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Abstract

We investigate set constraints over set expressions with Tarskian functional and relational opera-
tions. Unlike the Herbrand constructor symbols used in recent set constraint formalisms, the
meaning of a Tarskian function symbol is interpreted in an arbitrary first order structure. We
show that satisfiability of Tarskian set constraints is decidable in nondeterministic doubly expo-
nential time. We also give complexity results and open problems for various extensions and
restrictions of the language.

Keywords: Set constraints, decision procedures, dynamic logic, mu-calculus.

1.  Introduction

There has been considerable interest recently in formalisms for describing and rea-
soning about sets. Here we consider a family of formalisms that have received sur-
prisingly little attention. Consider a set expression of the form
where denote sets. In recent work on set constraints, operation symbols
are interpreted as Herbrand term constructors so that the set expression

denotes the set of terms where .
But an equally natural interpretation takes to be the set of values
that can derived by applying themeaningof f to elements of the sets denoted by

. For example, if + denotes addition andO denotes the set of odd inte-
gers then we would expect to denote all the integers that can be expressed
as the sum of two odds, i.e., all the even integers. In general we can let the meaning
of operations be determined by a first order structure in the standard way, and view
any subset assertion between set expressions as constraining both the set variable
meaningsand the operation symbol meaningsfor the variables and operation sym-

f C1 … Cn, ,( )
C1 … Cn, ,

f C1 … Cn, ,( ) f t1 … tn, ,( ) t1 C1∈ … tn Cn∈, ,
f C1 … Cn, ,( )

C1 … Cn, ,
+ O O,( )
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bols that appear in the assertion. We call set expressions under this form of seman-
tics “Tarskian” to distinguish them from the “Herbrand” set expressions that have
received considerable recent attention.

Tarskian set constraints seem fundamentally different from Herbrand set con-
straints. There does not seem to be any simple reduction of Tarskian set constraints
to the monadic class. Since Tarskian set constraints are not restricted to Herbrand
interpretations, induction principles for Herbrand interpretations do not apply. It
turns out that Tarskian set constraints are closely related to modal logics. Before
stating our main results on Tarskian constraints we review some work on set cal-
culi. We organize the review around four classes of set calculi — Herbrand set
constraints, modal logics, AI concept languages, and Tarskian set constraints.

Herbrand set constraints involve set expressions generated by the grammar

, (1)

whereX is any set variable, andf is any Herbrand function symbol. A set expres-
sion of the form is taken to denote the set of all terms
with . A set constraint is an expression of the form . Herbrand set
constraints are largely inspired by applications to the static analysis of computer
programs (Heintze and Jaffar, 1990b) (Heintze and Jaffar, 1990a) (Frühwirth, et.
al., 1991) (Aiken et. al., 1994). The problem of determining satisfiability of a finite
set of Herbrand set constraints is the problem of determining whether there is any
interpretation of the set variables appearing in the constraints as sets of terms such
that all the constraints are true relative to the interpretation. This problem is known
to be complete for nondeterministic exponential time (Aiken et. al., 1993a) (Bach-
mair, et. al., 1993). The problem remains decidable in nondeterministic exponen-
tial time if one adds both negative constraints,i.e., , (Aiken et. al.,
1993b) (Charatonik and Pacholski, 1994a), and projection functions (Charatonik
and Pacholski, 1994b).

Modal logics involve formulas which are true or false of possible worlds in
Kripke structures. Equivalently, each formula of a modal logic can be taken to
denote the set of worlds in which it is true. Since modal formulas denote sets,
modal logics can be viewed as set calculi. Propositional dynamic logic (PDL) (Fis-
cher and Ladner, 1979) (Pratt, 1980) and the modalµ-calculus (Kozen, 1983) are
particularly significant modal logics. IfR is a binary relation symbol andC is a set
expression then in both these logics the set expression denotes the set

. The set expression is defined analogously to
denote . The modalµ-calculus allows for recursively defined
set expressions of the form where is a set variable and is a set
expression in which every occurrence ofX in occurs inside an even number
of negation signs. PDL can be seen as a restriction of the modalµ-calculus which
has much simpler decision procedures and yet is sufficiently expressive to cover

C X f C1 … Cn, ,( ) C1 Cn∪ C¬| | |::–

f C1 … Cn, ,( ) f t1 … tn, ,( )
t i Ci∈ C1 C2⊆

C1 / C2⊆

R[ ]C
x : y∀ R x y,( ) y C∈→{ } R〈 〉C

x : y C∈ R x y,( )∃{ }
µX.C X[ ] X C X[ ]

C X[ ]
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many applications. Satisfiability for both PDL and the modal -calculus are
known to be complete for deterministic exponential time (Street and Emerson,
1989) (Emerson and Jutla, 1988) (Safra, 1988).

AI concept languages have been developed for knowledge representation in
expert systems (Brachman and Schmolze, 1985) (Schmidt-Schaub and Smalka,
1991). The set expressions of concept languages are constructed from set variables
and relation variables using a variety of compositional mechanisms. For example,
the expression whereR is a relation expression andC is a set expression
denotes the set (and hence is a syntactic variant of

). For the most part these languages can be viewed as fragments of PDL
(Calvanese et. al., 1994) (Giacomo and Lenzerini, 1994b) (Giacomo and Len-
zerini, 1994a). However, many of these languages have satisfiability problems in P,
NP, or PSPACE (Donini, et. al., 1991). Also, concept languages often include car-
dinality primitives which appear not to be expressible in PDL. Furthermore, there
is a natural relationship between certain concept languages and Montague gram-
mar for natural language. In particular the set expression is taken to be
the set . This provides a natural meaning for English verb
phrases such as “contains every prime number.” One simple but expressive Mon-
tagovian concept language has a polynomial time satisfiability problem (McAll-
ester and Givan, 1992).

Tarskian set expressions have been studied by Jònnson and Tarski in the frame-
work of Boolean algebra with operations (Jònnson and Tarski, 1951) (Jònnson and
Tarski, 1952). In the work of Jònnson and Tarski the operationf in the expression

actually denotes a relation on arguments. More specifically,
denotes . One

can think off as a nondeterministic operation — for any given tuple of inputs there
is a set of possible outputs. Jònnson and Tarski’s main result is a variant of the
Stone representation theorem which can be viewed as a completeness theorem for
an algebraic axiomatization. They did not study decision theoretic complexity
issues. Representation theorems for subclasses of Boolean algebras with opera-
tions have recently been studied in a general setting by Goldblatt (Goldblatt,
1989). Kozen (Kozen, 1993) has recently obtained a Stone duality in the context of
Herbrand set constraints between the algebra of set constraints and the topological
term automata of (Kozen, et. al., 1993) and (Kozen, et. al., 1994).

Here we consider a superset of the original set expressions studied by Jònnson
and Tarski. We make a syntactic distinction between deterministic and nondeter-
ministic operation symbols corresponding to classical function symbols and rela-
tion symbols respectively. We use this nonstandard terminology so that we can
write set expressions of the form wheref is an operation symbol
(either deterministic or nondeterministic). We also allow least fixed point expres-
sions. The complete grammar of our Tarskian set expressions is as follows.

µ

R.C∀
x : y R x y,( ) y C∈→∀{ }

R[ ]C

R every C( )
x : y C∈ R x y,( )∀{ }

f C1 … Cn, ,( ) n 1+
f C1 … Cn, ,( ) y : x1 C1∈ … xn Cn∈ x1 … xn y, , ,〈 〉 f∈∃, ,∃{ }

f C1 … Cn, ,( )
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(2)

In the above grammarf can be either deterministic or nondeterministic and
may take no arguments,i.e., be a constant symbol. is restricted so thatX
can only occur inside an even number of negation symbols inC. We consider finite
sets of constraints of the form  or .

In spite of the apparent naturality of Tarskian set constraints, their computa-
tional properties have not been widely studied. It is shown in (McAllester and
Givan, 1993) that satisfiability of nonrecursive Tarskian set constraints not involv-
ing Boolean operations is decidable in cubic time (assuming unit time hash table
operations). It is shown in (Givan and McAllester, 1992) that satisfiability of con-
straints on expressions involving meets, joins, and monotone applications in an
arbitrary lattice is similarly decidable in cubic time. The results of this paper are
summarized in the table below. We categorize Tarskian set constraint satisfiability
problems by the presence or absence of recursion (µ-sets), the presence or absence
of functions (deterministic operations of arity at least one), and the presence or
absence of constants (deterministic operations of arity zero). In all cases we allow
nondeterministic operations (of all arities) and both positive and negative set con-
straints.

The results in the first two lines of the table are proved using techniques similar to
those used for PDL (Pratt, 1980) (see Sections 3.1, 4.2, and 4.3). The lower bound
in line three is proved using techniques similar to those used in proving NEXP-
TIME hardness for the monadic class (Lewis, 1980) (see Section 3.2). The upper
bound in line three is proved by a filtration-like argument (see Section 4.4).

Standard techniques fail for the fourth line upper bound, the case of nonrecur-
sive constraints with arbitrary operations. We show in Section 4.5 that satisfiability
for nonrecursive Tarskian set constraints is decidable in nondeterministic doubly
exponential time. Our procedure involves a reduction to a natural class of

Rec Fun Const Lower Bound Upper Bound

1. – – – EXPTIME Sec. 3.1 EXPTIME Sec. 4.2

2. – – + EXPTIME Sec. 3.1 EXPTIME Sec. 4.3

3. – + – NEXPTIME Sec. 3.2 NEXPTIME Sec. 4.4

4. – + + NEXPTIME Sec. 3.2 2-NEXPTIME Sec. 4.5

5. + – – EXPTIME Sec. 3.1 EXPTIME Sec. 5

6. + – + EXPTIME Sec. 3.1 ?

7. + + – NEXPTIME Sec. 3.2 ?

8. + + + Undecidable Sec. 3.3 ?

Table 1:  Summary of Results with Pointers to Relevant Paper Sections

C X f C1 … Cn, ,( ) C1 Cn∪ C¬ µX .C| | | |::–

µX .C

C1 C2⊆ C1 / C2⊆
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Diophantine constraints which we callprequadratic. We show that satisfiability for
prequadratic Diophantine constraints is decidable in nondeterministic exponential
time. However, we conjecture that prequadratic Diophantine satisfiability is in NP.
If so, then we get a nondeterministic singly exponential procedure for nonrecursive
Tarskian constraints.

The fifth line in the table corresponds to recursive constraints with nondeter-
ministic operations. It turns out that constraint set satisfiability in this calculus is
linear time equivalent to set expression satisfiability in the modalµ-calculus. We
show in Section 5 that constraint set satisfiability for this class is polynomial time
reducible to closed set expression satisfiability in a calculus we call the Herbrand
µ-calculus. Closed set expression satisfiability for the Herbrandµ-calculus is
known to be decidable in exponential time.

Decision procedures for the modalµ-calculus can be viewed as consisting of
two phases. The first phase can be viewed as a reduction of set expression satisfi-
ability in the modal calculus to set expression satisfiability in the closed Herbrand
calculus. The second phase is a decision procedure for the closed Herbrand calcu-
lus. The formal justification for the first phase is rather elaborate (Street and Emer-
son, 1989). Here we give an alternative reduction from the modalµ-calculus to the
closed Herbrandµ-calculus with a simplified correctness proof.

We believe it likely that techniques used in decision procedures for the modal
µ-calculus can be used to construct decision procedures for lines six and seven,
although this has not yet been done.

The undecidability of the eighth line is proved by a reduction of Hilbert’s tenth
problem. The reduction, given in Section 3.3, uses only intersection and union
constraints (no negation) and only a single level ofµ-quantification.

It is interesting to note that the difficulties in both lines four and eight arise
from the ability to express Diophantine constraints. It seems that both constants
and functions of arity at least one are necessary for expressing such constraints.

The remainder of this paper is organized as follows:

• Section 2 is a basic concepts section laying out the terminology we use for the
various Tarskian set constraints satisfiability problems;

• Section 3 gives proofs of the lower bounds given above in Table 1;

• Section 4 gives proofs of the upper bounds from Table 1 for the nonrecursive
variations of the language; and

• Section 5 gives a proof of the EXPTIME upper bound for recursive Tarskian
set constraints without function symbols of any arity.
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2.  Basic Concepts

We assume a countably infinite collection of set variables and for each arity (num-
ber of arguments) an infinite number of deterministic and an infinite number of
nondeterministic operation symbols of that arity. We will call deterministic opera-
tion symbols of arity zeroconstant symbols,and those of nonzero arityfunction
symbols.We consider set expressions generated by the following grammar.1

(3)

We also write as an abbreviation for . We take a first
order structureM to be a domain setD plus an interpretation, denoted , of
each operation symbolf such that iff has arityn then and such that
if f is deterministic then for all inD there exists exactly oney such that

. A set variable interpretation over a first order structureM
is a mapping from set variables to subsets of the domain ofM. If ρ is a set variable
interpretation then is the interpretation identical toρ except that it inter-
prets the variableX as the setS. For any set expressionC, first order structureM
with domainD, and set variable interpretationρ overM we take to be a
subset ofD defined by the following conditions:

A positive constraint is an expression of the form , and a negative con-
straint of the form . A pair is called amodel.We say that a
model satisfies the constraint whenever .
We say satisfies if . We say sat-
isfies a setΣ of constraints if satisfies every member ofΣ. We call
a model ofΣ in this case. A constraint setΣ is satisfiable if it is satisfied by some

. We are interested in determining the satisfiability of finite sets of con-
straints.

