, y))

L(ylast, y), Su(ylast, z),
NIy,),

W'(flast, ylast, f(z, y)),
NI(flast, f(z, v)) = L(flast, f(z, y))

Finally we define the successor predicate 5.

INPUT(z), W(z, y, z) = S(z, y)
Let R’ be the the datalog program R plus all of the above superficial rules.

We now have that ©; UT Fgr ACCEPT if and only if INPUT(¢) Fgr/ ACCEPT and
the proof is complete.

4 CHARACTERIZING P WITH LOCAL RULES

Using the theorem of the previous section one can provide a somewhat different
characterization of the complexity class P in terms of local rule sets.

Local Rule Set Representation Theorem: If P is a polynomial
time predicate on first order terms then there exists a local rule set

10

R such that for any first order terms ¢y, ..., t,, we have that P is
true on arguments t1, ..., t, if and only if Fr P(t; ... t,) where
P is a predicate symbol representing P.

Before giving a proof of this theorem we give a simple example of a local rule
set for a polynomial time problem. Any context free language can be recognized
in cubic time. This fact is easily proven by giving a translation of grammars
into local rule sets. We represent a string of words using a constant symbol
for each word and the binary function CONS to construct terms that represent
lists of words. For each nonterminal symbol A of the grammar we introduce a
predicate symbol P4 of two arguments where P4(x y) will indicate that # and
y are strings of words and that y i1s the result of removing a prefix of z that
parses as category A. For each production A — ¢ where ¢ is a terminal symbol
we construct a rule with no antecedents and the conclusion P4(CONS(c, z)).
For each grammar production 4 — BC' we have the following inference rule.

Pp(xz y) A Po(y z) — Pa(x z)

Finally, we let P be a monadic predicate which is true of strings generated by
the distinguished start nonterminal S of the grammar and add the following
rule.

Ps(x NIL) = P(x)

Let R be this set of inference rules. R is a local rule set, although the proof
of locality is not entirely trivial. The rule set R also has the property that
Fr P(x) if and only if z is a string in the language generated by the given
grammar. General methods for analyzing the order of running time of local rule
sets can be used to immediately give that these clauses can be run to completion
in order n3 time where n is the length of the input string.®> We have implemented
a compiler for converting local rule sets to efficient inference procedures. This
compiler can be used to automatically generate a polynomial time parser from
the above inference rules.

We now prove the above theorem for local inference relations from the pre-
ceding theorem for superficial rule sets. By the preceding theorem there must
exist a superficial rule set R such that for any first order terms ¢1, s, ... t
we have that P(¢1, t2, ... t,) if and only if INPUT(¢1, ?2, ... t3) Fgr ACCEPT
where INPUT is a predicate symbol and ACCEPT is a distinguished proposition
symbol. For each predicate symbol () of m arguments appearing in R let Q' be
a new predicate symbol of k + m arguments. We define the rule set R’ to be
the rule set containing the following clauses.

e Input’(zy, ... &, #1, ...)

3 An analysis of the order of running time for decision procedures for local inference relations
is given in [McAllester, 1993].

11

o All clauses of the form

Qll(l‘l, oo Tk, tl,la tl,ml)/\"'/\
Q;l(l‘l, e Zpy o, oo tn,mn) =
W' (e, ... zx, 51, ... 5j)

where the clause Q1(t1,1, ... t1m)A - AQn(tn 1, -+ tam,) = W(s1, ... s;)

isin R.
e The clause Accept/(z1, ... @) = P21, ... zp).
Given the above definition we can easily show that Fg/ Q'(t1, ... 4k, s1, ... Sm)
if and only if Input(?y, ... t) Fr Q(s1, ... 8m). Therefore, it follows that

