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Abstract

We investigate set constraints over set expressions with Tarskian functional and relational opera-
tions. Unlike the Herbrand constructor symbols used in recent set constraint formalisms, the
meaning of a Tarskian function symbol is interpreted in an arbitrary first order structure. We
show that satisfiability of Tarskian set constraints is decidable in nondeterministic doubly expo-
nential time. We also give complexity results and open problems for various extensions and
restrictions of the language.

Keywords: Set constraints, decision procedures, dynamic logic, mu-calculus.

1. Introduction

There has been considerable interest recently in formalisms for describing and rea-
soning about sets. Here we consider a family of formalisms that have received sur-
prisingly little attention. Consider a set expression of the fof(C,, ..., C,)
whereC,, ..., C,, denote sets. In recent work on set constraints, operation symbols
are interpreted as Herbrand term constructors so that the set expression
f(Cq, ..., C,) denotes the set of term§t,, ...,t,) whetge C,,...,t, € C,

But an equally natural interpretation také¢C,, ..., C.) to be the set of values
that can derived by applying theeaningof f to elements of the sets denoted by

C,, ..., C,. For example, if + denotes addition a@ddenotes the set of odd inte-
gers then we would expee{O, O) to denote all the integers that can be expressed
as the sum of two odds, i.e., all the even integers. In general we can let the meaning
of operations be determined by a first order structure in the standard way, and view
any subset assertion between set expressions as constraining both the set variable
meaningsand the operation symbol meaninfys the variables and operation sym-

Tarskian Set Constraintéugust 10, 1999 1



bols that appear in the assertion. We call set expressions under this form of seman-
tics “Tarskian” to distinguish them from the “Herbrand” set expressions that have
received considerable recent attention.

Tarskian set constraints seem fundamentally different from Herbrand set con-
straints. There does not seem to be any simple reduction of Tarskian set constraints
to the monadic class. Since Tarskian set constraints are not restricted to Herbrand
interpretations, induction principles for Herbrand interpretations do not apply. It
turns out that Tarskian set constraints are closely related to modal logics. Before
stating our main results on Tarskian constraints we review some work on set cal-
culi. We organize the review around four classes of set calculi — Herbrand set
constraints, modal logics, Al concept languages, and Tarskian set constraints.

Herbrand set constraints involve set expressions generated by the grammar

C - X| f(Cu...C) | C,uC, | -C, (1)

whereX is any set variable, anidis any Herbrand function symbol. A set expres-
sion of the formf(C,, ..., C,) is taken to denote the set of all terfifs, ..., t,)

with t; € C;. A set constraint is an expression of the fo@pc C, . Herbrand set
constraints are largely inspired by applications to the static analysis of computer
programs (Heintze and Jaffar, 1990b) (Heintze and Jaffar, 1990a) (Friuhwirth, et.
al., 1991) (Aiken et. al., 1994). The problem of determining satisfiability of a finite
set of Herbrand set constraints is the problem of determining whether there is any
interpretation of the set variables appearing in the constraints as sets of terms such
that all the constraints are true relative to the interpretation. This problem is known
to be complete for nondeterministic exponential time (Aiken et. al., 1993a) (Bach-
mair, et. al., 1993). The problem remains decidable in nondeterministic exponen-
tial time if one adds both negative constraints,, C; ¢ C, , (Aiken et. al.,
1993b) (Charatonik and Pacholski, 1994a), and projection functions (Charatonik
and Pacholski, 1994Db).

Modal logics involve formulas which are true or false of possible worlds in
Kripke structures. Equivalently, each formula of a modal logic can be taken to
denote the set of worlds in which it is true. Since modal formulas denote sets,
modal logics can be viewed as set calculi. Propositional dynamic logic (PDL) (Fis-
cher and Ladner, 1979) (Pratt, 1980) and the medeahlculus (Kozen, 1983) are
particularly significant modal logics. R is a binary relation symbol and is a set
expression then in both these logics the set expresgiyC denotes the set

{X:VYyR(x y) > ye C} . The set expressiolR)C is defined analogously to
denote{x:dy eC R(X, y)} . The modal-calculus allows for recursively defined
set expressions of the forpX.C[ X] wheXe is a set variable@n¥] is a set
expression in which every occurrenceXin C[ X] occurs inside an even number
of negation signs. PDL can be seen as a restriction of the medalculus which
has much simpler decision procedures and yet is sufficiently expressive to cover
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many applications. Satisfiability for both PDL and the modgal -calculus are
known to be complete for deterministic exponential time (Street and Emerson,
1989) (Emerson and Jutla, 1988) (Safra, 1988).

Al concept languages have been developed for knowledge representation in
expert systems (Brachman and Schmolze, 1985) (Schmidt-Schaub and Smalka,
1991). The set expressions of concept languages are constructed from set variables
and relation variables using a variety of compositional mechanisms. For example,
the expressiorvR.C wherR is a relation expression ar@d is a set expression
denotes the sefx: VY R(x y —>ye C} (and hence is a syntactic variant of
[R]C). For the most part these languages can be viewed as fragments of PDL
(Calvanese et. al., 1994) (Giacomo and Lenzerini, 1994b) (Giacomo and Len-
zerini, 1994a). However, many of these languages have satisfiability problems in P,
NP, or PSPACE (Donini, et. al., 1991). Also, concept languages often include car-
dinality primitives which appear not to be expressible in PDL. Furthermore, there
is a natural relationship between certain concept languages and Montague gram-
mar for natural language. In particular the set expresB@very C) is taken to be
the set{x: VyeC R(x y)} . This provides a natural meaning for English verb
phrases such as “contains every prime number.” One simple but expressive Mon-
tagovian concept language has a polynomial time satisfiability problem (McAll-
ester and Givan, 1992).