1. The (deterministic or nondeterministic) operation symbolf must have arityn in expressions of
the form  and all occurrences ofX in C in the expression  must occur inside
an even number of negations.

for γ any cardinal greater than that ofD

where  for ordinalsβ, α

f C1 … Cn, ,( ) µX .C

C X f C1 … Cn, ,( ) C1 C2∪ C¬ µX .C| | | |::–

C1 C2∩ C1¬ C2¬∪( )¬
M f( )

M f( ) D n 1+⊆
x1 … xn, ,

x1 … xn y, , ,〈 〉 M f( )∈

ρ X:=S[ ]

M C[[ ]] ρ

M X[[ ]] ρ = ρ X( )

M f C1 … Cn, ,( )[[ ]] ρ =
y : x1 M C1[[ ]] ρ∈∃ … xn M Cn[[ ]] ρ∈∃, ,

x1 … xn y, , ,〈 〉 M f( )∈ 
 
 

M C1 C2∪[[ ]] ρ = M C1[[ ]] ρ M C2[[ ]] ρ∪

M C¬[[ ]] ρ = D M C[[ ]] ρ–

M µX . C[[ ]] ρ = µγ

µα M C[[ ]] ρ X:=µβ[ ]
β α<
∪=

C1 C2⊆
C1 / C2⊆ M ρ,〈 〉

M ρ,〈 〉 C1 C2⊆ M C1[[ ]] ρ M C2[[ ]] ρ⊆
M ρ,〈 〉 C1 / C2⊆ M C1[[ ]] ρ / M C2[[ ]] ρ⊆ M ρ,〈 〉

M ρ,〈 〉 M ρ,〈 〉

M ρ,〈 〉
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Because we discuss many variations of the basic Tarskian language, we intro-
duce here a system of abbreviations for the variations considered. We will write
“plain Tarskian set constraint” for a constraint with no recursions and no function
or constant symbols. We will add a prefix ofR-, F-, and/orT- to the word “Tar-
skian” to indicate the possible presence of recursion, function symbols, and/or
constant symbols, respectively. So, for example, anRC-Tarskianset constraint
may contain recursion and/or constant symbols but may not contain function sym-
bols. Except where explicitly mentioned, all languages we consider here allow
Boolean operations and nondeterministic operation symbols of arbitrary arity.

3.  Lower Bounds

In this section we present the three reductions responsible for all the lower bounds
shown in Table 1. First, we show that plain Tarskian constraints have an EXP-
TIME-hard satisfiability problem by giving a reduction from the acceptance prob-
lem for linear-space-bounded alternating Turing machines. Second, we show that
the addition of function symbols to the language results in a satisfiability problem
that is at least nondeterministic exponential-time hard, by reduction from the satis-
fiability of “Lewis clauses”. Finally, we show that fullRFC-Tarskianset con-
straints have an undecidable satisfiability problem; this is shown by reduction from
Hilbert’s tenth problem. All eight lower bounds shown in Table 1 derive directly
from these three reductions.

3.1  Lower Bound for Plain Tarskian Constraints

In this section we show that satisfiability of Tarskian set constraints is EXPTIME
hard for constraints without recursion or deterministic operation symbols. The
results of this section can be contrasted with known results on the satisfiability of
individual set expressions in these expressively weak languages (Donini, et. al.,
1991). In the nonrecursive case satisfiability of individual set expressions is con-
siderably easier than satisfiability of a system of set constraints. We show in
Section 5 that when recursive set expressions are allowed but deterministic opera-
tions are not, then constraint set satisfiability can be reduced to set expression sat-
isfiability. Without recursion the reduction fails.

It turns out that languages somewhat weaker than Tarskian set constraints with-
out recursion or deterministic operations are still hard for exponential time. We
will characterize some weaker languages using the following definitions.

Definition 1. If is a set of constraints and is a constraint we write
to indicate that any model satisfying all the constraints in also satisfies . A
positive entailment problemis a set ofpositiveset constraints and a positive
set constraint . The problem is to determine whether .

Each positive entailment problem is equivalent to a set constraint satis-

Σ Φ Σ Φ|=
Σ Φ

Σ
Φ Σ Φ|=

Σ Φ|=
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fiability problem ( ) in which there is exactly one negative constraint.
We call a set of constraints with at most one negative constraint apositive entail-
ment satisfiability problem.Now consider the following ways in which set expres-
sions can be formed.

We use the notation to mean the set language with set variables
and set formation features , , . For example, is the language
whose set expressions are constructed from set variables using only the set forma-
tion operations∩ and as defined above. All of the languages defined by the
above four features are sublanguages of plain Tarskian set constraints. In all of
these languages the only occurrences of the set complement operation are the
occurrences implicit in set expressions of the form or . We show
here that the positive entailment satisfiability problem for and

are both EXPTIME hard. Before doing this we now briefly mention
the difficulty of the positive entailment satisfiability problem for other combina-
tions of these features.

We begin by establishing a general duality principle for all languages defined
by subsets of the language features discussed in this section.

Definition 2. If C is a concept expression then we define the dual ofC, denoted
as , to be the result of simultaneously replacing by , by , by

, and  by . Note that  for anyC.

Definition 3. For any variable interpretationρ we define to be the interpre-
tation given by ,i.e.,  is the complement of .

Lemma 1: For any set expressionC and model , we have is
equal to .

Proof: Push the negation in ¬C down to the set variables using de Morgan’s
laws and the identities  and .

Definition 4. For any positive constraint , we define the dual constraint
to be and for any setΣ of positive constraints we define

 to be .

∪ If  and  are set expressions then so is .

∩ If and are set expressions then so is , which will
also be written .

If  is a set expression and  is a binary operation symbol then
, which will also be written , is also a set expression.

If  is a set expression and  is a binary operation symbol then
, which will also be written , is also a set expression.

Σ Φ¬{ }∪

U W U W∪

U W U¬ W¬∪( )¬
U W∩

<> C R
R C( ) R〈 〉C

[------] C R
R¬ C¬( ) R[ ]C

L F1 … Fn, ,( )
F1 … Fn L ∩ <>,( )

<>

R[ ]C U W∩
L [------] <> ∩, ,( )

L [------] <> ∪, ,( )

C* <> [------] [------] <> ∪
∩ ∩ ∪ C*( )* C=

ρ*

ρ* X( ) D ρ X( )–= ρ* X( ) ρ X( )

M ρ,〈 〉 M C*[[ ]] ρ*

M C¬[[ ]] ρ

R〈 〉C¬ R[ ] C¬= R[ ]C¬ R〈 〉 C¬= ❏

C W⊆
C W⊆( )* W* C*⊆

Σ* Φ* : Φ Σ∈{ }
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Lemma 1 implies that for any positive constraintΦ we have that satisfies
Φ if and only if  satisfies . This yields the following duality lemma.

Lemma 2: (Duality) The entailment relation holds if and only if the
dual relation  holds.

This duality lemma allows the direct reduction of the positive entailment satisfi-
ability problem for any language variant to its dual variant,e.g., the reduction from

to and vice versa. We now consider the positive entailment satisfiabil-
ity problem for several specific language variants.

The positive entailment satisfiability problems for and can both be
reduced in linear time to the satisfiability problem for propositional Horn clauses
which is known to be decidable in linear time (Downing and Gallier, 1984), as fol-
lows. Any constraint set with no negative constraints is trivially satisfiable by the
empty model. If there is one negative constraint, we can focus on a single domain
object d witnessing the truth of the negative constraint (i.e., such that

for negative constraint ) and then treat each set vari-
able P as a proposition symbol whose truth corresponds to . Each
constraint can then be written as a set of Horn clauses over these proposition sym-
bols so that the resulting set is satisfiable exactly if there exists a model of the pos-
itive constraints with at least one witnessd to the single negative constraint.

The positive entailment satisfiability problem for can be shown to be
NP complete (we leave this as an exercise for the reader). It is known that satisfi-
ability of Tarskian set constraints not involving Boolean operations or recursion,
but with both deterministic and nondeterministic operation symbols of all arities, is
decidable in polynomial time (McAllester and Givan, 1993). This implies that the
positive entailment satisfiability problem for is decidable in polynomial
time. By duality arguments given below this implies that the problem for is
also decidable in polynomial time. To our knowledge the difficulty of the positive
entailment problem for other combinations of these features is open.

It is possible to relax the semantics of Tarskian set expressions so that the “set”
expressions denote elements of a lattice and∪ and∩ denote least upper bound
and greatest lower bound operations respectively. Once we allow an arbitrary lat-
tice (rather than require a complemented distributive lattice), and only require that
relations denote monotone operations on lattice elements, then the positive entail-
ment problems for is decidable in polynomial time (McAllester and
Givan, 1992).

Theorem 1: The positive entailment problem for is EXPTIME
hard.

Proof: The proof is by reduction of the acceptance problem for linear space
bounded alternating Turing machines. In an alternating Turing machine the

M ρ,〈 〉
M ρ*,〈 〉 Φ*

Σ Φ|=
Σ* Φ*|=

L ∪( ) L ∩( )

L ∪( ) L ∩( )

d M U W¬∩[[ ]] ρ∈ U / W⊆
d M P[[ ]] ρ∈

L ∪ ∩,( )

L <>( )
L [------]( )

L <> ∪ ∩, ,( )

L [------] <> ∩, ,( )
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states are classified into “universal” and “existential” states and for any given
state and input symbol there can be many different next states (as in simple non-
deterministic machines). A configuration of the machine consists of a state of
the tape, the tape location of the Turing machine head, and the state of the
machine. A configuration in which the machine is in a universal (existential,
accepting) state is called a universal (existential, directly accepting) configura-
tion. Each configuration has a set of possible next configurations defined by the
transition table of the machine in the standard way. The set of accepting config-
urations is the least set containing all directly accepting configurations (where
the machine is in an accept state) and including every universal configuration
such that all next configurations are accepting and every existential configura-
tion such that some next configuration is accepting. The linear space alternating
Turing machine problem can be phrased as the problem of deciding if a given
configuration of a given alternating machine is accepting subject to the restric-
tion that configurations are restricted to ones in which the head occurs on a
given set of tape squares (all other configurations are taken to be failing config-
urations). We can assume without loss of generality that all configurations have
exactly two next configurations. We show that this problem is polynomial time
reducible to the positive entailment problem for .

In the reduction to from alternating machines to set expressions the set expres-
sions can be viewed as sets of machine configurations, or equivalently each set
expression can be viewed as a “proposition” that is true or false of any given
configuration. Given any linear space bounded alternating Turing machine we
introduce a set variable for each tape locationn and possible tape symbol
a. Intuitively represents the proposition that symbola is written on square
n. We also introduce a set variable for each tape locationn representing the
proposition that the head is at squaren and a proposition for each machine
states representing the proposition that the machine is in states. We also have
set variablesSTART andACCEPT representing, respectively, the propositions
“the current configuration is the given initial configuration” and “the current
configuration is an accepting configuration.” Finally we have one binary opera-
tion symbolN representing the “next configuration” relation. We letΣ be the
following set of positive constraints. Each constraint can be viewed as an impli-
cation required to hold at all configurations.

1.

2.  where  is the initial state.

3.  wherea is the initial symbol on tape squaren.

4. A constraint  for each entry
in the transition table of the machine which replacesa by b, moves from
states to statew, and moves right. A similar constraint is included for
each left-moving entry in the machine table.

L [------] <> ∩, ,( )

Xn a,
Xn a,

Hn
Zs

START H0⊆

START Zs0
⊆ s0

START Xn a,⊆

Xn a, Hn Zs∩ ∩ N〈 〉 Hn 1+ Zw Xn b,∩ ∩( )⊆
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5. All constraints of the form  where .

6. All constraints of the form  wheres is an accepting state.

7. All constraints of the form

wheres is a universal state with successor statesu andw.

8. All constraints of the form  wheres is an
existential state.

We now sketch a proof that if and only if the given ini-
tial configuration is accepting. We first assume that
and show that the initial configuration is accepting. Suppose not. We can then
construct a model ofΣ, in which the initial configuration is in

but not in , contradicting our assumption that
. The domain ofM is the set of all configurations

reachable from the initial configuration. Each set variableSTART, ACCEPT,
, , or is interpreted relative to this domain byρ according to the

intended meanings given above (e.g., is the set of configurations in the
domain for which the head is at tape locationn). M interprets the binary opera-
tion symbolN as true for two configurationsα1 and α2 if and only if α2 is
reachable in one step fromα1. It is easy to check that the constraints inΣ are all
satisfied by and that the initial configuration is in but
not in , as desired, allowing us to conclude by contradiction
that  implies that the initial configuration is accepting.

We now consider the converse direction. We assume that the given initial con-
figurationβ is accepting and prove that . We say that a
configurationα is n-accepting for natural numbern if it satisfies the following
conditions:

• if , α is directly accepting

• if and the machine is in a universal state inα, then all successors ofα
are ( )-accepting.

• if and the machine is in an existential state inα, then some successor of
α is ( )-accepting.

We also define the set expression for each configurationα to be the
expression where for eachi, ai is the symbol
on tape squarei in configurationα, the head is at tape squarem in configuration
α, and the machine is in statew in configurationα.