Input(ty, ... {;) Fr Accept if and only if kg P(#1, ... t3). It remains only
to show that R’ is local. Suppose that ¥ Fg/ ®. We must show that ¥ H g ®.
Let 1, ...t be the first k arguments in ®. Every inference based on R’ involves
formulas which all have the same first k& arguments. Given that ¥ kg ® we
must have that ¥’ tg ® where X' is the set of formulas in X that have t, . ..
1 as their first k£ arguments. Let ¥/ be and ®' be the result of replacing each

formula Q'(¢1, ... tk, $1, ..., 8m) by Q(s1, ..., 8m). Since &' Fp ® we must
have {Input(?;, ... &)} UX"” Fgr ®. But since R is superficial this implies
that every term in the derivation underlying {Input(ty, ... &)} UX" Fgr @&

either appears in some ¢; or appears in X”. This implies that every term in the
derivation appears in either ¥’ or ®. This implies ¥ H g/ ®.

5 ANOTHER CHARACTERIZATION OF LO-
CALITY

In this section we give an alternate characterization of locality. This charac-
terization of locality plays an important role in both the definition of bounded
local rule sets given in [McAllester, 1993] and in the notion of inductively local
rule sets given here.

Definition: A bounding set is a set T of ground terms such that
every subterm of a member of T 1s also a member of T.

Definition: A ground atomic formula ¥ is called a label formula of
a bounding set T if every term in ¥ is a member of T.

Definition: For any bounding set T, we define the inference relation
Hgry to be such that ¥ Hpy & if and only if there exists a
derivation of ® from X such that every formula in the derivation is
a label formula of the term set T.

12

We have that ¥ Hgr @ if and only if ¥ Mgy ® where T is the set of all
terms appearing as subexpressions of ® or formulasin X. The inference relation
H g,y can be used to give another characterization of locality. Suppose that R
is not local. In this case there must exist some ¥ and ® such that ¥ A 5 & but
> Fgr ®. Let T be the set of terms that appear in X and ®. We must have
Y W gy ®. However, since ¥ g ® we must have ¥ Hg v/ @ for some finite
superset T/ of T. Consider “growing” the bounding set one term at a time,
starting with the terms that appear in X and ®.

Definition: A one step extension of a bounding set T is a ground
term « that 1s not in T but such that every proper subterm of « is
a member of T.

Definition: A feedback event for R consists of a finite set ¥ of
ground formulas, a ground formula ®, a bounding set T containing
all terms that appear in ¥ and ®, and a one step extension « of T
such that ¥ H g yy{a) @ but X A gy @.

By abuse of notation, a feedback event will be written as ¥ Hp yyfa; @.

Lemma([McAllester, 1993]): R is local if and only if there are
no feedback events for R.

Proof: First note that if R has a feedback event then R is not local — if
Y Heryula; @ then X Fgr @ but if ¥ H gy @ then ¥ WA g ®. Conversely
suppose that R is not local. In there case there is some X and @ such that
YXHp ®but ¥ Hgy @ for some finite T. By considering a least such T one
can show that a feedback event exists for R. m

The concepts of bounded locality and inductive locality both involve the
concept of a feedback event. We can define bounded locality by first defining
Cr(Z,T) to be the set of of formulas ¥ such that ¥ Hgry ¥. R is bounded
local if it is local and there exists a natural number k& such that whenever
Y HRryuia) ¥ there exists a derivation of ¥ from Cg(X,T) such that every
term in the derivation is a member of T U {«} and such that the derivation is
no longer than k. As mentioned above, the set of the four basic inference rules
for equality is bounded local and there exists a procedure which can recognize
the locality of any bounded local rule set. The definition of inductive locality 1s
somewhat more involved and is given in the next section.

6 INDUCTIVE LOCALITY

To define inductive locality we first define the notion of a feedback template.
A feedback template represents a set of potential feedback events. We also

13

define a backward chaining process which generates feedback templates from a
rule set R. We show that if there exists a feedback event for R then such an
event will be found by this backchaining process. Furthermore, we define an
“inductive” termination condition on the backchaining process and show that if
the backchaining process achieves inductive termination then R is local.

Throughout this section we let R be a fixed but arbitrary set of Horn clauses.
The inference relation Hpzy will be written as Hy with the understanding
that R is an implicit parameter of the relation.