Tarskian set expressions have been studied by Jonnson and Tarski in the frame-
work of Boolean algebra with operations (Jonnson and Tarski, 1951) (Jonnson and
Tarski, 1952). In the work of Jonnson and Tarski the operdtionthe expression
f(C4, ..., C,) actually denotes a relation an+1  arguments. More specifically,
f(Cp, ...,C,) denotes {y:3Ix; € Cy,...,IX, € C (Xy, ... X, Y) € T} . One
can think off as a nondeterministic operation — for any given tuple of inputs there
is a set of possible outputs. Jonnson and Tarski’'s main result is a variant of the
Stone representation theorem which can be viewed as a completeness theorem for
an algebraic axiomatization. They did not study decision theoretic complexity
issues. Representation theorems for subclasses of Boolean algebras with opera-
tions have recently been studied in a general setting by Goldblatt (Goldblatt,
1989). Kozen (Kozen, 1993) has recently obtained a Stone duality in the context of
Herbrand set constraints between the algebra of set constraints and the topological
term automata of (Kozen, et. al., 1993) and (Kozen, et. al., 1994).

Here we consider a superset of the original set expressions studied by Jonnson
and Tarski. We make a syntactic distinction between deterministic and nondeter-
ministic operation symbols corresponding to classical function symbols and rela-
tion symbols respectively. We use this nonstandard terminology so that we can
write set expressions of the forf(C,, ..., C,)  wherés an operation symbol
(either deterministic or nondeterministic). We also allow least fixed point expres-
sions. The complete grammar of our Tarskian set expressions is as follows.
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C - X| f(C,...,C) | C,uC, | =C |pX.C (2)

In the above grammair can be either deterministic or nondeterministic and
may take no argumentse., be a constant symbolX.C s restricted so tKat
can only occur inside an even number of negation symbdls iWe consider finite
sets of constraints of the fore, —cC, Gy ¢ C,

In spite of the apparent naturality of Tarskian set constraints, their computa-
tional properties have not been widely studied. It is shown in (McAllester and
Givan, 1993) that satisfiability of nonrecursive Tarskian set constraints not involv-
ing Boolean operations is decidable in cubic time (assuming unit time hash table
operations). It is shown in (Givan and McAllester, 1992) that satisfiability of con-
straints on expressions involving meets, joins, and monotone applications in an
arbitrary lattice is similarly decidable in cubic time. The results of this paper are
summarized in the table below. We categorize Tarskian set constraint satisfiability
problems by the presence or absence of recursiese(s), the presence or absence
of functions (deterministic operations of arity at least one), and the presence or
absence of constants (deterministic operations of arity zero). In all cases we allow
nondeterministic operations (of all arities) and both positive and negative set con-
straints.

Rec | Fun| Const Lower Bound Upper Bound

1. — — — EXPTIME | Sec. 3.1 EXPTIME Sec. 42
2. - - + EXPTIME | Sec. 3.1 EXPTIME Sec. 4/3
3. — + — NEXPTIME | Sec. 3.2 NEXPTIME| Sec. 4|4
4. - + + NEXPTIME | Sec. 3.2 2-NEXPTIME Sec. 4|5
5. + - — EXPTIME | Sec. 3.1 EXPTIME Sec. 5
6. + - + EXPTIME | Sec. 3.1 ?

7. + — NEXPTIME | Sec. 3.2 ?

8. + + Undecidablel Sec. 3.3 ?

Table 1: Summary of Results with Pointers to Relevant Paper Sections

The results in the first two lines of the table are proved using techniques similar to
those used for PDL (Pratt, 1980) (see Sections 3.1, 4.2, and 4.3). The lower bound
in line three is proved using techniques similar to those used in proving NEXP-
TIME hardness for the monadic class (Lewis, 1980) (see Section 3.2). The upper
bound in line three is proved by a filtration-like argument (see Section 4.4).

Standard techniques fail for the fourth line upper bound, the case of nonrecur-
sive constraints with arbitrary operations. We show in Section 4.5 that satisfiability
for nonrecursive Tarskian set constraints is decidable in nondeterministic doubly
exponential time. Our procedure involves a reduction to a natural class of
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Diophantine constraints which we callequadratic We show that satisfiability for
prequadratic Diophantine constraints is decidable in nondeterministic exponential
time. However, we conjecture that prequadratic Diophantine satisfiability is in NP.
If so, then we get a nondeterministic singly exponential procedure for nonrecursive
Tarskian constraints.

The fifth line in the table corresponds to recursive constraints with nondeter-
ministic operations. It turns out that constraint set satisfiability in this calculus is
linear time equivalent to set expression satisfiability in the moéehlculus. We
show in Section 5 that constraint set satisfiability for this class is polynomial time
reducible to closed set expression satisfiability in a calculus we call the Herbrand
u-calculus. Closed set expression satisfiability for the Herbrarwhlculus is
known to be decidable in exponential time.

Decision procedures for the modalcalculus can be viewed as consisting of
two phases. The first phase can be viewed as a reduction of set expression satisfi-
ability in the modal calculus to set expression satisfiability in the closed Herbrand
calculus. The second phase is a decision procedure for the closed Herbrand calcu-
lus. The formal justification for the first phase is rather elaborate (Street and Emer-
son, 1989). Here we give an alternative reduction from the medallculus to the
closed Herbrangd-calculus with a simplified correctness proof.