Constraint types 4 and 5 inΣ ensure that whenever it is pos-
sible for a transition to occur from a configurationα to a configurationγ. Using
this fact along with constraint types 6, 7, and 8 we can now show by induction

Xn a, Hm∩ N[ ]Xn a,⊆ n m≠

Zs ACCEPT⊆

Zs N〈 〉 Zu ACCEPT∩( ) N〈 〉 Zw ACCEPT∩( )∩ ∩ ACCEPT⊆

Zs N〈 〉ACCEPT∩ ACCEPT⊆

Σ START ACCEPT⊆|=
Σ START ACCEPT⊆|=

M ρ,〈 〉
M START[[ ]] ρ M ACCEPT[[ ]] ρ
Σ START ACCEPT⊆|=

Xn a, Hn Zw
Hn

M ρ,〈 〉 M START[[ ]] ρ
M ACCEPT[[ ]] ρ

Σ START ACCEPT⊆|=

Σ START ACCEPT⊆|=

n 0=

n 0>
n 1–

n 0>
n 1–

D α( )
X1 a1, … Xn an, Hm Zw∩ ∩ ∩ ∩

D α( ) N〈 〉 D γ( )( )⊆
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on n that for everyn-accepting configurationα we have ,
for anyn. Since each accepting configuration must ben-accepting for somen,
we can conclude that for the given initial configurationβ.
But the first three types of constraints inΣ ensure that , and
so by the transitivity of subset we have that as desired.

This last lemma allows a direct reduction of the positive entailment problem for
to the corresponding problem for so the latter must also

be EXPTIME hard.

Corollary 1: The positive entailment problem for is EXPTIME
hard.

3.2  Lower Bound forF-Tarskian Constraints

In this section we give a reduction from a fragment of the monadic class known to
be complete for nondeterministic exponential time to nonrecursive Tarskian con-
straints with function symbols but without constant symbols.

Definition 5. A first order clause is a first order sentence of the form
where eachΨi is a first order literal,i.e., either an

application of a predicate symbol to terms or the negation of such an applica-
tion. Let a be a fixed constant symbol and letf be a fixed monadic function
symbol. We define aLewis clause (overa andf) to be one of the following:

• An atomic sentence of the form .

• A clause involving a single variablex where every literal contains an applica-
tion of a monadic predicate to eitherx or .

• A clause involving exactly two variables in which every literal contains an
application of a monadic predicate to one of the two variables.

The following result is due to Lewis (Lewis, 1980).

Theorem 2: (Lewis) Satisfiability for a set of Lewis clauses is complete for
NEXPTIME.

Note that Lewis clauses involve only monadic predicates. Function symbols only
arise in clauses of the second type. It is not difficult to show that a set of Lewis
clauses can be “inverse Skolemized” to produce an equisatisfiable sentence with-
out any function symbols and involving only monadic predicates. Hence Lewis
clauses can be viewed as a fragment of the monadic class. The NEXPTIME lower
bound for Herbrand set constraints established in (Bachmair, et. al., 1993) was also
proved using a reduction of Lewis clauses.

Σ D α( ) ACCEPT⊆|=

Σ D β( ) ACCEPT⊆|=
Σ START D β( )⊆|=

Σ START ACCEPT⊆|=
❏

L <> [------] ∩, ,( ) L <> [------] ∪, ,( )

L <> [------] ∪, ,( )

x1 … xn, , Ψ1 … Ψk∨ ∨( )∀

P a( )

f x( )
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Theorem 3: Satisfiability forF-Tarskian constraint sets is NEXPTIME hard.

Proof: The proof is by reduction of Lewis clause satisfiability. LetC be a set of
Lewis clauses. For each monadic predicate symbol inC we select a correspond-
ing zero arity nondeterministic Tarskian operation symbol — by abuse of nota-
tion we will denote the selected Tarskian operation symbol for each monadic
predicate (e.g. P) by the same name (i.e., P). We define a set of nonrecur-
sive Tarskian set constraints as follows. Let , , be all clauses inC
of the form . We include in the constraint where
F is the empty set expression for an arbitrary set variableX. For each
clause of the form in C,
where eachPi andQi is either a predicate or its negation, we include the con-
straint

(4)

in . Finally, consider a clause in C of the form
where eachPi and Qi is either a

predicate or its negation. Letg be a fixed but arbitrary binary Tarskian function
symbol. For each such clause inC we include the constraint

(5)

in .

It is easy to show andC are equisatisfiable, as follows. Suppose thatC is
satisfied by a first-order structureM. If we extendM by interpretingg as the
constant function which maps all pairs of domain elements to the value ofa
then we get a model of (since has no set variables in it the choice
of ρ is immaterial). Conversely, let satisfy . It must be possible to
extendM by interpretinga in such a way as to satisfy all clauses of the form

 in C. This extension must satisfyC.

3.3  Lower Bound forRFC-Tarskian Constraints

In this section we show that satisfiability for full Tarskian set constraints (with both
recursion and arbitrary arity deterministic and nondeterministic operation sym-
bols) is undecidable. The proof is by a reduction of Hilbert’s tenth problem. The
proof uses only set variables, constants, monadic functions, set unions and inter-
sections (no complementation), and a single level ofµ quantification.

Theorem 4: Satisfiability forRFC-Tarskian constraint sets is undecidable.

Proof: Let Σ be a set of constraints of the form , , or
, wheren, p andq range over nonnegative integers. It follows from the

undecidability of Hilbert’s tenth problem that satisfiability for such systems of

T C[ ]
P1 a( ) … Pn a( )

P a( ) T C[ ] P1 … Pn∩ ∩ / F⊆
X X¬∩

P1 x( ) … Pn x( ) Q1 f x( )( ) … Qm f x( )( )∨ ∨ ∨ ∨ ∨

f P1¬ … Pn¬∩ ∩( ) Q1 … Qm∪ ∪⊆

T C[ ]
P1 x( ) … Pn x( ) Q1 y( ) … Qm y( )∨ ∨ ∨ ∨ ∨

g P1¬ … Pn¬∩ ∩ Q1¬ … Qm¬∩ ∩,( ) F⊆

T C[ ]

T C[ ]

T C[ ] T C[ ]
M ρ,〈 〉 T C[ ]

P a( ) ❏

n 1= n p q+=
n pq=
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constraints is undecidable. We reduce the diophantine constraint setΣ to a set
 of Tarskian set constraints as follows.

For each natural number variablen occurring inΣ we introduce a set variableXn
with the intention that the cardinality ofXn represent the value ofn. For set
expressionsC andW we will use as an abbreviation for the two con-
straints and . We will also use as an abbreviation for

wheref is a fresh monadic function symbol used only in this con-
straint. We will use as an abbreviation for and .
For any monadic function symbols and set expressionC we let be an
abbreviation for ,i.e., the set of objects that can be gotten by
applyings zero or more times to an element ofC. For each variablen in Σ we
introduce a constant symbolcn and monadic function symbolsn and add the fol-
lowing constraints toT(Σ):

(6)

The first constraint states thatXn is the set containingcn and all its transitive
successors undersn. The second constraint states thatcn is the successor under
sn of some element of and therefore that the setXn forms a loop under the
successor functionsn. This implies thatXn is a finite set but does not otherwise
constrain its cardinality. This corresponds to the Hilbert problem constraint that
n is a nonnegative integer. We now need to impose the constraints given inΣ.

If Σ contains the constraint thenT(Σ) contains the constraint .
If Σ contains  then we add the constraints

(7)

to T(Σ) whereC, U, andW are fresh set variables andF is the set expression
, which always denotes the empty set. It remains only to express product

constraints as set constraints.

To handle the product case we introduce some additional notation. Let be
a set expression constructed entirely from deterministic operation symbols
(functions or constants) and a single occurrence of the variableX, e.g.,
wherec is a constant andf is a function. Note that ifX denotes a singleton set
then so does , and equals . For any such set
expression we introduce the notation as an abbre-
viation for

. (8)

T Σ( )

C W=
C W⊆ W C⊆ C W≤

C f W( )⊆
C W= C W≤ W C≤

s* C( )
µW .C s W( )∪

Xn sn
* cn( )=

cn sn sn
* cn( )( )⊆

sn
* cn( )

n 1= Xn cn=
n p q+=

Xn U W∪=

U W∩ F⊆

Xp U=

Xq W=

µX . X

C X[ ]

f X c,( )

C X[ ] C X Y∪[ ] C X[ ] C Y[ ]∪
C X[ ] x f * c( )∈ x = C x[ ]∀

f * c( ) µX . c C c[ ]∩( ) f X( ) C f X( )[ ]∩( )∪=
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For example, states thatg is the inverse off on the set
. More generally, if there is only one occurrence ofX in , and

is constructed purely fromX and function symbols, then the expression
states that each elementx of is a “fixed point” of

the set expression . SupposeΣ contains . We add the following
constraints to , wherec is a fresh constant andf, g, h, and are fresh
monadic function symbols:

Constraints 2, 4, and 6 imply that , , and are all finite “loops”.
Constraint 7 implies thatg andh are both functions mapping into .
Constraints 8, and 9 imply that and are inverses ofg andh, respectively,
on the set . Since bothg andh are invertible they must both be bijections
from to itself. This implies that the inverses and are also bijections.
Condition 10 implies thatg and h commute on ,i.e., equals

. Now consider . Sinceg is bijective, is bijective. Note that
equals . So the mapping is a bijection which “preservesh

structure”. Hence the set is anh-loop with the same cardinality as
. Since sets of the form areh-loops they are either equal or dis-

joint. Suppose . Applying to both sides we
. This implies that must be in and hence by

condition 11 above we have . But this implies thatk equalsj mod
. Hence for mod we have is disjoint from

. Since all these sets are of size we have
. Condition 7 also implies that and

with conditions 8 through 10 this gives so we can con-
clude  as desired.

4.  Upper Bounds for Constraints without Recursion

In this section we present upper bounds for Tarskian set constraint satisfiability
problems without recursion. We consider four restrictions on this problem and pro-
vide upper bounds for each — the variations are due to the separate prohibition or
inclusion of function symbols and constant symbols.

The upper bound proofs build on one another conceptually, as we move from

x f *∈ x = g f x( )( )∀
f * c( ) C X[ ] C X[ ]

x f * c( )∈ x = C x[ ]∀ f * c( )
C[ ] n pq=

T Σ( ) g′ h′

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Xn f * c( )=

c f f * c( )( )⊆

Xp g* c( )=

c g g* c( )( )⊆

Xq h* c( )=

c h h* c( )( )⊆

f * c( ) µX . c g X( ) h X( )∪ ∪( )=

x f * c( )∈ x = g′ g x( )( )∀

x f * c( )∈ x = h′ h x( )( )∀

x f * c( )∈ x = g′ h′ g h x( )( )( )( )∀

g* c( ) h* c( )∩ c=

f * c( ) g* c( ) h* c( )
f * c( ) f * c( )

g′ h′
f * c( )

f * c( ) g′ h′
f * c( ) f g x( )( )

g f x( )( ) gn h* c( )( ) gn

h gn x( )( ) gn h x( )( ) gn

gn h* c( )( )
h* c( ) g j h* c( )( )

g j h* c( )( ) gk h* c( )( )= g′ j

h* c( ) gk j– h* c( )( )= gk j– c( ) h* c( )
gk j– c( ) c=

g* c( ) k j≠ g* c( ) g j h* c( )( )
gk h* c( )( ) h* c( )
f * c( ) g* c( ) h* c( )≥ f * c( ) g* h* c( )( )⊆

f * c( ) g* c( ) h* c( )≤
f * c( ) g* c( ) h* c( )= ❏
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prohibiting function symbols and constants to allowing both. The proofs given
establish the upper bound results shown in lines 1 through 4 of Table 1. The upper
bounds are tight to the lower bounds proven in Section 3 for each case except the
case allowing both function and constant symbols, where there is a gap between
our lower and upper bounds.

4.1  Basic Terminology and Summary of Nonrecursive Upper Bound Proofs

Because the following four upper bound proofs all rely on the same basic terminol-
ogy about nonrecursive set constraints, we collect the relevant definitions here for
reference. LetΣ be a set of nonrecursive Tarskian set constraints,i.e., set con-
straints not involvingµ-sets.

Definition 6. We say that a set expressionC occurs inΣ if either C occurs as a
top level set expression in a constraint inΣ or as a subexpression of such an
expression. AΣ-typeis a setτ of set expressions satisfying the following condi-
tions:

• Every element ofτ is of the formC or ¬C whereC occurs inΣ,

• For anyC occurring inΣ, τ contains exactly one ofC or ¬C,

• If occurs inΣ thenτ contains if and only ifτ contains
at least one ofC1 andC2, and

• If Σ contains  andτ containsC, thenτ containsW.

Intuitively, the Σ-types correspond to the “types” of domain elements where two
elements have the same type if they are not distinguished by any set expression
occurring inΣ — i.e.,both elements are included or excluded together in the deno-
tation of every set expression occurring inΣ. The Σ-types are analogous to truth
assignments on the Fischer-Ladner closure used in decision procedures for PDL
(Fischer and Ladner, 1979). Now consider a model .

Definition 7. A domain elementx of M inhabitsa Σ-typeτ if for every
we have . If some domain element inhabitsτ then τ is called
inhabited.

Definition 8. The typeof any domain elementx of M is the uniqueΣ-type τ
such that for all set expressionsU occurring inΣ, τ containsU if and only if

.

Next we define a notion of a “possible output” for an application of an opera-
tion symbol (deterministic or nondeterministic).

Definition 9. A type τ is a possible outputof operationR applied to types
, written , provided that for every expression of the

C1 C2∪ C1 C2∪

C W⊆

M ρ,〈 〉

C τ∈
x M C[[ ]] ρ∈

x M U[[ ]] ρ∈

σ1 … σn, , R σ1 … σn, ,( ) τ–»
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form in Σ such that each ,τ contains as
opposed to .

Intuitively, is true provided that the set expressions inτ do not
forbid R from mapping objects of typeσi to an object of typeτ. We now consider
local consistency properties that must hold for the set of inhabitedΣ-types in any
model.