We define feedback templates as ground objects — they contain only ground
first order terms and formulas. The process for generating feedback templates
is defined as a ground process — it only deals with ground instances of clauses
in R. The ground process can be “lifted” using a lifting transformation. Since
lifting is largely mechanical for arbitrary ground procedures [McAllester and
Siskind, 1991], the lifting operation is only discussed briefly here.

Definition: A feedback template consists of a set of ground atomic
formulas ¥, a multiset of ground atomic formulas I'; a ground atomic
formula @, a bounding set T, and a one step extension « of T such
that ® and every formula in X is a label formula of T, every formula
in T is a label formula of T U {«} that contains &, and such that
YUl H Tu{a} d.

By abuse of notation a feedback template will be written as X, I' Hyyqa; @.
I’ is a multiset of ground atomic formulas, each of which is a label formula of
T U {a} containing «, and such that the union of ¥ and T' allow the derivation
of @ relative to the bounding set T U {«}. A feedback template is a potential
feedback event in the sense that an extension of ¥ that allows a derivation of
the formulas in I' may result in a feedback event. The requirement that I' be
a multiset 18 needed for the induction lemma given below. Feedback templates
for R can be constructed by backward chaining.

Procedure for Generating a Template for R:

1. Let ¥ AU A--- AW, = & be a ground instance of a clause
in R.

2. Let a be a term that appears in the clause but does not appear
in the conclusion ® and does not appear as a proper subterm
of any other term in the clause.

3. Let T be a bounding set that does not contain « but does
contain every term in the clause other than «.

4. Let X be the set of antecedents ¥; which do not contain «.
5. Let I be the set of antecedents ¥, which do contain «.

14

6. Return the feedback template X, I' Hyyap @.

We let T4[R] to be the set of all feedback templates that can be derived from
R by an application of the above procedure. We leave it to the reader to verify
that 7o[R] is a set of feedback templates. Now consider a feedback template
Y, I Hyypay ® We can construct a new template by backward chaining from
Y, I Hyygay @ using the following procedure.

Procedure for Backchaining from X, I' H vy, @

1. Let ©® be a member of I'

2. Let W1 AU, A - AW, = O be a ground instance of a clause in
R that has © as its conclusion and such that each ¥; is a label
formula of T U {a}.

3. Let X' be X plus all antecedents ¥; which do not contain «.

4. Let IV be T' minus © plus all antecedents W¥; which do contain
o.

5. Return the template ¥/, 1" Hyyyqy @.

In step 4 of the above procedure, I is constructed using multiset operations.
For example, if the multiset I' contains two occurrences of ©, then “I' minus ©”
contains one occurrence of ©. We need I' to be a multiset in order to guaran-
tee that backchaining operations commute in the proof of the induction lemma
below—in particular, we will use the fact that if a sequence of backchaining
operations remove an element @ of I' at some point, then there exists a permu-
tation of that sequence of backchaining operations producing the same resulting
template, but that removes © first.

For any set 7 of feedback templates we define B[T] to be 7 plus all tem-
plates that can be derived from an element of 7 by an application of the above
backchaining procedure. It is important to keep in mind that by definition B[7]
contains 7. We let B"[T] be B[B[- - - B[T]]] with n applications of 5.

Definition: A feedback template is called critical if ' is empty.

Ifx,0 Hyufay @ is a critical template then ¥ Hyypy @ If X Ay @
then ¥ Hyy1oy @ is a feedback event. By abuse of notation, a critical template
3,0 H Yu{a} ® such that ¥ Ay & will be called a feedback event. The fol-
lowing lemma provides the motivation for the definition of a feedback template
and the backchaining process.

Lemma: There exists a feedback event for R if and only if there
exists a j such that B/[7o[R]] contains a feedback event.