We believe it likely that technigues used in decision procedures for the modal
u-calculus can be used to construct decision procedures for lines six and seven,
although this has not yet been done.

The undecidability of the eighth line is proved by a reduction of Hilbert’s tenth
problem. The reduction, given in Section 3.3, uses only intersection and union
constraints (no negation) and only a single levei-gtiantification.

It is interesting to note that the difficulties in both lines four and eight arise
from the ability to express Diophantine constraints. It seems that both constants
and functions of arity at least one are necessary for expressing such constraints.

The remainder of this paper is organized as follows:

» Section 2 is a basic concepts section laying out the terminology we use for the
various Tarskian set constraints satisfiability problems;

» Section 3 gives proofs of the lower bounds given above in Table 1;

» Section 4 gives proofs of the upper bounds from Table 1 for the nonrecursive
variations of the language; and

» Section 5 gives a proof of the EXPTIME upper bound for recursive Tarskian
set constraints without function symbols of any arity.
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2. Basic Concepts

We assume a countably infinite collection of set variables and for each arity (num-
ber of arguments) an infinite number of deterministic and an infinite number of
nondeterministic operation symbols of that arity. We will call deterministic opera-
tion symbols of arity zer@onstant symbolsand those of nonzero arityunction
symbolsWe consider set expressions generated by the following grammar.

C - X| f(C....,C) | C,uC, | -C |uX.C (3)

We also writeC; n C, as an abbreviation fe —-C; U =C,) . We take a first
order structuréM to be a domain sdD plus an interpretation, denotéd(f) , of
each operation symbélsuch that iff has aritynthenM(f) < D"*1 and such that
if f is deterministic then for alk,, ..., x,, il there exists exactly ongsuch that
(X1, ..., X Y) € M(f). A set variable interpretation over a first order structure
is a mapping from set variables to subsets of the domalw.df p is a set variable
interpretation thep[X:=S] is the interpretation identicaptexcept that it inter-
prets the variabl as the se& For any set expressidd, first order structuré/
with domainD, and set variable interpretatignover M we takeM[C] p to be a

subset oD defined by the following conditions:
M[X] p p(X)

{y: Ix, e M[CY] p, ..., 3X, € M[C,] p}
(Xgs oo Xpp V) € M(F)

M[ f(Cy,...,C)I p

M[C,uC] p = M[C]puUM[C]p
M[-Clp = D-M[C]p
M[uX.Cl p = Hy for y any cardinal greater than thatf

where p, = U M[C] pIX:=pg] for ordinal$, o
B<a

A positive constraint is an expression of the foac C, , and a negative con-
straint of the formC; ¢ C, . A pair(M, p) is called enodel.We say that a
model (M, p) satisfies the constrai@;, cC, whenexfC;] pcM[C,] p

We say(M, p) satisfie€, ¢ C, M[Ci] p¢ M[C)] p .WesayM,p) sat-
isfies a sek of constraints if{ M, p) satisfies every membenrbiWe call (M, p)
amodel ofX in this case. A constraint s&tis satisfiable if it is satisfied by some
(M, p). We are interested in determining the satisfiability of finite sets of con-
straints.

1. The (deterministic or nondeterministic) operation synfiltoust have arityl in expressions of
the form f(C,, ..., C,) and all occurrencesXfin Cin the expressiopX.C  must occur inside
an even number of negations.
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Because we discuss many variations of the basic Tarskian language, we intro-
duce here a system of abbreviations for the variations considered. We will write
“plain Tarskian set constraint” for a constraint with no recursions and no function
or constant symbols. We will add a prefix Bf, F-, and/orT- to the word Tar-
skiarf to indicate the possible presence of recursion, function symbols, and/or
constant symbols, respectively. So, for example R Tarskianset constraint
may contain recursion and/or constant symbols but may not contain function sym-
bols. Except where explicitly mentioned, all languages we consider here allow
Boolean operations and nondeterministic operation symbols of arbitrary arity.

3. Lower Bounds

In this section we present the three reductions responsible for all the lower bounds
shown in Table 1. First, we show that plain Tarskian constraints have an EXP-
TIME-hard satisfiability problem by giving a reduction from the acceptance prob-
lem for linear-space-bounded alternating Turing machines. Second, we show that
the addition of function symbols to the language results in a satisfiability problem
that is at least nondeterministic exponential-time hard, by reduction from the satis-
fiability of “Lewis clauses”. Finally, we show that fulRFC-Tarskianset con-
straints have an undecidable satisfiability problem; this is shown by reduction from
Hilbert’s tenth problem. All eight lower bounds shown in Table 1 derive directly
from these three reductions.

3.1 Lower Bound for Plain Tarskian Constraints

In this section we show that satisfiability of Tarskian set constraints is EXPTIME
hard for constraints without recursion or deterministic operation symbols. The
results of this section can be contrasted with known results on the satisfiability of
individual set expressions in these expressively weak languages (Donini, et. al.,
1991). In the nonrecursive case satisfiability of individual set expressions is con-
siderably easier than satisfiability of a system of set constraints. We show in
Section 5 that when recursive set expressions are allowed but deterministic opera-
tions are not, then constraint set satisfiability can be reduced to set expression sat-
isfiability. Without recursion the reduction fails.

It turns out that languages somewhat weaker than Tarskian set constraints with-
out recursion or deterministic operations are still hard for exponential time. We
will characterize some weaker languages using the following definitions.