Definition 10. A setS of Σ-types islocally consistent if:

• For each negative constraint inΣ there is a type inSwhich containsU
but notW,

• If a typeτ in Scontains for anyn-ary operation symbolR, then
there exist types inSsuch that and for
eachi ,

• For each deterministic operation symbolf andΣ-types inS, where
n is the arity off, there exists aΣ-typeτ in Ssuch that , and

• Each constant (deterministic operation of arity zero) is contained in exactly
one type inS.

If Σ does not contain recursion and either does not contain constants (determin-
istic operations of arity 0) or does not contain functions (deterministic operations
of arity at least one) thenΣ is satisfiable if and only if there exists a locally consis-
tent set ofΣ-types. The following subsections contain proofs of this fact, which we
briefly summarize for each language variation here. In the case where neither con-
stants or functions are present one can start with allΣ-types and iteratively remove
those violating the second condition of Definition 10. We then have thatΣ is satis-
fiable if and only if the resulting set ofΣ-types satisfies the first condition of
Definition 10. This gives a deterministic exponential time decision procedure. If
constants are present then we must nondeterministically guess a unique -type for
each constant before removingΣ-types to satisfy the second condition of
Definition 10. However, this involves only polynomially many nondeterministic
choices and hence the space of all possible guesses can be searched in determinis-
tic exponential time. So we again get a deterministic exponential time procedure.
When functions are present (but not constants) we can again start with allΣ-types
and remove types violating the second and third conditions. However when the
third condition is violated we have a choice of removing any one of the types
σ1, , σn. This gives a nondeterministic exponential time procedure.

When both functions and constants are present, Tarskian set constraints can
express a limited form of diophantine constraints on the cardinalities of the sets
represented by the set expressions. For this case, we give a nondeterministic reduc-
tion to an exponentially large diophantine constraint problem of a form we call
prequadratic, and then show that such constraint problems can be solved in nonde-

R C1 … Cn, ,( ) Ci σi∈ R C1 … Cn, ,( )
R C1 … Cn, ,( )¬

R σ1 … σn, ,( ) τ–»

U / W⊆

R C1 … Cn, ,( )
σ1 … σn, , R σ1 … σn, ,( ) τ–» Ci σi∈

σ1 … σn, ,
f σ1 … σn, ,( ) τ–»

Σ

…
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terministic time exponential in their size, yielding a nondeterministic doubly expo-
nential decision procedure. We conjecture that prequadratic diophantine
constraints are in NP — if this conjecture is true, our decision procedure would
give a tight upper bound of nondeterministic exponential time for nonrecursive
Tarskian constraints.

In the next four subsections we give these four upper bound proofs in detail.

4.2  Upper Bound for Plain Tarskian Constraints

This section gives a simple (deterministic) exponential time procedure for deter-
mining the satisfiability of a system of nonrecursive Tarskian set constraints with-
out function or constant symbols. The results in this section are subsumed by those
of Section 5 where we show that satisfiability for recursive Tarskian set constraints
without functions is also decidable in deterministic exponential time. However, the
procedure in Section 5 is based on the known decision procedure for the proposi-
tionalµ-calculus which in turn is based on tree automaton techniques and is proba-
bly unusable in practice (Street and Emerson, 1989). Here we sketch a much
simpler exponential time procedure that is somewhat analogous to the exponential
time decision procedure for PDL constructed by Pratt (Pratt, 1980).

Theorem 5: Satisfiability of a system of plain Tarskian constraint sets is decid-
able in exponential time.

Proof: We define a simple procedure. LetΣ be a system of nonrecursive Tar-
skian set constraints. InitializeS to be the set of allΣ-types. Now repeatedly
remove fromS any typeτ such thatτ contains but there are no
types inS such that eachσi containsCi and .

The final setS of Σ-types can be computed in time that is exponential in the
number of set expressions occurring inΣ. We now show thatΣ is satisfiable if
and only if for all negative constraints inΣ there exists some typeτ in
such thatτ containsC but notW. First suppose there is some negative constraint

in Σ such that every type inS that containsC also containsW. It is not
difficult to show that everyΣ-type removed by the above procedure must be
uninhabited in any model ofΣ, implying that every model ofΣ must satisfy

(because any domain elementx in the denotation ofC hasC in its Σ-
type and must then haveW in its Σ-type and be in the denotation ofW). SinceΣ
contains  there can be no such models and soΣ is unsatisfiable.

Now, to prove the converse, suppose that for each negative constraint in
Σ there exists a type inScontainingC but notW. Let be the model such
that the domain ofM is the setS, ρ(X) is the set of types inS containing the
variableX and for operation symbolR is the relation containing those
tuples overS such that . We prove by struc-
tural induction on set expressions that for any set expressionC occurring inΣ

R C1 … Cn, ,( )
σ1 … σn, , R σ1 … σn, ,( ) τ–»

C / W⊆ S

C / W⊆

C W⊆

C / W⊆

C / W⊆
M ρ,〈 〉

M R( )
σ1 … σn τ, , ,〈 〉 R σ1 … σn, ,( ) τ–»
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we have that is exactly the set of types inScontainingC. It is not dif-
ficult to show using the properties ofS listed in definitions 6 and 10 that this
implies that satisfiesΣ. The case of set variables is true by definition.
The case of union set expressions that occur inΣ is straightforward given the
third property ofΣ-types from Definition 6. If ¬C occurs inΣ then by the induc-
tion hypothesis is the set of types inScontainingC. Since by defini-
tion everyΣ-type contains exactly one ofC and ¬C, we have that ,
which equals , is precisely those types inS which contain ¬C, as
desired. Now consider an application expression . Letτ be a type
in Scontaining this application expression. Sinceτ was not removed in the pro-
cess of constructingS there must exist typesσ1, , σn such that

and where for eachCi. It follows from the defini-
tion of thatτ is a member of . Finally suppose that
τ is a type in . By the definition of there must exist
types in , , respectively such that

. By the induction hypothesis we must have for each
. Now by the definition of we must also have thatτ contains .

The proof of the above theorem yields a finite model property for plain Tarskian
set constraints (every satisfiable set of constraints is satisfiable by a finite model).
It is also possible, although we will not do it here, to give a simple set of inference
rules and show that the steps of the above procedure can be simulated by infer-
ences in that system and hence that the rules are sound and complete for this case.

4.3  Upper Bound forC-Tarskian Constraints

In this section we sketch a proof that satisfiability for Tarskian set constraints with-
out recursion and without function symbols of arity greater than zero is decidable
in exponential time. The decision procedure is very similar to the procedure of the
preceding section except that, due to the inclusion of constant symbols in the lan-
guage, rather than deterministically construct a set ofΣ-types we are forced to
guess a set ofΣ-types, making only polynomially many guesses. The guessing is
needed because we must ensure that we select a single uniqueΣ-type for each con-
stant, even though there may be many ways to make these choices to build a satis-
fying model.

Theorem 6: Satisfiability forC-Tarskian constraint sets is decidable in expo-
nential time.

Proof: We give a nondeterministic exponential time procedure involving only
polynomially many nondeterministic choices. Any such procedure can be run in
deterministic exponential time. First we guess aΣ-type for each constant sym-
bol that appears inΣ. Note that this can be done with quadratically many nonde-
terministic choices (for each constant inΣ, and each set expression inΣ, we

M C[[ ]] ρ

M ρ,〈 〉

M C[[ ]] ρ
M C¬[[ ]] ρ

S M C[[ ]] ρ–
R C1 … Cn, ,( )

…
R σ1 … σn, ,( ) τ–» Ci σi∈

M R( ) M R C1 … Cn, ,( )[[ ]] ρ
M R C1 … Cn, ,( )[[ ]] M R( )

σ1 … σn, , M C1[[ ]] ρ … M Cn[[ ]] ρ
R σ1 … σn, ,( ) τ–» Ci σi∈
i –» R C1 … Cn, ,( )
❏
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need to decide whether that set expression is in theΣ-type associated with the
constant). Now initializeS to be allΣ-types not containing any constants (i.e.,
types containing ¬c for each constant symbolc occurring inΣ) plus the selected
Σ-types for the constants. Then, as in the previous section, repeatedly remove
from S any typeτ such thatτ contains but there are no types
σ1, , σn in Ssuch that eachσi containsCi and . AcceptΣ
as satisfiable if the removal process does not remove any of the types containing
constants and the final setScontains a type for each negative constraint
in Σ that containsC but notW.

The proof of correctness of this procedure is a straightforward modification of
the proof of the preceding section. Every type eliminated by the procedure must
be uninhabited in any model corresponding to the choice of types for constants.
Therefore, if the procedure does not acceptΣ thenΣ must be unsatisfiable. On
the other hand if the procedure does acceptΣ then the final setSof types con-
structed by the procedure can serve as the domain of a model ofΣ.

4.4  Upper Bound forF-Tarskian Constraints

In this section we show that satisfiability for nonrecursive Tarskian set constraints
without constant symbols but including function symbols can be decided in nonde-
terministic exponential time. We start by proving the following lemma which
states that when no constant symbols are involved it suffices to consider nonstand-
ard models in which function symbols are allowed to denote “total” relations.

Definition 11. Let S be a subset of . The relationS is calledtotal if for
every tuple there exists some such that

. A nonstandard modelis a model such that for each
function symbolf we have that is a total (but not necessarily functional)
relation.

The meaning of a set expression in a nonstandard model is defined in an identical
manner to its meaning in standard models. We can now state the following lemma
for Tarskian set constraints without constant symbols.

Lemma 3: If Σ is a set ofF-Tarskian constraints thenΣ is satisfiable if and
only if Σ is satisfied by a nonstandard model.

Proof: Since every model is a nonstandard model the only if direction is trivial.
Now suppose that there is a nonstandard model which satisfiesΣ. Let
D be the domain ofM. By the Löwenheim-Skolem theorem for first order logic
we can assume without loss of generality thatD is countable. We will construct
a standard model satisfyingΣ whose domain is ,i.e., the set of pairs

for and i a natural number. We define atarget constraintto be a
tuple of the form wheref is a function symbol occurring

R C1 … Cn, ,( )
… R σ1 … σn, ,( ) τ–»

C / W⊆

❏

Dn 1+

x1 … xn, ,〈 〉 Dn∈ y D∈
x1 … xn y, , ,〈 〉 S∈ M ρ,〈 〉

M f( )

M ρ,〈 〉

D ω×
x i,〈 〉 x D∈

f x1 … xn y k,〈 〉, , , ,〈 〉



Tarskian Set Constraints,August 10, 1999 21

in Σ, eachxi andy is in D, k is a natural number, and .
Intuitively, a target constraint states thatf should map the tuple to
the pair . We define adomain constraintto be a tuple of the form

. Intuitively a domain constraint expresses the con-
straint thatf must be defined on the tuple . The set of all
possible target and domain constraints is itself countable. LetE1, E2, be an
enumeration of all target and domain constraints (each target and domain con-
straint appears somewhere in this enumeration). We now define a series of mod-
els , , , , all of which have domain . The
model  is defined by the following conditions:

• For any set variableX, is the set of pairs of the form where
,

• For any nondeterministic operation symbolR occurring inΣ and any values
of j1, , jn, andk, if and only if

,

• For any function symbolf  occurring inΣ,  is empty.

Each model is defined in terms ofMi and the constraintEi. If Ei is a tar-
get constraint then we let be identical toMi
except that contains exactly one more tuple than and that tuple
is where are the lexicographically
least sequence of numbers such that does not contain any tuple of the
form . If Ei is a domain constraint of the form

then if contains a tuple of the form
then equalsMi, otherwise contains

one more tuple than and that tuple is
where . Such ay must exist because  is total.

We let be the model such that is the union of all relations of the
form for any (deterministic or nondeterministic) operation symbolR. It
is not difficult to verify that for any function symbolf, is functional.
Hence is a standard model. Furthermore, one can also verify by structural
induction on set expressions that for anyF-Tarskian set expressionC we have
that is the set of pairs such that . This implies
that  satisfiesΣ.

We now show that a setΣ of F-Tarskian set constraints is satisfiable if and only if
there exists a set ofΣ-types satisfying the easily checked conditions of local con-
sistency (see Definition 10). This gives a simple nondeterministic exponential time
procedure which simply guesses an appropriate set ofΣ-types.

Lemma 4: Let Σ be a set ofF-Tarskian set constraints.Σ is satisfiable if and
only if there exists a locally consistent set ofΣ-types.

x1 … xn y, , ,〈 〉 M f( )∈
x1 … xn, ,〈 〉

y k,〈 〉
f x1 j1,〈 〉 … xn jn,〈 〉, , ,〈 〉

x1 j1,〈 〉 … xn jn,〈 〉, ,〈 〉
…

M1 ρ′,〈 〉 M2 ρ′,〈 〉 M3 ρ′,〈 〉 … D ω×
M1 ρ′,〈 〉

ρ′ X( ) x i,〈 〉
x ρ X( )∈

… x1 j1,〈 〉 … xn jn,〈 〉 y k,〈 〉, , ,〈 〉 ∈ M1 R( )
x1 … xn y, , ,〈 〉 M R( )∈

M1 f( )

M i 1+
f x1 … xn y k,〈 〉, , , ,〈 〉 M i 1+

M i 1+ f( ) M i f( )
x1 j1,〈 〉 … xn jn,〈 〉 y k,〈 〉, , ,〈 〉 j1 … jn, ,

M i f( )
x1 j1,〈 〉 … xn jn,〈 〉 z, , ,〈 〉

f x1 j1,〈 〉 … xn jn,〈 〉, , ,〈 〉 M i f( )
x1 j1,〈 〉 … xn jn,〈 〉 z, , ,〈 〉 M i 1+ M i 1+ f( )

M i f( ) x1 j1,〈 〉 … xn jn,〈 〉 y 0,〈 〉, , ,〈 〉
x1 … xn y, , ,〈 〉 M f( )∈ M f( )

M′ ρ′,〈 〉 M′ R( )
M i R( )

M′ f( )
M′

M′ C[[ ]] ρ′ x i,〈 〉 x M C[[ ]] ρ∈
M′ ρ′,〈 〉 ❏
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Proof: (sketch) The proof is very similar to the proofs in the preceding two
sections. IfΣ is satisfiable then let be a model ofΣ and takeS to be the
set of typesτ which are inhabited in . It is not difficult to show thatS is
locally consistent. Conversely, letSbe a set of types satisfying the above condi-
tions. Let be the nonstandard model whose domain is the setSof types
and where the set variables and operation symbols are interpreted as follows. As
in the earlier proofs interpret each set variable and monadic relation symbol as
the set of types inS that contain that symbol. We interpret each operation sym-
bol R so that is the relation containing those tuples such
that . The argument given in Section 4.2 can be used to show
that for each type and each set expressionC occurring inΣ we have that

if and only if . This can be used to show that is a
model ofΣ.