15

Proof: To prove the above lemma suppose that there exists a feedback event
for R. Let ¥ Hyyjey ® be a minimal feedback event for R, i.e., a feedback
event for R which minimizes the length of the derivation of ® from X under the
bounding set YU {a}. The fact that this feedback event is minimal implies that
every formula in the derivation other than ® contains «. To see this suppose
that © is a formula in the derivation other than ® that does not involve a. We
then have ¥ Hyy(ay © and X U {O} Hyygay ®. One of these two must be a
feedback event — otherwise we would have ¥ Hy &. But if one of these 1s a
feedback event then it involves a smaller derivation than ¥ H vy, ® and this
contradicts the assumption that ¥ H~yyp,; @ is minimal. Since every formula
other than ® in the derivation underlying ¥ Hyyfq; @ contains «, the template
,0H tYufa} @ can be derived by backchaining. m

The above lemma implies that if the rule set is not local then backchaining
will uncover a feedback event. However, we are primarily interested in those
cases where the rule set is local. If the backchaining process is to establish
locality then we must find a termination condition which guarantees locality.
Let 7 be a set of feedback templates. In practice 7 can be taken to be B [7 [R]]
for some finite j. We define a “self-justification” property for sets of feedback
templates and prove that if 7 is self-justifying then there is no n such that 8" [T
contain a feedback event. In defining the self-justification property we treat each
template in 7 as an independent induction hypothesis. If each template can be
“Justified” using the set of templates as induction hypotheses, then the set 7 is
self-justifying.

Definition: We write X,I' Bz . ® if 7 contains templates
Y1, 11 Hyugar ¥

Yo,z Hyyfay ¥s

Yp, L Hyugay Yi

where each Y; is a subset of X, each I'; is a subset of I' and X U
{Uy, Uy, ... U} Hy D,

Definition: 7 is said to justify a template X, ' H 1,y @ if there
exists a © € I' such that for each template X', I Hyyy,) @ gener-
ated by backchaining from X, I' Hyyfq; @ by selecting © at step 1
of the backchaining procedure we have ¥/, TV H Ty ¢

Definition: The set 7 is called self-justifying if every member of
T 1s either critical or justified by 7, and 7 does not contain any
feedback events.

16

Induction Theorem: If 7 is self-justifying then no set of the form
B"[T] contains a feedback event.

Proof: We must show that for every critical template X,0 Hyyq3 @ in B"[T]
we have that ¥ Hy ®. The proof is by induction on n. Consider a critical
template X, 0 Hyyjqy @ in B"[7] and assume the theorem for all critical tem-
plates in B [T] for j less than n. The critical template 3,0 H vy, ® must be
derived by backchaining from some template X', I Hyy(,; @ in 7. Note that
Y must be a subset of X. If IV is empty then X/ equals ¥ and ¥ H~y ® because
7T is assumed not to contain any feedback events. If I is not empty then, since
T is self justifying, there must exist some © in IV such that for each template
YT Hyygay @ derived from ¥/, T Hyyg,y @ by backchaining on © we have
DI H’T,T ®. We noted above that backchaining operations commute. By
the commutativity of backchaining steps there exists a backchaining sequence
from ¥, T Hyypay @ to 3,0 Hyygay @ such that the first step in that se-
quence is a backchaining step on ©. Let X" I Hyy,) @ be the template that
results from this backchaining step from X/, IV Hy;,) ®. Note that X" is a
subset of ¥.. We must now have ¥/ T H 7y ® By definition, 7 must contain
templates
Y1, 11 Hyugar ¥

Yo, T2 Hyufay W2

Yp, L Hyugay Yi

such that each X; is a subset of ¥/ each T'; is a subset of I, and X" U
{W;, ¥y, ... ¥y} Hy P. Note that each X; is a subset of X. Since T is
a subset of I'" there must be a sequence of fewer than n backchaining steps that
leads from 3, T's Hyygay ¥; to a critical template X7, 0 Hyypay ¥;. Note that
¥/ is a subset of ¥. This critical template is a member of 5/[7] for j less than
n so we have ¥} Hy W; and thus ¥ Hy ¥;. But if ¥ Hy ¥, for each ¥, and
EU{\Ifl, Yy, ... \Ifk} Hy &, then ¥ Hy ®. m

We now come the main definition and theorem of this section.