Definition 1. If X is a set of constraints an® is a constraint we weitg ®

to indicate that any model satisfying all the constraint®in  also satidfies . A
positive entailment problens a setX ofpositive set constraints and a positive
set constraintd . The problem is to determine whelhjer®

Each positive entailment probleBh®  is equivalent to a set constraint satis-
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fiability problem & u {—®} ) in which there is exactly one negative constraint.
We call a set of constraints with at most one negative constrgiosdive entail-
ment satisfiability probleniNow consider the following ways in which set expres-
sions can be formed.

v If UandW are set expressions then sbliss W

N If Uand W are set expressions then se-i5-U U —W) , which will
also be writterld "W .

< If Cis asetexpression ari®l is a binary operation symbol then
R(CO), which will also be writtenlRYC , is also a set expression.

[1 If CisasetexpressionarRRl is a binary operation symbol then
—R(=C), which will also be writtef R]C , is also a set expression.

We use the notatioh(F,, ..., F,) to mean the set language with set variables
and set formation features, .., F, . For exampl&n, <) is the language
whose set expressions are constructed from set variables using only the set forma-
tion operationsn and <> as defined above. All of the languages defined by the
above four features are sublanguages of plain Tarskian set constraints. In all of
these languages the only occurrences of the set complement operation are the
occurrences implicit in set expressions of the fofR|C N W . We show
here that the positive entailment satisfiability problem 1of], <>, n) and
L([J, <>, v) are both EXPTIME hard. Before doing this we now briefly mention
the difficulty of the positive entailment satisfiability problem for other combina-
tions of these features.

We begin by establishing a general duality principle for all languages defined
by subsets of the language features discussed in this section.

Definition 2. If Cis a concept expression then we define the duél, efenoted
asC” , to be the result of simultaneously replacizg  [By[], <byu , by
M, andn byu . Note thatC*)* = C for ary.

Definition 3. For any variable interpretatignwe definep” to be the interpre-
tation given byp*(X) = D —p(X) j.e., p*(X) is the complement qi(X)

Lemma 1: For any set expressiddand modek M, p) ,we hav[ C*] p* is
equal toM[—-C] p .

Proof: Push the negation inG:down to the set variables using de Morgan’s
laws and the identities,(R)YC = [R]-C andR]JC = (R\—C [

Definition 4. For any positive constraif€ —c W , we define the dual constraint
(CcW)* to beW* c C* and for any seX of positive constraints we define
Y*tobe{® :deX} .
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Lemma 1 implies that for any positive constradptwe have that M, p) satisfies
@ if and only if (M, p*) satisfiesd* . This yields the following duality lemma.

Lemma 2: (Duality) The entailment relatiorx F® holds if and only if the
dual relationz* = ®* holds.

This duality lemma allows the direct reduction of the positive entailment satisfi-
ability problem for any language variant to its dual variangy, the reduction from
L(v) to L(n) and vice versa. We now consider the positive entailment satisfiabil-
ity problem for several specific language variants.

The positive entailment satisfiability problems of_) an@) can both be
reduced in linear time to the satisfiability problem for propositional Horn clauses
which is known to be decidable in linear time (Downing and Gallier, 1984), as fol-
lows. Any constraint set with no negative constraints is trivially satisfiable by the
empty model. If there is one negative constraint, we can focus on a single domain
object d witnessing the truth of the negative constrainte.( such that
d e M[Un=W] p for negative constrainy ¢ W ) and then treat each set vari-
able P as a proposition symbol whose truth correspondsl to M[ F] p . Each
constraint can then be written as a set of Horn clauses over these proposition sym-
bols so that the resulting set is satisfiable exactly if there exists a model of the pos-
itive constraints with at least one witnes® the single negative constraint.

The positive entailment satisfiability problem fb¢u, n)  can be shown to be
NP complete (we leave this as an exercise for the reader). It is known that satisfi-
ability of Tarskian set constraints not involving Boolean operations or recursion,
but with both deterministic and nondeterministic operation symbols of all arities, is
decidable in polynomial time (McAllester and Givan, 1993). This implies that the
positive entailment satisfiability problem fdr(<>) is decidable in polynomial
time. By duality arguments given below this implies that the problenL{@1) is
also decidable in polynomial time. To our knowledge the difficulty of the positive
entailment problem for other combinations of these features is open.

It is possible to relax the semantics of Tarskian set expressions so that the “set”
expressions denote elements of a lattice andnd~ denote least upper bound
and greatest lower bound operations respectively. Once we allow an arbitrary lat-
tice (rather than require a complemented distributive lattice), and only require that
relations denote monotone operations on lattice elements, then the positive entail-
ment problems folL(<>, U, n) is decidable in polynomial time (McAllester and
Givan, 1992).

Theorem 1: The positive entailment problem fdr([],<>,n) is EXPTIME
hard.

Proof: The proof is by reduction of the acceptance problem for linear space
bounded alternating Turing machines. In an alternating Turing machine the
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states are classified into “universal” and “existential” states and for any given
state and input symbol there can be many different next states (as in simple non-
deterministic machines). A configuration of the machine consists of a state of
the tape, the tape location of the Turing machine head, and the state of the
machine. A configuration in which the machine is in a universal (existential,
accepting) state is called a universal (existential, directly accepting) configura-
tion. Each configuration has a set of possible next configurations defined by the
transition table of the machine in the standard way. The set of accepting config-
urations is the least set containing all directly accepting configurations (where
the machine is in an accept state) and including every universal configuration
such that all next configurations are accepting and every existential configura-
tion such that some next configuration is accepting. The linear space alternating
Turing machine problem can be phrased as the problem of deciding if a given
configuration of a given alternating machine is accepting subject to the restric-
tion that configurations are restricted to ones in which the head occurs on a
given set of tape squares (all other configurations are taken to be failing config-
urations). We can assume without loss of generality that all configurations have
exactly two next configurations. We show that this problem is polynomial time
reducible to the positive entailment problem fgf], <>, M)