This lemma leads to a procedure that is quite similar to the procedures of
Section 4.2 and Section 4.3; however, this procedure requires a potentially expo-
nential degree of nondeterminism. We can construct the setSof types by initializ-
ing it to be all types and then eliminating those types which are provably empty in
any model. A problem arises however when attempting to satisfy the third condi-
tion in the definition of locally consistent (Definition 10): that any function symbol
and tuple of types fromShave a corresponding possible output type also inS. Sup-
pose that there is a function symbolf andΣ-types inS, wheren is the
arity of f, such that there is no such that . In this case one
of the σi must be removed fromS but we are left with a choice of whichσi to
remove. We must nondeterministically explore the possible choices because some
may lead to a locally consistentSwhile others fail to do so. This can lead to expo-
nentially many choice points.

4.5  Upper Bound forFC-Tarskian Constraints

We now consider the problem of determining the satisfiability of nonrecursive Tar-
skian set constraints allowing both functions and constants. The procedure pre-
sented in this section nondeterministically reduces set constraint satisfiability to a
system of diophantine constraints. The first step of the procedure guesses a locally
consistent set of inhabitedΣ-types as defined in Section 4.1. The procedure then
constructs a system of diophantine inequalities describing cardinality constraints.
In order to describe the cardinality constraints we need some additional terminol-
ogy.

When both functions and constants are present, it is not sufficient to find a
locally consistent set of types. Consider the constraints and

where c1, c2, c3, and f are all deterministic. This constraint set has a
locally consistent set of types but it is not satisfiable because must be a sin-
gleton set while must contain two elements. In addition to finding a
locally consistent set of types, we must also check that cardinality constraints on

M ρ,〈 〉
M ρ,〈 〉

M ρ,〈 〉

M R( ) σ1 … σn τ, , ,〈 〉
R σ1 … σn, ,( ) τ–»

τ S∈
τ M C[[ ]] ρ∈ C τ∈ M ρ,〈 〉

❏

σ1 … σn, ,
τ S∈ f σ1 … σn, ,( ) τ–»

c1 c2∪ f c3( )⊆
c1 / c2⊆

f c3( )
c1 c2∪
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the selected set of types can be met.

Consider an elementx which inhabits aΣ-typeσ in a model . For each
application expression inσ there must existy1, , yn in

, , , respectively, such that and such
that for eachi. The valuesy1, , yn can be viewed as “predeces-
sors” of x which “justify” the fact thatx is in the set . Suppose the
predecessorsy1, , yn each haveΣ-types σ1, , σn. The elementx can be
viewed as inhabiting the image ofσ1, , σn underf. These observations lead to
the following definitions.

Definition 12. Let Sbe a set ofΣ-types. Arange expressionis an expression of
the form , where areΣ-types inS and f is a function
symbol appearing inΣ. We say that a domain elementd of a model
inhabits a range expression if there are some domain elements

inhabiting Σ-types σ1, , σn in , respectively, such that
. We will say that a range expression isinhabited in

 when some element of the domain ofM inhabits that expression.

Simply writing and solving inequality constraints on the cardinalities of the sets of
inhabitants of theΣ-types and the range expressions is still not enough to force the
existence of a model. To understand why consider the constraints ,

, and . These constraints are satisfi-
able but in any model we will have that . Adding the constraint

makes the constraint set unsatisfiable, even though the natu-
ral local cardinality constraints on the range expressions are all satisfied. There
exist locally consistent sets ofΣ-types for all four constraints. TheΣ-types in these
sets appear consistent even if cardinality constraints onΣ-types and range expres-
sions are considered (the natural local cardinality constraints, similar to those
given below, are satisfiable). Furthermore, each individual constraint of the form

appears consistent with the cardinalities. This problem forces us to explic-
itly allocate predecessors for eachΣ-type, as follows.

Definition 13. A predecessor justificationfor a function application expression
is a range expression such that each . AΣ-

predecessor-typeis a pair whereσ is aΣ-type and∆ is a mapping from
function applications appearing in the typeσ to range expressions such that for
any function applicationU in σ we have that is a predecessor justification
of U and . An objectx inhabits aΣ-predecessor-type in a
modelM if x inhabitsσ and, for each application expressionU in σ, x inhabits
∆(U).

An application expression can often be justified in more than one
way, i.e., many different predecessors of many differentΣ-types can simulta-
neously explain the presence ofx in the set . However, for

M ρ,〈 〉
R C1 … Cn, ,( ) …

M C1[[ ]] ρ … M Cn[[ ]] ρ y1 … yn x, , ,〈 〉 M R( )∈
yi M Ci[[ ]] ρ∈ …

R C1 … Cn, ,( )
… …

…

f σ1 … σn, ,( ) σ1 … σn, ,
M ρ,〈 〉

f σ1 … σn, ,( )
d1 … dn, , … M ρ,〈 〉
d1 … dn d, , ,〈 〉 M f( )∈
M ρ,〈 〉

c4 / c5⊆
c4 c5∪ f c1 c2∪( )⊆ c4 c5∪ f c1 c3∪( )⊆

f c2( ) f c3( )=
c4 c5∪ f c2 c3∪( )⊆

U V⊆

f C1 … Cn, ,( ) f τ1 … τn, ,( ) Ci τi∈
σ ∆,〈 〉

∆ U( )
∆ U( ) σ–» σ ∆,〈 〉

f C1 … Cn, ,( )

M f C1 … Cn, ,( )[[ ]] ρ
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each elementx in there will be at least oneΣ-predecessor-type
inhabited byx. We will assume that some choice function is provided with each
model so that for each elementx of the domain ofM we can choose a
uniqueΣ-predecessor-type forx.

Note that the number ofΣ-types is at most . The number of justification
functions∆ is no greater than the number of functions from expressions inΣ to
range expressions. We can assume without loss of generality that no application
expressions involve more than two arguments (larger arities can be eliminated with
the use of a pairing function). Under this assumption there are at most
range expressions. Hence the number of justification functions∆ is no more than

, which is and hence is exponential in . This implies
that the number ofΣ-predecessor-types is also exponential in .

Definition 14. Let Sbe a set ofΣ-types. For each type letzσ be a vari-
able representing the number of inhabitants ofσ. For each range expression

with each andf appearing inΣ, let be a variable
representing the number of domain members inhabiting . For each

-predecessor-type let be a variable representing the number of
individuals whose selected predecessor type is . We define to be
the system of diophantine constraints including the following constraints:

We now come to the first main theorem of this section.

Theorem 7: A set Σ of FC-Tarskian constraints is satisfiable if and only if
there exists a locally consistent setS of Σ-types such that the constraint set

 is satisfiable over the positive integers plus∞.

Proof: First suppose thatΣ is satisfied by a model . LetSbe the set of
Σ-types inhabited byM. It is easy to check thatS is locally consistent. Now
select for each elementx in the domain ofM a Σ-predecessor-type which it
inhabits. We interpret the cardinality variable to be the cardinality of the
set of elements whose selectedΣ-predecessor-type is . If this cardinality

Habitation:

Constants:  when  for constant

Type:

Range:

Predecessor:  for deterministic  only

M σ[[ ]] ρ σ ∆,〈 〉

M ρ,〈 〉

2 Σ

Σ 22 Σ

Σ 22 Σ( ) Σ 22 Σ 2 Σ Σlog+ Σ
Σ

σ S∈

f τ1 … τn, ,( ) τi S∈ zf τ1 … τn, ,( )
f τ1 … τn, ,( )

Σ σ ∆,〈 〉 z σ ∆,〈 〉
σ ∆,〈 〉 D S( )

zσ ≥ 1

zσ = 1 c σ∈ c

zσ = z σ ∆,〈 〉σ ∆,〈 〉∑
zf τ1 … τn, ,( ) ≥ z σ ∆,〈 〉

σ ∆,〈 〉 such that U σ .∈∃ ∆ U( ) f τ1 … τn, ,( )=( )
∑

zf τ1 … τn, ,( ) ≤ zτii∏ f

D S( )

M ρ,〈 〉

z σ ∆,〈 〉
σ ∆,〈 〉
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is infinite then we assign the special value∞ and ignore the order of
infinity of the actual cardinality. Likewise, we interpretzσ as the number of
inhabitants of the typeσ, for each (again using∞ for any infinite type),
and as the number of inhabitants for the range expression

. It is not difficult to check that all the constraints in are sat-
isfied under this interpretation.

Now, to show the converse direction, suppose that there exists a locally consis-
tent setSof Σ-types such that is satisfiable over positive integers plus∞.
Consider a particular assignment of natural numbers and∞ to the variables such
that is satisfied. We will build a model ofΣ based on this assign-
ment. The domain of our model will be the union over all inhabited typesσ of
sets . Ifzσ is ∞ then we include in the domain the object

for each natural number , so that there will be a countably infinite
number of distinct elements of the form . We callσ the base typeof

.

We defineρ on each set variableX to be the set of all domain elements
whose base typeσ containsX. We define for each constant symbolc to be

for the unique containingc. We define for each nondeter-
ministic operation symbol R be the set of all tuples

 such that .

Finally, we defineM on the function symbols. We have from the constraints
that for everyΣ-type σ, zσ is the sum of all . Using this fact, we

partition the values into setsσ∆, one for everyΣ-typeσ and every∆ such
that is nonzero such that eachσ∆ has cardinality . To defineM on
the n-ary function symbolf consider ann-tuple of Σ-types inS.
For each such n-tuple, we define f on all domain tuples of the
form as follows. LetDombe the set of all such domain
tuples (for a fixed tuple ) and letRangebe the set of all domain
elements that are members of any setσ∆ such that for
some . Letτ be someΣ-type inSsuch that ; we callτ
the “default value” forf on σ1, , σn (τ exists due to the local consistency of
S). Both Dom andRangeare countable sets so both can be enumerated. Now
definef to map each element ofDom to the corresponding element ofRange
under the given enumeration. The type and range constraints in ensure
that the cardinality ofRangeis no larger than the cardinality ofDom, so every
element ofRangewill be the image of some element ofDom. If for some tuple
in Dom there is no corresponding element ofRange(becauseDom has larger
cardinality thanRange), thenf maps that tuple to .

To prove satisfiesΣ, we first show, by structural induction on a set
expressionE, that if E occurs inΣ then is exactly the set of domain
elements of the form such thatσ containsE. If E is a set variable or a
constant symbol then this follows directly from the definition of and

z σ ∆,〈 〉

σ S∈
zf σ1 … σn, ,( )

f σ1 … σn, ,( ) D S( )

D S( )

D S( ) M ρ,〈 〉

σ i,〈 〉 : 1 i zσ≤ ≤{ }
σ i,〈 〉 i 1≥

σ i,〈 〉
σ i,〈 〉

σ i,〈 〉
M c( )

σ 1,〈 〉 σ S∈ M R( )

σ1 i1,〈 〉 … σn in,〈 〉 τ j,〈 〉, , ,〈 〉 R σ1 … σn, ,( ) τ–»

D S( ) z σ ∆,〈 〉
σ i,〈 〉

z σ ∆,〈 〉 z σ ∆,〈 〉
σ1 … σn, ,〈 〉

σ1 i1,〈 〉 … σn in,〈 〉, ,〈 〉
σ1 … σn, ,〈 〉

∆ U( ) f σ1 … σn, ,( )=
U σ∈ f σ1 … σn, ,( ) τ–»

…

D S( )

τ 1,〈 〉

M ρ,〈 〉
M E[[ ]] ρ

σ i,〈 〉
M ρ,〈 〉
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from the “constants” constraint in . Suppose for induction thatE is the
negation of an expressionE1 for which the result holds. We show that the result
holds for E. Our induction hypothesis tells us that is the set of
domain elements whose baseΣ-type τ containsE1 — then of course

is by definition the complement of this set,i.e., the set of domain ele-
ments whose base types does not containE1. The definition ofΣ-type ensures
that everyΣ-type contains exactly one ofE1 or ¬E1, so the complement of the
domain elements whose type containsE1 is exactly the set of domain elements
whose type contains ¬E1, as desired.

Now we suppose for induction thatE is the union of two expressionsE1 andE2
for which the result holds, and show that the result holds forE. Our induction
hypothesis guarantees that (and, respectively, ) is just the
set of all domain members whose base typeτ containsE1 (respectively,
E2). So is the set of all domain members whose base type con-
tains eitherE1 or E2. The definition of aΣ-type ensures that this is exactly the
set of all domain members whose base type contains , as desired.