Definition: A rule set R is called inductively local if there exists
some n such that B"[7T[R]] is self-justifying.

Theorem: There exists a procedure which, given any finite set R
of Horn clauses, will terminate with a feedback event whenever R is
not local, terminate with “success” whenever R is inductively local,
and fail to terminate in cases where R is local but not inductively
local.

17

The procedure is derived by lifting the above ground procedure for com-
puting B"[T[R]]. Lifting can be formalized as a mechanical operation on ar-
bitrary nondeterministic ground procedures [McAllester and Siskind, 1991]. In
the lifted version the infinite set 5% [7 o[R]] is represented by a finite set of “tem-
plate schemas” each of which consists of a template expression ¥, I' Hyyrq) @
involving variables plus a set of constraints on those variables.

7 LOCALITY IS UNDECIDABLE

We prove that locality is undecidable by reducing the Halting problem. Let
T be a specification of a Turing machine. We first show one can mechanically
construct a local rule set R with the property that the machine 7" halts if and
only if there exists a term ¢ such that FrH(t) where H is a monadic predicate
symbol. Turing machine computations can be represented by first order terms
and the formula H(t) intuitively states that ¢ is a term representing a halting
computation of 7.

To prove this preliminary result we first construct a superficial rule set .S such
that 7" halts if and only if there exists a term ¢ such that INPUT(¢) g I (¢). The
mechanical construction of the superficial rule set S from the Turing machine
T is fairly straightforward and is not given here. We convert this superficial
rule set S to a local rule set R as follows. For each predicate symbol @ of m
arguments appearing in S let ()’ be a new predicate symbol of m+ 1 arguments.
The rule set R will be constructed so that Fr Q'(¢, s1, ... sp) just in case
Input(t) Fs Q(s1, ... sm). We define the rule set R to be the rule set
containing the following clauses.

e Input'(z)
o All clauses of the form

Qi@ tia, oo tim) A A
Q;L(xa tn,la tn,mn) =
Wiz, s1, ... 85)

where the clause Q1(t1,1, ... t1,m)A - AQn(tn 1, - tam,) = W(st, ...
1sin R.

e The clause H'(x, #) = H(z).

Given that tg Q'(t, s1, ... sp) if and only if Input(?) Fg Q(s1, ... sm) it
directly follows that Input(t) Fg H(t) if and only if Fr H(t). So the Turing
machine 7' halts if and only if FrH(¢) for some term t. The proof that the
rule set R is local closely follows the proof of the Local Rule Set Representation
Theorem proven above.

18

We have now constructed a local rule set R with the property that 7" halts if
and only if there exists some term ¢ such that FrH(t). Now let R’ be R plus the
single clause H(z) = Halts where Halts is a new proposition symbol. We claim
that R’ is local if and only if 7" does not halt. First note that if T halts then
we have Fp Halts but W 5 Halts so R is not local. Conversely, suppose
that 7" does not halt. In this case we must show that R’ is local. Suppose that
¥ Fgr ®. We must show that ¥ Hpg ®. Suppose @ is some formula other
than Halts. In this case ¥ Fp/ & is equivalent to ¥ Fp ®. Since R is local
we must have ¥ Hp & and thus ¥ Hp ®. Now suppose ® is the formula
Halts. If Halts is a member of X then the result is trivial so we assume that
Halts is not in ¥. Since ¥ kg Halts we must have ¥ Fp H(c) for some
term ¢. To show ¥ H g/ Halts it now suffices to show that ¢ 1s mentioned
in . By the preceding argument we have ¥ Hp H(c). Since the rule set R
was generated by the construction given above, we have that every inference
based on a clause in R is such that that every formula in the inference has the
same first argument. This implies that ¥/ Hpr H(c) where X' is the subset of
formulas in X that have ¢ as a first argument. We have assumed that 7" does
not halt, and thus Fgr H(c). Hence ¥/ must not be empty. So ¥ must mention
¢ and since ¥ Hpr H(c) we have ¥ H g/ Halts.