In the reduction to from alternating machines to set expressions the set expres-
sions can be viewed as sets of machine configurations, or equivalently each set
expression can be viewed as a “proposition” that is true or false of any given
configuration. Given any linear space bounded alternating Turing machine we
introduce a set variablX | for each tape locataand possible tape symbol

a. Intuitively X, represents the proposition that symbad written on square

n. We also mtroduce a setvariadte,  for each tape locatigpresenting the
proposition that the head is at squarand a propositior? for each machine
states representing the proposition that the machine is in stafée also have

set variablesSTART and ACCEPT representing, respectively, the propositions
“the current configuration is the given initial configuration” and “the current
configuration is an accepting configuration.” Finally we have one binary opera-
tion symbolN representing the “next configuration” relation. We ¥be the
following set of positive constraints. Each constraint can be viewed as an impli-
cation required to hold at all configurations.

1. START c H,

2. STARTgZS0 wheres, is the initial state.

3. START c X|, 4 wherea is the initial symbol on tape square
4

A constralntX aNH,NZ,c(N)H,; 1" Z,N X, p foreach entry
in the transmon table of the machine which replaacbyb moves from
states to statew, and moves right. A similar constraint is included for
each left-moving entry in the machine table.
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5. All constraints of the fornX, ;N H,< [N]X, , whemsz= m.
6. All constraints of the fornrz < ACCEPT whessis an accepting state.
7. All constraints of the form
Z N (N)(Z, ~ ACCEPT) n (N)(Z,, » ACCEPT) c ACCEPT
wheres s a universal state with successor statasdw.

8. All constraints of the fornz, ~ ( N) ACCEPT — ACCEPT whessis an
existential state.

We now sketch a proof that F START < ACCEPT if and only if the given ini-
tial configuration is accepting. We first assume thgt START < ACCEPT

and show that the initial configuration is accepting. Suppose not. We can then
construct a model(M, p) ofZ, in which the initial configuration is in
M[START] p but not in M[ ACCEPT] p , contradicting our assumption that
Y | START — ACCEPT. The domain ofM is the set of all configurations
reachable from the initial configuration. Each set varig®Bl&@RT, ACCEPT,

Xn a» Hp,or Z,, is interpreted relative to this domain pyaccording to the
intended meanings given above.d, H,, is the set of configurations in the
domain for which the head is at tape location M interprets the binary opera-
tion symbolN as true for two configurations; anda, if and only if a, is
reachable in one step from. It is easy to check that the constraint<iare all
satisfied by(M, p) and that the initial configuration is [ START] p but
not in M[ ACCEPT] p, as desired, allowing us to conclude by contradiction
thatX |- START < ACCEPT implies that the initial configuration is accepting.

We now consider the converse direction. We assume that the given initial con-
figurationf} is accepting and prove that|= START c ACCEPT . We say that a
configurationa. is n-accepting for natural numberif it satisfies the following
conditions:

* if n = 0, a is directly accepting

* if n> 0 and the machine is in a universal statesinthen all successors of
are fi—1)-accepting.

« if n> 0 and the machine is in an existential statexjthen some successor of
a is (n—1)-accepting.

We also define the set expressi@fo) for each configuratido be the
expressionX; ; N ... N X, o NHyNZ, where for eacha is the symbol
on tape squarein configurationo, the head is at tape squaren configuration
o, and the machine is in statein configuratior.

Constraint types 4 and 5 bensure thaD(a) < (N)(D(y)) whenever it is pos-
sible for a transition to occur from a configuratiario a configuratiory. Using
this fact along with constraint types 6, 7, and 8 we can now show by induction
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on n that for everyn-accepting configuration we haveZX |= D(a) < ACCEPT ,

for anyn. Since each accepting configuration mustk&ccepting for some,

we can conclude th& |- D(B) < ACCEPT for the given initial configuratfon
But the first three types of constraintsirensure thak F START < D(B) , and
so by the transitivity of subset we have thal START < ACCEPT as desired.
O

This last lemma allows a direct reduction of the positive entailment problem for
L(<>, [, n) to the corresponding problem fa<>, [], )  so the latter must also
be EXPTIME hard.

Corollary 1: The positive entailment problem fdar((<>, [],v) is EXPTIME
hard.

3.2 Lower Bound forF-Tarskian Constraints

In this section we give a reduction from a fragment of the monadic class known to
be complete for nondeterministic exponential time to nonrecursive Tarskian con-
straints with function symbols but without constant symbols.

Definition 5. A first order clauseis a first order sentence of the form
VX, .o Xy (W1 v ..o v ) Where eachV, is a first order literali.e., either an
application of a predicate symbol to terms or the negation of such an applica-
tion. Let a be a fixed constant symbol and febe a fixed monadic function
symbol. We define Bewis clausgovera andf) to be one of the following:

* An atomic sentence of the forR(a)

» A clause involving a single variabkewhere every literal contains an applica-
tion of a monadic predicate to eitheor f(X) .

* A clause involving exactly two variables in which every literal contains an
application of a monadic predicate to one of the two variables.

The following result is due to Lewis (Lewis, 1980).

Theorem 2: (Lewis) Satisfiability for a set of Lewis clauses is complete for
NEXPTIME.