Now suppose for induction thatE is the application forn-ary
nondeterministic operationR and expressions for which the result
holds. We first show the forward direction — that every domain element whose
base type contains is also in . Consider a
domain element whereσ contains . Since the setS is
locally consistent there must existΣ-types τ1, , τn in S containing the
E1, , En, respectively, such that . But then by the definition
of , maps to . But by our induction
hypothesis, each element must be in the corresponding , so

must be in , as desired. For the reverse direction,
suppose that a domain element is in . This implies
that there must be domain elements , , in , ,

, respectively, such that . But, by our induction
hypothesis, since each is in , we have that eachτ j containsEj.
Since , the typeσ then must contain , as
desired.

The final case to consider is whenE is the application of ann-
ary function symbolf to n expressions for which the result holds.
Again, we first consider one direction — we suppose is a domain ele-
ment in and show thatσ contains . Since

is in , must be the image under of
some tuple of domain elements which are members,
respectively, of , , . Our induction hypothesis then
implies that for eachj, Ej is a member ofτ j. When was defined for tuples
of the form , the type must have been in the
range enumeration (or would not be the image under of

D S( )

M E1[[ ]] ρ
τ i,〈 〉

M E[[ ]] ρ

M E1[[ ]] ρ M E2[[ ]] ρ
τ i,〈 〉

M E1 E2∪[[ ]] ρ

E1 E2∪

R E1 … En, ,( )
E1 …En,

R E1 … En, ,( ) M R E1 … En, ,( )[[ ]]
σ k,〈 〉 R E1 … En, ,( )

…
… R τ1 … τn, ,( ) σ–»
M ρ,〈 〉 M R( ) τ1 1,〈 〉 … τn 1,〈 〉, ,〈 〉 σ k,〈 〉

τi 1,〈 〉 M Ei[[ ]] ρ
σ k,〈 〉 M R E1 … En, ,( )[[ ]] ρ

σ k,〈 〉 M R E1 … En, ,( )[[ ]] ρ
τ1 i1,〈 〉 … τn in,〈 〉 M E1[[ ]] ρ …

M En[[ ]] ρ R τ1 … τn, ,( ) σ–»
τ j i j,〈 〉 M E j[[ ]] ρ

R τ1 … τn, ,( ) σ–» R E1 … En, ,( )

f E1 … En, ,( )
E1 … En, ,

σ k,〈 〉
M f E1 … En, ,( )[[ ]] ρ f E1 … En, ,( )

σ k,〈 〉 M f E1 … En, ,( )[[ ]] ρ σ k,〈 〉 M f( )
τ1 i1,〈 〉 … τn in,〈 〉, ,〈 〉

M E1[[ ]] ρ … M En[[ ]] ρ
M f( )

τ1 k1,〈 〉 … τn kn,〈 〉, ,〈 〉 σ k,〈 〉
σ k,〈 〉 M f( )
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). There are two ways that this can happen. First,
could be an element ofσ∆ for some∆ containing in its range. Sec-
ond,σ could be the “default value” forf on τ1, , τn. In either case we have

. But then, since eachEi is in the correspondingτi,
 must be inσ as desired (by the definition of ).

It remains to show the reverse direction: we take an arbitrary domain element
such thatσ contains and show that is a member

of . Since the habitation constraint in guaran-
tees thatzσ is nonzero. So, by the type constraint in , some must
also be nonzero, and so for some∆ the setσ∆ is nonempty. Sinceσ contains

, must be some range expression
such that eachτi contains Ei and . But then, for each

, by our inductive hypothesis aboutEi every domain element of base
type τi must belong to . Therefore, for every tuple of
domain elements in the domain enumeration forf on τ1, , τn, we have

for eachi; this together with the definition of implies that
the entire range enumeration for the functionf on τ1, , τn must be contained
in . But this range enumeration must include since
it is a member ofσ∆ and∆ contains  in its range.

We have now shown the property that for each E occurring inΣ, is
exactly the set . It is easy to show from this
that satisfiesΣ, as follows. Given a positive constraint inΣ and
an element of , must also be in due to the
above property along with the fact that implies by the definition
of Σ-type. Finally, given a negative constraint inΣ, by the definition of
locally consistent (Definition 10) there must be someσ in Ssuch thatU is in σ
andW is not in σ. It follows that and
and so  satisfies  as desired.

The above theorem shows that satisfiability forFC-Tarskian constraints can be
reduced in nondeterministic exponential time to the satisfiability of an exponen-
tially larger system of diophantine constraints where the variables range over posi-
tive integers plus∞. We can eliminate∞ by nondeterministically guessing which
variables are infinite and folding this guess into the constraints. More specifically,
break any equality statements into two inequalities, and then we substitute∞ in for
the variables we guess to be infinite and check that in any inequality with an infin-
ity in the lesser side there is also an infinity in the greater side. We then remove all
inequalities involving infinity. This produces a set of diophantine constraints over
positive integers. These constraints have the following form.

Definition 15. A set of Diophantine inequalities:

τ1 i1,〈 〉 … τn in,〈 〉, ,〈 〉 σ k,〈 〉
f τ1 … τn, ,( )

…
f τ1 … τn, ,( ) σ–»
f E1 … En, ,( ) –»

σ k,〈 〉 f E1 … En, ,( ) σ k,〈 〉
M f E1 … En, ,( )[[ ]] ρ σ S∈ D S( )

D S( ) z σ ∆,〈 〉

f E1 … En, ,( ) ∆ f E1 … En, ,( )( ) f τ1 … τn, ,( )
f τ1 … τn, ,( ) σ–»

1 i n≤ ≤
M Ei[[ ]] ρ x1 … xn, ,〈 〉

…
xi M Ei[[ ]] ρ∈ M f( )

…
M f E1 … En, ,( )[[ ]] ρ σ k,〈 〉

f τ1 … τn, ,( )

M E[[ ]] ρ
σ i,〈 〉 | 1 i zσ≤ ≤ σ S∈ E σ∈, ,{ }

M ρ,〈 〉 U W⊆
σ i,〈 〉 M U[[ ]] ρ σ i,〈 〉 M W[[ ]] ρ

U σ∈ W σ∈
U / W⊆

σ 1,〈 〉 M U[[ ]] ρ∈ σ 1,〈 〉 M W[[ ]] ρ∉
M ρ,〈 〉 U / W⊆ ❏

pi x1 … xn, ,( ) qi x1 … xn, ,( )≤ : 1 i m≤ ≤{ }
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between polynomialspi andqi over nonnegative integer variables is
prequadraticif every pi is linear, and everyqi is either linear or is a product of
variables.

The size of the prequadratic system of diophantine constraints generated by
a setΣ of nonrecursive Tarskian constraints for any setSof Σ-types is exponential
in . The following theorem shows that satisfiability of prequadratic diophantine
constraints can be determined in nondeterministic exponential time. We conjecture
that satisfiability of prequadratic diophantine constraints is actually in NP.

Theorem 8: (Prequadratic Decidability Theorem)The problem of determin-
ing the satisfiability of a prequadratic set of Diophantine inequalities is solvable
in nondeterministic exponential time.

Proof: Consider a prequadratic set ofm Diophantine inequalities overn vari-
ables where the largest constant that appears hasb bits. Each inequality is either
linear or has a right hand side that is the product of two variables.

Without affecting the satisfiability of the entire set, we can replace each linear
inequality with the equation =

where the new variablesyi introduced play the role of “slack”
variables. Renaming the variables into a vector we can then
write the resulting problem in matrix form as .

Call a variablexi boundedin if there exists a finite upper bound on the
value ofxi over all rational solutions to . We can use linear program-
ming (over the rationals) to determine which variables are bounded using the
fact that a variable is unbounded if and only if there is a solution to
over the rationals where that variable is nonzero. An analysis (using Cramer’s
rule) of the maximum possible upper bound that can be imposed by a system of
linear constraints shows that the binary representation of the value of a bounded
variable can contain at most bits. Our nondeterministic procedure
can now guess the values of the bounded variables. We can then replace each
bounded variable by the guessed value giving a simplified problem. In substitut-
ing in the guesses, some of the nonlinear constraints become linear and must be
added to the resulting linear sub-problem, yielding new linear and nonlinear
subproblems in fewer variables2. We repeat this process until either all variables
have been guessed or all the variables in the resulting linear problem are
unbounded. If at some point the guesses lead to a linear problem which is
unsolvable over the rationals then all variables are bounded and values for them
are guessed (of course in practice the procedure would simply terminate when
such an inconsistency is found). Once all variables in the remaining linear prob-

2. New slack variables must be added in this case to convert the nonlinear inequalities to equations,
but over the entire process at mostm slack variables are introduced, one per original inequality.

x1 … xn, ,

D S( )

Σ

pi x1 … xn, ,( ) qi x1 … xn, ,( )≤ pi x1 … xn, ,( ) yi+
qi x1 … xn, ,( )

x x1 … xk, ,=
Ax B=

Ax B=
Ax B=

Ax 0=

O bn nlog( )
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lem are unbounded we determine the solvability of over the nonnega-
tive integers. At this point we call the remaining linear problem theresidual
linear problem, and the remaining nonlinear problem theresidual nonlinear
problem. If the residual linear problem is solvable over the nonnega-
tive integers then we accept the original prequadratic problem as solvable. Oth-
erwise we fail.

We must show that this procedure is correct and that it terminates in nondeter-
ministic exponential time. First we consider the running time analysis. The
number of bits in the bounded variables can grow at most exponentially in the
number of iterations of the procedure. One can show that afterk variables are
guessed the largest constant in the residual linear problem has at most

bits for some constantc. Since the number of variables
guessed is bounded byn, we get an exponential upper bound on the size of the
numbers appearing in the sequence of linear problems examined by the proce-
dure.

Since all the linear programming operations required over the rationals can be
completed in polynomial time relative to their input size, and their input is at
most exponential in size relative to the original prequadratic problem size, the
linear programming involved in the above procedure can be completed in expo-
nential time. Moreover, the above procedure must guess values for at most lin-
early many variables (those in the original problem after slack variables are
added), and the largest value guessed involves exponentially many bits; there-
fore, there are at most exponentially many bits guessed by the procedure.
Finally, the residual linear problem (over the unbounded variables) can be
solved over the integers in NP. Combining the complexities of these parts, we
get a nondeterministic exponential running time for the procedure.

We now show the correctness of the procedure;i.e., that if the procedure accepts
a prequadratic system of constraints then that constraint set is solvable (the con-
verse is straightforward). If the procedure accepts then there exists a residual
linear problem solvable over the nonnegative integers, and where each
variable is unbounded, plus a residual set of nonlinear constraints. It suffices to
show that this residual prequadratic problem is solvable over the nonnegative
integers. Since the procedure accepts, there exists a nonnegative integer solu-
tion β to . It is a fact of linear programming that if all variables are
unbounded then there must be a nonnegative rational solutionα to
such that all components ofα are nonzero. We can assume without loss of gen-
erality thatα is integral because any nonintegralα can be made integral by mul-
tiplying by an appropriate constant. The vector is a solution to
for any c. For sufficiently largec this vector also satisfies all nonlinear con-
straints because the nonlinear expressions must eventually be larger than the
linear expressions. Thus if the procedure accepts then the residual prequadratic
problem is satisfiable and so is the original problem.

Ax B=

Ax B=

O cn nlog( )k 1+( )

Ax B=

Ax B=
Ax 0=

β cα+ Ax B=

❏
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Finally, we can combine the above results to get the following.

Theorem 9: Satisfiability ofFC-Tarskian constraint sets is decidable in nonde-
terministic doubly exponential time.

Note that if our conjecture holds, that prequadratic Diophantine constraint satisfi-
ability is in NP, then we would get a tight upper bound here of nondeterministic
exponential time. Without this conjecture, there is an exponential gap between our
lower and upper bounds for this problem.

5.  Upper Bound forR-Tarskian Constraints

In this section we consider Tarskian set constraints with recursive set expressions
but without deterministic operation symbols of any arity. Constraint set satisfiabil-
ity in this calculus turns out to be linear time equivalent to set expression satisfi-
ability in the modalµ-calculus. Here we give a linear time reduction from Tarskian
constraint set satisfiability without determinism to set expression satisfiability in a
calculus we call the Herbrandµ-calculus. Satisfiability of a class expression in the
the Herbrandµ-calculus is equivalent to the emptiness problem for an alternating
tree automata with a parity acceptance condition. This problem is known to be
decidable in exponential time (Street and Emerson, 1989) (Emerson and Jutla,
1988) (Emerson and Jutla, 1991).

To assist in our proofs about recursive expressions, we introduce syntactically
indexedµ-expressions representing the partial iterates involved in computing the
fixed-point value. These are defined as follows:

Definition 16. For each ordinalβ, the indexedµ-expression has the
following meaning in any given model :

(9)

Note that by definition, for any cardinalγ greater than the cardinality of the
domain ofM, is equal to the union of all the sets
for α less than anyγ.

5.1  Reducing Constraint Set Satisfiability to Set Expression Satisfiability

We begin by reducing satisfiability of sets ofR-Tarskian set constraints to satisfi-
ability for singleR-Tarskian set expressions. We say that a Tarskian set expression
C is satisfiable if there exists  such that  is nonempty.

Definition 17. For any setΣ of Tarskian set constraints and setF of operation
symbols we define  to be the following set expression:

µβX .C
M ρ,〈 〉

M µβX .C[[ ]] ρ M C[[ ]] ρ X:=M µαX .C X[ ][[ ]] ρ[ ]
α β<
∪=

M µX .C[[ ]] ρ M µαX .C[[ ]] ρ

M ρ,〈 〉 M C[[ ]] ρ

ζ Σ F,[ ]
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. (10)

Here X is a set variable not occurring inΣ, , , are the
positive set constraints inΣ, is the set expression for some arbitrary
set variableZ, and the expression ranges over all set
expressions wherefi is an operation appearing inF andX occurs as thej th argu-
ment.