8 OPEN PROBLEMS

In closing we note some open problems. There are many known examples of
rule sets which are not local and yet the corresponding inference relation is
polynomial time decidable. In all such cases we have studied there exists a
conservative extension of the rule set which is local. We conjecture that for
every rule set R such that Fg is polynomial time decidable there exists a local
conservative extension of R. Our other problems are less precise. Can one find
a “natural” rule set that is local but not inductively local? A related question
is whether there are useful machine recognizable subclasses of the local rule sets
other than the classes of bounded local and inductively local rule sets?

Acknowledgement

We would like to thank Franz Baader for his invaluable input and discus-
sions. Support for the work described in this paper was provided in part by
Mitsubishi Electric Research Laboratories, Inc. Support for the laboratory’s
artificial intelligence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-85-K-0124. Robert Givan 1s supported by a Fannie and John
Hertz graduate fellowship.

19

References

[Bry, 1990] Francois Bry. Query evaluation in recursive databases: bottom-up
and top-down reconciled. Data and Knowledge Engineering, 5:289-312, 1990.

[Givan et al., 1991] Robert Givan, David McAllester, and Sameer Shalaby. Nat-
ural language based inference procedures applied to schubert’s steamroller.

In AAAI-91, pages 915-920. Morgan Kaufmann Publishers, July 1991.

[Immerman, 1986] Neal Immerman. Relational queries computable in polyno-
mial time. Information and Control, 68:86-104, 1986.

[Jaffar and Lassez, 1987] J. Jaffar and J. L. Lassez. Constraint logic program-
ming. In Proceedings of POPL-87, pages 111-119, 1987.

[Knuth, 1975] Donald E. Knuth. Estimating the efficiency of backtrack pro-
grams. Mathematics of Computation, 29(129):121-136, January 1975.

[Kozen, 1977] Dexter C. Kozen. Complexity of finitely presented algebras. In
Proceedings of the Ninth Annual ACM Symposium on the Theory of Com-
pututation, pages 164-177, 1977.

[Mackworth, 1977] A. K. Mackworth. Consistency in networks of relations. Ar-
tificial Intelligence, 8(1):99-181, 1977.

[McAllester and Siskind, 1991] David Allen McAllester and Jeffrey Mark
Siskind. Lifting transformations. MIT Artificial Intelligence Laboratory
Memo 1343, 1991.

[McAllester, 1989] David A. McAllester. Ontic: A Knowledge Representation
System for Mathematics. MIT Press, 1989.

[McAllester, 1993] D. McAllester. Automatic recognition of tractability in in-
ference relations. JACM, 40(2):284-303, April 1993.

[Naughton and Ramakrishnan, 1991] Jeff Naughton and Raghu Ramakrishnan.
Bottom-up evaluation of logic programs. In Jean-Louis Lassez and Gordon
Plotkin, editors, Computational Logic. MIT Press, 1991.

apadimitriou, ristos H. Papadimitriou. note on the expressive
[Papadimitri 1985] Chri H. Papadimitri A h i
power of prolog. FATCS Bulletin, 26:21-23, 1985.

[Pear]l and Korf, 1987] Judea Pearl and Richard Korf. Search techniques. Ann.
Rev. Comput. Sci., 2:451-467, 1987.

[Shostak, 1978] R. Shostak. An algorithm for reasoning about equality. Comm.
ACM., 21(2):583-585, July 1978.

20

[Ullman, 1988] J. Ullman. Principles of Database and Knowledge-Base Systems.
Computer Science Press, 1988.

[Ullman, 1989] J. Ullman. Bottom-up beats top-down for datalog. In Pro-
ceedings of the Figth ACM SIGACT-SIGMOD-SIGART Symposium on the
Principles of Database Systems, pages 140-149, March 1989.

[van Hentenryck, 1989] Pascal van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press, 1989.

[Vardi, 1982] M. Vardi. Complexity of relational query languages. In 14th Sym-
postum on Theory of Computation, pages 137-146, 1982.

21