Note that Lewis clauses involve only monadic predicates. Function symbols only
arise in clauses of the second type. It is not difficult to show that a set of Lewis
clauses can be “inverse Skolemized” to produce an equisatisfiable sentence with-
out any function symbols and involving only monadic predicates. Hence Lewis
clauses can be viewed as a fragment of the monadic class. The NEXPTIME lower
bound for Herbrand set constraints established in (Bachmair, et. al., 1993) was also
proved using a reduction of Lewis clauses.
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Theorem 3: Satisfiability forF-Tarskian constraint sets is NEXPTIME hard.

Proof: The proof is by reduction of Lewis clause satisfiability. Cabe a set of
Lewis clauses. For each monadic predicate symbGlue select a correspond-
ing zero arity nondeterministic Tarskian operation symbol — by abuse of nota-
tion we will denote the selected Tarskian operation symbol for each monadic
predicate é.9. P by the same name¢., P). We define aset[C] of nonrecur-
sive Tarskian set constraints as follows. Bg(a) ..., P,(a) be all claus€s in

of the formP(a) . We include inT[C] the constraiRy ... "P,¢ F  where

F is the empty set expressiohn —X  for an arbitrary set varixbleor each
clause of the form Py(X) v ... vP(X) v Qi(f(X)) v ...vQ(f(X) in C,
where eachP; andQ; is either a predicate or its negation, we include the con-
straint

f(=P,n...n=P))cQu..uQ, 4)

in T[C]. Finally, consider a clause inC of the form
Pi(X)v...vP,(X)vQiuy Vv..vQ.y where eachP; and Q; is either a
predicate or its negation. Lgtbe a fixed but arbitrary binary Tarskian function
symbol. For each such clausedmwe include the constraint

in T[C].

It is easy to showf' [C] an@ are equisatisfiable, as follows. Suppose tha
satisfied by a first-order structuM. If we extendM by interpretingg as the
constant function which maps all pairs of domain elements to the valae of
then we get a model of [C] (sinCE[C]  has no set variables in it the choice
of p is immaterial). Conversely, letM, p)  satisfy{ C] . It must be possible to
extendM by interpretinga in such a way as to satisfy all clauses of the form
P(a) in C. This extension must satis§ [

3.3 Lower Bound forRFC-Tarskian Constraints

In this section we show that satisfiability for full Tarskian set constraints (with both
recursion and arbitrary arity deterministic and nondeterministic operation sym-
bols) is undecidable. The proof is by a reduction of Hilbert’'s tenth problem. The
proof uses only set variables, constants, monadic functions, set unions and inter-
sections (no complementation), and a single leval qiantification.

Theorem 4: Satisfiability forRFC-Tarskian constraint sets is undecidable.

Proof: Let X be a set of constraints of the forn'=1 n = p+q , or
n = pqg, wheren, p andq range over nonnegative integers. It follows from the
undecidability of Hilbert’s tenth problem that satisfiability for such systems of
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constraints is undecidable. We reduce the diophantine constraiftteed set
T(X) of Tarskian set constraints as follows.

For each natural number varialsi®ccurring inX we introduce a set variabl,
with the intention that the cardinality of, represent the value of. For set
expression€ andW we will use C = W as an abbreviation for the two con-
straintsCc W andW < C . We will also us€| <|W  as an abbreviation for
C c f(W) wheref is a fresh monadic function symbol used only in this con-
straint. We will us¢C| = |[W as an abbreviation f@| <|W  awl| <|C

For any monadic function symbaland set expressio@ we let s*(C) be an
abbreviation foruW.C U W) |.e, the set of objects that can be gotten by
applyings zero or more times to an element®©f For each variabla in £ we
introduce a constant symbg| and monadic function symbsj, and add the fol-
lowing constraints td@ (%):

X, = sp(cy)

(6)
C, © Sn(srl(cn))

The first constraint states thX}, is the set containing, and all its transitive
successors undsr. The second constraint states thats the successor under
s, of some element of’(c,) and therefore that theX¢gorms a loop under the
successor functios,. This implies thaiX,, is a finite set but does not otherwise
constrain its cardinality. This corresponds to the Hilbert problem constraint that
nis a nonnegative integer. We now need to impose the constraints gizen in

If X contains the constraimt = 1  thd(X) contains the constrairX, = ¢,
If ¥ containsn = p+ g then we add the constraints

X,=UuW Xy = U]

_ (7)
UNWc F |Xq|—|W|

to T(X) whereC, U, andW are fresh set variables afidis the set expression

uX. X, which always denotes the empty set. It remains only to express product

constraints as set constraints.

To handle the product case we introduce some additional notatio& L€} be
a set expression constructed entirely from deterministic operation symbols
(functions or constants) and a single occurrence of the varigldey, f(X,
wherec is a constant andl is a function. Note that iK denotes a singleton set
then so doeC[X] , an€[Xu Y] equalydX]uC[Y] . For any such set
expressionC[ X] we introduce the notatidtx € f*(c) x=C[X] as an abbre-
viation for

f*(c) = nX.(en Cc)) v (F(X) N CLE(X)]). (8)
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For example,vx e f* x=g(f(x)) states thgtis the inverse of on the set
f*(c) . More generally, if there is only one occurrencexah C[ X], andC[ X]

is constructed purely fronX and function symbols, then the expression
vx e f*(c) x=C[x] states that each elemenbf f*(c) is a “fixed point” of
the set expressio[] . SuppoSecontainsn = pg . We add the following
constraints tol (X) , whereis a fresh constant arfdg, h, g andh’ are fresh
monadic function symbols:

1. X, = (0 7. £*(c) = uX.(cu g(X) U h(X))
2. cc f(f*(c) 8. vVx e f*(c) x=g'(g(x)

3. Xp = g*(c) 9. Vx e f*(c) x=h'(h(X)

4. cc 9(g'(c)) 10. vx e *(c) x=g'(h"(9(h(x)))
5. Xq = h*(c) 11. g'(c)nh*(c) = ¢

6. c < h(h*(c))

Constraints 2, 4, and 6 imply thdt'(c) g;(c) , aht(c) are all finite “loops”.
Constraint 7 implies thag andh are both functions mapping*(c)  intb*(c)
Constraints 8, and 9 imply thaf ard  are inverseg ahdh, respectively,
on the setf*(c) . Since bottpandh are invertible they must both be bijections
from f*(c) toitself. Thisimplies thatthe inversgs ahd are also bijections.
Condition 10 implies thag and h commute onf*(c) ,.e, f(g(X) equals
g(f(X)) . Now considerg"(h*(c)) . Sincgis bijective,g" is bijective. Note that
h(g"(x)) equalsg"(h(x)) . So the mapping’ is a bijection which “presetves
structure”. Hence the sa"(h*(c)) is dnloop with the same cardinality as
h*(c) . Since sets of the forrgi(h*(c)) ateloops they are either equal or dis-
joint. Suppose gi(h*(c)) = gk(h*(c)) . Applyingg’'! to both sides we
h*(c) = g*=i(h*(c)). This implies thatgk—i(c) mustbe ih*(c) and hence by
condition 11 above we havgk—i(c) = ¢ . But this implies tkaquals mod
lg*(c)]. Hence for k= j mod|g*(c) we havegi(h*(c)) is disjoint from
gkh*(c)). Since all these sets are of sizdh*(c) we have
| £*(c)] = |g*(c)||h*(c)| . Condition 7 also implies thatf*(c) — g*(h*(c)) and
with conditions 8 through 10 this givels *(c)| < |g*(c)||h*(c)]  so we can con-
clude | f*(c)| = |g*(c)||h*(c)| as desired

4. Upper Bounds for Constraints without Recursion

In this section we present upper bounds for Tarskian set constraint satisfiability
problems without recursion. We consider four restrictions on this problem and pro-

vide upper bounds for each — the variations are due to the separate prohibition or
inclusion of function symbols and constant symbols.

The upper bound proofs build on one another conceptually, as we move from
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prohibiting function symbols and constants to allowing both. The proofs given
establish the upper bound results shown in lines 1 through 4 of Table 1. The upper
bounds are tight to the lower bounds proven in Section 3 for each case except the
case allowing both function and constant symbols, where there is a gap between
our lower and upper bounds.

4.1 Basic Terminology and Summary of Nonrecursive Upper Bound Proofs

Because the following four upper bound proofs all rely on the same basic terminol-
ogy about nonrecursive set constraints, we collect the relevant definitions here for
reference. Le& be a set of nonrecursive Tarskian set constrairgs, set con-
straints not involvingi-sets.

Definition 6. We say that a set expressi@noccurs inZ if either C occurs as a
top level set expression in a constraintiiror as a subexpression of such an
expression. A-typeis a setr of set expressions satisfying the following condi-
tions:

» Every element of is of the formC or -C whereC occurs inx,
» For anyC occurring inZ, t contains exactly one & or -C,

» If C; U C, occurs inX thent containsC, U C, if and only ift contains
at least one o€, andC,, and

e |f X containsC < W and containsC, thent containsW.

Intuitively, the Z-types correspond to the “types” of domain elements where two
elements have the same type if they are not distinguished by any set expression
occurring inX — i.e.,both elements are included or excluded together in the deno-
tation of every set expression occurringinThe X-types are analogous to truth
assignments on the Fischer-Ladner closure used in decision procedures for PDL
(Fischer and Ladner, 1979). Now consider a mddé)J p)

Definition 7. A domain elemenk of M inhabits a Z-type if for every C € t©
we havex e M[C] p . If some domain element inhabitshen t is called
inhabited

Definition 8. The typeof any domain element of M is the uniquex-type t
such that for all set expressioksoccurring inX, t containsU if and only if
xe M[U] p.

Next we define a notion of a “possible output” for an application of an opera-
tion symbol (deterministic or nondeterministic).

Definition 9. A type t is a possible outputof operationR applied to types
Gy, ..., O, Written R(o 4, ..., 5,) = 1, provided that for every expression of the
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form R(C,, ..., C,) in X such that eaclC; € 5; 1 containsR(C,,...,C,) as
opposed to-R(C,, ..., C,)

Intuitively, R(c,, ..., 6,) 1 is true provided that the set expressions ufo not
forbid R from mapping objects of type; to an object of type. We now consider
local consistency properties that must hold for the set of inhabitggbes in any
model.

Definition 10. A setS of Z-types islocally consistentf:

» For each negative constraiot¢g W Arthere is a type irswhich containdJ
but notW,

+ Ifatyperin ScontainsR(C,, ..., C,) for any-ary operation symbdR, then
there exist types,, ...,c,, i®suchthatR(c,,...,c,) >t andc, € 5; for
eachi,

n

+ For each deterministic operation symba@nd>-typesc,, ..., 5, InS where
nis the arity off, there exists &-typet in Ssuch thatf(s,, ..., ) »1t , and

» Each constant (deterministic operation of arity zero) is contained in exactly
one type irS,

If ¥ does not contain recursion and either does not contain constants (determin-
istic operations of arity 0) or does not contain functions (deterministic operations
of arity at least one) thek is satisfiable if and only if there exists a locally consis-
tent set ofz-types. The following subsections contain proofs of this fact, which we
briefly summarize for each language variation here. In the case where neither con-
stants or functions are present one can start with-&§fpes and iteratively remove
those violating the second condition of Definition 10. We then havellssatis-
fiable if and only if the resulting set af-types satisfies the first condition of
Definition 10. This gives a deterministic exponential time decision procedure. If
constants are present then we must nondeterministically guess a thique -type for
each constant before removingtypes to satisfy the second condition of
Definition 10. However, this involves only polynomially many nondeterministic
choices and hence the space of all possible guesses can be searched in determinis-
tic exponential time. So we again get a deterministic exponential time procedure.
When functions are present (but not constants) we can again start witygles
and remove types violating the second and third conditions. However when the
third condition is violated we have a choice of removing any one of the types
G1,...,Op. This gives a nondeterministic exponential time procedure.