Intuitively, we have if there exists ay reachable by inverse operations
in F from x such thaty violates a positive constraint inΣ. If then the
positive constraints inΣ are satisfied at all points reachable by inverse operations
in F from x. If satisfiesΣ then is the empty set for anyF.
To formalize these properties, we introduce the following definitions, in which we
take to be a model,x a domain element ofM, andF a set of operation sym-
bols:

Definition 18. The one step predecessors ofx in M relative toF, written Pred(x,
M, F), are the domain elementsy of M such that for some operationf in F there
is some tuple  in  wherey is equal tozi for somei.

Definition 19. Let be a model,x a domain element ofM, andF a set of
operation symbols. For each natural numbern, define then-step inverse closure
of x relative toM andF, writtenICn(x, M, F), as follows:

The inverse closureof x in M underF, written IC(x, M, F), is the union over all
natural numbersn of ICn(x, M, F). The inverse closure substructureof M gen-
erated byx andF, writtenMx,F is the structure whose domain isIC(x, M, F) and
such that for each nondeterministic operation we have that is
the restriction of the relation toIC(x, M, F). For any variable interpreta-
tion ρ, the inverse image restriction ofρ with respect toM, x, andF, written

, interprets each variableX as .

A set expressionC can be thought of as a predicate on domain objects that only
“looks at” the inverse closure substructure of its given argument object over the
function symbols appearing inC. This view of set expressions leads to the follow-
ing lemma about the expressionζ[Σ,F] defined above:

Lemma 5: For any setΣ of R-Tarskian set constraints and setF of operation
symbols, the expressionζ[Σ,F] denotes in any model the set of all

=

=

µX .
W1¬ U1∩( ) … Wn¬ Un∩( )∪ ∪ ∪

f i T … T X T … T, , , , , ,( )
i j,∪

U1 W1⊆ … Un Wn⊆
T Z Z¬∪

f i T … T X T … T, , , , , ,( )

x ζ Σ F,[ ]∈
x ζ Σ F,[ ]¬∈

M ρ,〈 〉 M ζ Σ F,[ ][[ ]] ρ

M ρ,〈 〉

z1 … zn x, , ,〈 〉 M f( )

M ρ,〈 〉

IC0 x M F, ,( ) x{ }

ICn 1+ x M F, ,( ) x{ } ICn y M F, ,( )
y Predx M F, ,( )∈
∪∪

f F∈ Mx F, f( )
M f( )

ρx M F, , ρ X( ) IC x M F, ,( )∩

M ρ,〈 〉
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domain elementsx such that some is a counter-example to
some positive constraint inΣ. In other words, for some inΣ, y is in the
denotation ofU but not in the denotation ofW in .

Proof: We say that a domain elementy of M “fails” a constraint inΣ if
and . We denote the indexed versions of theµ-

expressionζ[Σ,F] as ζα[Σ,F] for index α. We first observe that regardless of
the cardinality of the domain ofM, the expressionsζ[Σ,F] andζω[Σ,F] denote
the same set in — that is,ζ reaches a fixed-point after a countable num-
ber of iterations. We can then show by induction on natural numbersi that the
following holds for alli :

. (11)

The lemma follows from this fact and thatζ reaches a fixed-point atζω.

Lemma 6: Let be a model, with x an element of the domain of M. Let
F be a set of operation symbols. For any set expressionC involving only opera-
tion symbols fromF the following statement holds:

. (12)

Proof: Fix a structureM, set of operationsF, and elementx of the domain ofM.
It is straightforward to show by structural induction on set expressionsC
involving only operations inF that for all variable interpretationsρ, Equation
(12) holds. We need the quantification over variable interpretations in the induc-
tion hypothesis in order to handle the case ofµ expressions.

It is easy to determine whetherΣ is satisfied by the empty model, where all set
expressions denote the empty set. To determine whetherΣ is satisfied by a non-
empty model, we use the following lemma.

Lemma 7: SupposeΣ is a set of Tarskian constraints not involving determinis-
tic operations. ThenΣ is satisfiable by a nonempty model if and only if the set
expression

(13)

is satisfiable, wheref is a fresh operation symbol, , , are
all the negative constraints inΣ, andF is the set of all operation symbols occur-
ring in Σ together withf.

y IC x M F, ,( )∈
U W⊆

M ρ,〈 〉

U W⊆
y M U[[ ]] ρ∈ y M W[[ ]] ρ∉

M ρ,〈 〉

x ζi 1+ Σ F,( )∈

iff

somey in IC i x M F, ,( ) fails someU W⊆ in Σ

❏

M ρ,〈 〉

M C[[ ]] ρ IC x M F, ,( )∩ Mx F, C[[ ]] ρx M F, ,=

❏

f U1 W1¬∩ … Un Wn¬∩, ,( ) ζ Σ F,[ ]¬∩

U1 / W1⊆ … Un / Wn⊆
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Proof: First suppose satisfiesΣ. We show that the set expression above
(13) is satisfiable. Note that by Lemma 5, is empty. For each
negative constraint inΣ select ayi such that . Now
extendM to by interpretingf as the operation containing the single tuple

where x is an arbitrary domain element ofM. Now x is the
desired element of the above set expression in the extended model .

Conversely suppose thatx is in the denotation of set expression (13) in some
model . Lemmas 5 and 6 imply that the inverse image substructure

is a model ofΣ, as follows. Since by
inspection of (13), and by definition, we can conclude by
Lemma 6 that , and thus by Lemma 5 that there
are no counterexamples to positive constraints inΣ relative to
in . But is the entire domain of , and so

satisfies all the positive constraints inΣ. sat-
isfies the negative constraints because by inspection of (13) and our choice ofx,
x is in and by the definition ofIC, x is in

— so we havex in
by Lemma 6. This implies the existence of some domain elementyi in the set

for eachi , implying that satisfies
each negative constraint  inΣ as desired.

Lemma 7 fails if we allow deterministic operations. For example, letΣ consist of
the constraint set and , wheref is deterministic and and
denote the universal and empty sets, respectively.Σ is not satisfiable but the set
expression is satisfiable. The proof fails because we can-
not simply restrict the meaning of a deterministic operationf to the smaller domain
of for somex as we did for nondeterministic operations — the rela-
tion resulting from this restriction may not be a suitable meaning for a determinis-
tic operation because it may not be total.

5.2  The Herbrandµ-calculus

Set satisfiability in both the modalµ-calculus and the Tarskianµ-calculus are poly-
nomial time reducible to set satisfiability in a language we call the Herbrandµ-cal-
culus. All of these calculi include set variables, Boolean operations on sets, and
least fixed point expressions of the form whereX occurs positively in
C[X]. The modalµ-calculus has no application expressions but instead has set
expressions of the form whereR is a binary symbol. The set expression

denotes the set . The Tarskianµ-calculus consists of
the Tarskian set expressions defined here but without deterministic operations. The
Herbrandµ-calculus has same syntax as the Tarskianµ-calculus but with only
deterministic operations which are interpreted over the fixed universe of (possibly
infinite) Herbrand terms. The set expression denotes the set of (pos-
sibly infinite) terms of the form with each . In the Herbrand

M ρ,〈 〉
M ζ Σ F,[ ][[ ]] ρ

U i / Wi⊆ yi U i Wi¬∩∈
M′

y1 … yn x, , ,〈 〉
M′ ρ,〈 〉

M ρ,〈 〉
Mx F, ρx M F, ,,〈 〉 x M ζ Σ F,[ ]¬[[ ]] ρ∈

x IC x M F, ,( )∈
x Mx F, ζ Σ F,[ ]¬[[ ]] ρx M F, ,∈

Mx F, ρx M F, ,,〈 〉
IC x Mx F, F, ,( ) IC x Mx F, F, ,( ) Mx F,

Mx F, ρx M F, ,,〈 〉 Mx F, ρx M F, ,,〈 〉

M f U1 W1¬∩ … Un Wn¬∩, ,( )[[ ]] ρ
IC x M F, ,( ) Mx F, f U1 W1¬∩ … Un Wn¬∩, ,( )[[ ]] ρx M F, ,

Mx F, U i Wi¬∩[[ ]] ρx M F, , Mx F, ρx M F, ,,〈 〉
U i / Wi⊆ ❏

T / F⊆ f T( ) F⊆ T F

g T F¬∩( ) ζ Σ F,[ ]¬∩

IC x M F, ,( )

µX .C X[ ]

R〈 〉C
R〈 〉C x : y C∈∃ R x y,( ){ }

f C1 … Cn, ,( )
f t1 … tn, ,( ) t i Ci∈
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calculus we only consider the satisfiability problem for closed set expressions
(those not containing free set variables).

The closed Herbrandµ-calculus seems most natural for understanding the
exponential time satisfiability algorithms for set expressions in these calculi (Street
and Emerson, 1989) (Emerson and Jutla, 1988) (Safra, 1988). The Herbrand calcu-
lus is based on the Herbrand universe of possibly infinite terms over a given set of
function symbols. This would seem to indicate a relationship between the Her-
brand calculus and Herbrand set constraints. However, in traditional Herbrand set
constraint problems we are concerned with the existence of certainsetsof Her-
brand terms while here we are concerned with the existence of a single (possibly
infinite) term satisfying given constraints (because here we are concerned with sat-
isfiability of set expressions rather than satisfiability of sets of subset constraints).

There are many interesting examples of term sets definable in the Herbrandµ-
calculus. The expression is the set of all finite terms which are some
number of applications off to a. We let , a greatest fixed point expres-
sion, be an abbreviation for . The expression denotes a
singleton set containing the infinite term . We will abbreviate this
expression as . Another interesting example is . This is
the set of infinite terms constructed from monadic function symbolsf andg that
have only finitely many occurrences off. One can similarly define the set of infi-
nite terms constructed fromf andg that have only finitely many occurrences ofg.
Any satisfiability testing procedure must be capable of determining that the inter-
section of these two term sets is empty. It is known that the Herbrandµ-calculus
defines exactly those term sets definable by Rabin tree automaton, or alternatively
by formulas of SnS (the second order theory of n successors) (Emerson and Jutla,
1991).

Satisfiability of a class expression in the the Herbrandµ-calculus is equivalent
to the emptiness problem for an alternating tree automata with a parity acceptance
condition. This problem is known to be decidable in exponential time (Emerson
and Jutla, 1988) (Emerson and Jutla, 1991) (Street and Emerson, 1989). In the next
subsection we reduce Tarskian set expression satisfiability to Herbrandµ-calculus
set expression satisfiability and thus provide an exponential time upper bound for
both Tarskian set expression and constraint set satisfiability.

5.3 Reducing Tarskian Set Satisfiability to Herbrandµ-Calculus Satisfiability

Here we provide a reduction fromR-Tarskian set expressions to Herbrandµ-calcu-
lus set expressions, preserving expression satisfiability. Note that there is a trivial
satisfiability preserving reduction from the modalµ-calculus to the Tarskianµ−
calculus where is translated to . The reduction from the Tarskian cal-
culus to the Herbrand calculus is almost as simple syntactically but quite a bit
more difficult to prove correct.

µX .a f X( )∪
νX .C X[ ]

µX . C¬ X¬[ ]¬ νX . f X( )
f f f …( )( )( )

f ω µX .gω f X( ) g X( )∪ ∪

R〈 〉C R C( )
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Definition 20. For any expressionC of the Tarskian calculus we defineT(C) by
the following equations:

where a fresh variable X is used for each expression that is trans-
lated, andg is a binary operation symbol not inC.

We will show that ifC is a closed Tarskian set expression thenC is satisfiable if
and only ifT(C) is satisfiable. Since free set variables can be replaced with set con-
stants (nondeterministic operations of no arguments) it suffices to consider closed
expressions. For an expressionC of the Herbrandµ-calculus we define by
analogy with — in the Herbrand calculus no structure is required. IfC is
closed then we write to denote the meaning ofC independent of any variable
interpretation.

The fresh function symbolg in Definition 20 is used to represent the many pos-
sible output values of the Tarskian relationf for particular arguments — in the Her-
brand calculusf can have only one output for each domain tuple. This intuition is
captured with the following definition and the Tarskian model we define using it
below.

Definition 21. Given a setS of Herbrand terms, we define the set of termsg-
accessible from S, writteng-acc(S) as follows:

We further defineMg to be the Tarskian structure whose domain is the set of all
(possibly infinite) Herbrand terms and such that is the infinite set of
tuples  such thatx is g-accessible from .

Using this definition, we can show that ifT(C) is satisfiable in the Herbrand calcu-
lus, then so isC in the Tarskian calculus, as follows.

Theorem 10: For any set expressionC, for any variable environmentρ map-
ping variables to sets of (possibly infinite) Herbrand terms we have
equals .

= Y, for variablesY

=

=

=

=

= S

=

=

T Y( )

T C¬( ) T C( )¬

T C1 C2∪( ) T C1( ) T C2( )∪

T µY .C( ) µY .T C( )

T f C1 … Cn, ,( )( ) µX . f T C1( ) … T Cn( ), ,( ) g T X,( ) g X T,( )∪ ∪( )

f C1 … Cn, ,( )

C[[ ]] ρ
M C[[ ]] ρ

C[[ ]]

g-acc0 S( )

g-acci 1+ S( ) g-acci S( ) g y z,( ) : y g-acci S( )∈ z g-acci S( )∈∨{ }∪

g-acc S( ) g-acci S( )
i

∪

Mg f( )
y1 … yn x, , ,〈 〉 f y1 … yn, ,( ){ }

Mg C[[ ]] ρ
T C( )[[ ]] ρ
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Proof: (sketch) The main proof is by induction on the structure of the set
expressionC, noting that the quantification overρ is in the inductive hypothesis
(i.e., the induction hypothesis gives us the theorem for all small class expres-
sions for all variable interpretationsρ). We discuss only the key case here, when
C is an application expression for which for allρ we have

equal to for eachi. Note that the translationT(C ) is aµ-
expression, and as such has a denotation defined as the union over an infinite
collection of indexedµ-expressions. We writeTα(C) for the expressionT(C )
with the µ-expression indexed byα, and observe thatTω(C) is equal to
Tω+1(C). We can now show by induction on the natural numberi that

. (14)

Observing that is by the definition ofMg equal to the set of Herbrand
terms , it now follows that
is equal to  as desired.

Corollary 2: If T(C) is satisfiable in the Herbrand calculus then so isC in the
Tarskian calculus.

Proof: WhenT(C) is satisfiable, the set is nonempty and then so is
the set , henceC is satisfiable.

Now we prove the converse. This proof is essentially a simplification of the proof
given in (Street and Emerson, 1989) that any satisfiable set expression of the modal
µ-calculus can be satisfied by a model with bounded branching. First we simplify
the problem by converting every expression to a purely positive form. This is done
by introducing conjunctions, greatest fixed points and “disapplications”

. We define to be the greatest subsetSof the domain
of M such that . We define the meaning of disapplications
by . In the Tarskian calculus we have

if and only if for every tuple such that
we have that for at least onei. We can now

eliminate negation from any closed expression using de Morgan’s laws and the fol-
lowing rules to push negations down:

Since all recursion must be monotone, variables can not appear in negative con-
texts in closed expressions and negation disappears entirely.3 For any set expres-
sion of either the Tarskian or Herbrandµ-calculus we let be the positive
form of C achieved by pushing negations down using these rules. We can extend

=

=

=

=

f C1 … Cn, ,( )
Mg Ci[[ ]] ρ T Ci( )[[ ]] ρ
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Mg C[[ ]] ρ
g-acc f y1 … yn, ,( ) : y j Mg C j[[ ]] ρ∈{ }( ) Mg C[[ ]] ρ

T C( )[[ ]] ρ ❏

T C( )[[ ]] ρ
Mg C[[ ]] ρ ❏

νX .C
f[ ] C1 … Cn, ,( ) M νX .C[[ ]] ρ

S M C[[ ]] ρ X :=S[ ]=
f[ ] C1 … Cn, ,( ) f C1¬ … Cn¬, ,( )¬=

x M f[ ] C1 … Cn, ,( )[[ ]] ρ∈ y1 … yn, ,〈 〉
y1 … yn x, , ,〈 〉 M f( )∈ yi M Ci[[ ]] ρ∈

µX .C X[ ]¬ νX . C X¬[ ]¬

νX .C X[ ]¬ µX . C X¬[ ]¬

f C1 … Cn, ,( )¬ f[ ] C1¬ … Cn¬, ,( )

f[ ] C1 … Cn, ,( )¬ f C1¬ … Cn¬, ,( )
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our Tarskian-to-Herbrand translationT to handle greatest fixed points and disappli-
cations by adding:

We now have that is semantically equivalent toT(C) and that is
semantically equivalent toC. So to prove thatT preserves satisfiability we need
only consider positive expressions.

As with µ-expressions, we add syntactically indexed fixed point expressions
for ν-expressions of the form whereβ is any ordinal. The semantics of
these expressions are defined by the following equation.4

As with µ-expressions, we have that whereβ is
any cardinal larger than the cardinality ofM. The same statement holds for greatest
fixed-point expressions. An unindexed fixed point expression can be
viewed as a syntactic variant of where∞ is the class of all ordinals. Intu-
itively, ∞ plays the role of a “largest ordinal”. So we can assume that all fixed point
expressions are indexed. An expression in which all fixed point expressions are
indexed with∞ (i.e., unindexed) will be called amaximally indexed expression.

The following definitions lead to a definition of the term “execution tree”. An exe-
cution tree can be viewed as an “explanation” of why a given Tarskian set expres-
sion is satisfiable. By showing how to encode execution trees as Herbrand terms
we show how to construct a Herbrand term satisfyingT(C) whenever we have an
execution tree “explanation” of the satisfiability ofC.

Definition 22. We define atype to be a setσ of positive closedR-Tarskian set
expressions satisfying the following conditions:

• If  then either  or .

• If  then  for some .

• If  then .

Definition 23. We define anexecution treeto be a pair such thatσ is a
type and∆ is a set of expressions of the form where eachγi is
(recursively) an execution tree. We will be interested in infinite execution trees.

3. If  is a zero-ary nondeterministic operation of the Tarskian calculus then we can think of
as a syntactic variant of .

=

=

=

4. In these equation  can be empty, in which case the empty union denotes the empty set and the
empty intersection the entire domain of .  can be either a limit or successor ordinal.
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∩

β
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M νX .C[[ ]] ρ M νβ X .C[[ ]] ρ=

µX .C
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We write if γ is a tree of the form with . A tree is called
asubtreeof a tree if either or there is some in
∆ such that  is (recursively) a subtree ofγi for somei.

Definition 24. An execution tree is calledlocally consistentif for every subtree
 we have that bothσ and∆ are countable sets such that:

• for every and there is somei such
that , and

• for every there is some such that for
all i we have .

We are now ready for a key lemma stating that any satisfiableC can be “explained”
by an execution tree.

Lemma 8: If C is a closed satisfiable positiveR-Tarskian set expression then
there exists a locally consistent execution treeγ such that .

Proof: Consider an arbitrary model . We say that a set of expressionsΣ
is true atx (in ) if for all . For any countable setΣ
of expressions true at a pointx in we describe how to construct a locally
consistent execution tree whose root type containsΣ. Let σ be a
countable type containingΣ and true atx in . For each expression

in σ construct an element of∆ as follows. Select points
such that and . For each

select aWi such that . LetΣi consist ofCi
and all selectedWi. Now add to∆. Finally
return the pair as . It is straightforward to prove by induction
on the structure of that is a locally consistent execution
tree with a root containingΣ.

SinceC is satisfiable, there must be some and domain elementx such
that {C} is true at x in , and therefore is the desired
locally consistent execution tree containingC.

We now show how to construct a closed Herbrand termt(γ) from any execution
treeγ such that  wheneverγ is a locally consistent tree with .

Definition 25. For any execution treeγ, for a a constant not appearing inγ, we
define the Herbrand termt(γ) by the following rules, recursively onγ:

(15)

The second rule is applied “fairly” so that ifγ is and
thent(γ) is g-accessible from .

C γ∈ σ ∆,〈 〉 C σ∈ γ′
γ σ ∆,〈 〉= γ γ′= f γ1 … γn, ,( )

γ′

σ ∆,〈 〉

f γ1 … γn, ,( ) ∆∈ f[ ] W1 … Wn, ,( ) σ∈
Wi γ i∈

f W1 … Wn, ,( ) σ∈ f γ1 … γn, ,( ) ∆∈
Wi γ i∈

C γ∈

M ρ,〈 〉
M ρ,〈 〉 x M W[[ ]] ρ∈ W Σ∈

M ρ,〈 〉
EM ρ, Σ x,( )

M ρ,〈 〉
f C1 … Cn, ,( )
y1 … yn, ,〈 〉 y1 … yn x, , ,〈 〉 M f( )∈ yi M Ci[[ ]] ρ∈
f[ ] W1 … Wn, ,( ) σ∈ yi M Wi[[ ]] ρ∈

f EM ρ, Σ1 y1,( ) … EM ρ, Σn yn,( ), ,( )
σ ∆,〈 〉 EM ρ, Σ x,( )

EM ρ, Σ x,( ) EM ρ, Σ x,( )

M ρ,〈 〉
M ρ,〈 〉 EM ρ, C{ } x,( )

❏

t γ( ) T C( )[[ ]]∈ C γ∈

t σ { },〈 〉( ) a=

t σ f γ1 … γn, ,( ){ } ∆2∪,〈 〉( ) g f t γ1( ) … t γn( ), ,( ) t σ ∆2,〈 〉( ),( )=

σ ∆,〈 〉 f γ1 … γn, ,( ) ∆∈
f t γ1( ) … t γn( ), ,( ){ }
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In order to prove the desired property fort(γ), we need to define an unusual well-
founded order for use in an induction proof.

Lemma 9: There exists a well founded ordering < on closed syntactic expres-
sions such that:

•  for anyW andC such thatW is a closed proper subexpression of C,

•  whenα < β, and

•  whenα < β.

Proof: We define the Fisher-Ladner closure (Fischer and Ladner, 1979) of an
expressionC to be the least set FL(C) of maximally indexed expressions such
that:

•  for C∞ the result of maximally indexing all fixed-points inC,

• any closed subexpression of an element of FL(C) is an element of FL(C),

• if  then , and

• if  then .

The set FL(C) is finite — it has one member for each (possibly open) subex-
pression ofC. We define therank of an expressionE to be the level of nesting
of recursion ofclosedsubexpressions ofE — the rank ofE is zero if it has noµ
or ν subexpressions, the rank of anyclosedµ or ν expression is one more than
the rank of its body, and the rank of any other expression is equal to the largest
rank of any proper subexpression. We define thesignatureof an expressionC to
be the tuple wheren is the largest rank of any expression in FL(C)
and eachαi is the maximum index of all closed recursion subexpressions ofC
of ranki, or zero if there is no such subexpression.

We order signatures first by length and then lexicographically within signatures
of the same length. We can now define the order < to order expressions first by
signature then by syntactic depth (breaking any remaining ties randomly).

To see the first property of the ordering claimed in the lemma observe that the
following hold wheneverC is a closed subexpression ofW:

• ,

• the signature ofC is shorter or equal in length to that ofW,and

• every indexedµ- or ν-subexpression ofC is also counted in the signature ofW.

These properties allow us to conclude that the signature ofC is always less than
or equal to that ofW. BecauseC is a subexpression ofW, the syntactic depth of
C is always less than or equal to that ofW as well, allowing us to conclude that
C is ordered ahead ofW.

W C<

C µα X .C X[ ][ ] µβ X .C X[ ]<

C να X .C X[ ][ ] νβ X .C X[ ]<

C∞ FL C( )∈

µ∞ X .C X[ ] FL C( )∈ C µ∞ X .C X[ ][ ] FL C( )∈

ν∞ X .C X[ ] FL C( )∈ C ν∞ X .C X[ ][ ] FL C( )∈

α1 … αn, ,

FL C( ) FL W( )⊆
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To see that the second and third properties claimed in the lemma hold, note first
that the closure of aµ-expression FL( ) is equal to the closure of the
unrolling FL( ), and therefore both theµ-expression and its
unrolling have the same signature length. Observe then that the signature of any
closedµ-expression is of the form wherej
is the rank of . The signature of an unrolling of

with α < β is then given by . The second
signature is lexicographically smaller than the first (given ) and hence
unrolling strictly reduces signature (the same holds forν-expressions). We can
conclude that unrolling reduces the ordering we have defined and thus that the
ordering satisfies all the desired properties.

Lemma 10: If γ is a locally consistent execution and then
.

Proof: We define aν-reindexing of an expressionC to be any expression
identical toC except for the indices ofν-expressions. We prove by transfinite
induction on expressions using the ordering of Lemma 9 that ifC is anyν-rein-
dexing of an expression then . To show the need forν-
reindexing we will explicitly give the proof forν-expressions. Consider an
expression which is a ν-reindexing of an expression

. We have from the closure properties of
types given in Definition 22. Now consider any ordinal . By the induction
hypothesis we have that . But we have that

is the intersection of all such sets so we have
. The other cases of the induction are straightforward

given the above properties of the well-founded ordering on expressions.

Corollary 2 along with Lemmas 8 and 10 now imply the following theorem:

Theorem 11: T(C) is satisfiable if and only ifC is satisfiable.

6.  Conclusions

A wide variety of set calculi have been studied in the logic and computer science
literature. Tarskian set expressions yield a natural set calculus that has received
surprisingly little attention. We have answered a variety of questions concerning
the computational complexity of Tarskian set constraints but several problems
remain open. It seems likely that Tarskian set constraints without recursion (but
with deterministic operations) can be solved in nondeterministic singly exponen-
tial time. This would follow from a demonstration that the satisfiability of prequa-
dratic Diophantine equations is in NP. The decidability of Tarskian set constraints
with recursion and deterministic operations of arity at least one, or with arity just
zero, remains open. It seems likely that techniques used in decision procedures for

µβ X .C X[ ]
C µβ X .C X[ ][ ]

µβ X .C α1 … α j 1– β 0 … 0, , , , , ,〈 〉
µβ X .C C µα X .C X[ ][ ]

µβ X .C α1 … α j 1– α γ1 … γk, , , , , ,〈 〉
α β<

❏

C γ∈
t γ( ) T C( )[[ ]]∈

C′

C′ γ∈ t γ( ) T C( )[[ ]]∈

νβ X .C X[ ]
νδ X .C′ X[ ] γ∈ C′ νδ X .C′ X[ ][ ] γ∈

α β<
t γ( ) T C να X .C X[ ][ ]( )[[ ]]∈

T νβ X .C X[ ]( )[[ ]]
t γ( ) T νβ X .C X[ ]( )[[ ]]∈

❏
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the modalµ-calculus can also be used to construct decision procedures for these
cases, although this has not yet been done.
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