When both functions and constants are present, Tarskian set constraints can
express a limited form of diophantine constraints on the cardinalities of the sets
represented by the set expressions. For this case, we give a nondeterministic reduc-
tion to an exponentially large diophantine constraint problem of a form we call
prequadratic and then show that such constraint problems can be solved in nonde-
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terministic time exponential in their size, yielding a nondeterministic doubly expo-

nential decision procedure. We conjecture that prequadratic diophantine
constraints are in NP — if this conjecture is true, our decision procedure would
give a tight upper bound of nondeterministic exponential time for nonrecursive
Tarskian constraints.

In the next four subsections we give these four upper bound proofs in detail.

4.2 Upper Bound for Plain Tarskian Constraints

This section gives a simple (deterministic) exponential time procedure for deter-
mining the satisfiability of a system of nonrecursive Tarskian set constraints with-
out function or constant symbols. The results in this section are subsumed by those
of Section 5 where we show that satisfiability for recursive Tarskian set constraints
without functions is also decidable in deterministic exponential time. However, the
procedure in Section 5 is based on the known decision procedure for the proposi-
tional p-calculus which in turn is based on tree automaton techniques and is proba-
bly unusable in practice (Street and Emerson, 1989). Here we sketch a much
simpler exponential time procedure that is somewhat analogous to the exponential
time decision procedure for PDL constructed by Pratt (Pratt, 1980).

Theorem 5: Satisfiability of a system of plain Tarskian constraint sets is decid-
able in exponential time.

Proof: We define a simple procedure. L2tbe a system of nonrecursive Tar-
skian set constraints. Initializ8 to be the set of alE-types. Now repeatedly

remove fromS any typet such thatr containsR(C,, ..., C,) but there are no
typescy, ..., o, inSsuch that eact; containsC; andR(c4, ..., 6,) > 1 .

The final setS of Z-types can be computed in time that is exponential in the
number of set expressions occurringZinWWe now show thak is satisfiable if
and only if for all negative constrainS ¢ W  Miithere exists some typein S
such that containsC but notW. First suppose there is some negative constraint
C ¢ W in X such that every type iBthat containsC also containd\. It is not
difficult to show that every-type removed by the above procedure must be
uninhabited in any model af, implying that every model oE must satisfy

C < W (because any domain elemenin the denotation oC hasC in its -
type and must then haw¥ in its Z-type and be in the denotation bf). SinceX
containsC ¢ W there can be no such models arXlisansatisfiable.

Now, to prove the converse, suppose that for each negative con<Irgitw in
¥ there exists a type i containingC but notW. Let (M, p) be the model such
that the domain oM is the setS p(X) is the set of types its containing the
variable X and M(R) for operation symbdR is the relation containing those
tuples (G4, ..., 0, T) overSsuch thatR(c,, ..., 5,) »t . We prove by struc-
tural induction on set expressions that for any set expressioocurring inX
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we have thaM [ C] p is exactly the set of typesSnontainingC. It is not dif-
ficult to show using the properties &listed in definitions 6 and 10 that this
implies that(M, p) satisfie®. The case of set variables is true by definition.
The case of union set expressions that occl is straightforward given the
third property ofz-types from Definition 6. If € occurs inX then by the induc-
tion hypothesidM[ C] p s the set of types3tontainingC. Since by defini-
tion everyZ-type contains exactly one & and -C, we have thaM[—-C] p ,
which equalsS— M[ Q p , is precisely those typesSavhich contain €, as
desired. Now consider an application expres$g,, ..., C,) alle a type

in Scontaining this application expression. Sinogas not removed in the pro-
cess of constructingS there must exist typess,..., o, such that
R(c4, ..., 0,) >t and whereC, € o; for eacly;. It follows from the defini-
tion of M(R) thatt is a member ofM[ R(C,, ..., C))] p . Finally suppose that
tis atype inM[R(C,, ...,C.)] . By the definition oM(R) there must exist
types o4, ...,6, in M[Cy] p,.., M[C] p respectively such that
R(c4, ..., o) = 1. By the induction hypothesis we must halge o, for each
i . Now by the definition of» we must also have thatontainsR(C,, ..., C,) .

O

The proof of the above theorem yields a finite model property for plain Tarskian
set constraints (every satisfiable set of constraints is satisfiable by a finite model).
It is also possible, although we will not do it here, to give a simple set of inference
rules and show that the steps of the above procedure can be simulated by infer-
ences in that system and hence that the rules are sound and complete for this case.

4.3 Upper Bound forC-Tarskian Constraints

In this section we sketch a proof that satisfiability for Tarskian set constraints with-
out recursion and without function symbols of arity greater than zero is decidable
in exponential time. The decision procedure is very similar to the procedure of the
preceding section except that, due to the inclusion of constant symbols in the lan-
guage, rather than deterministically construct a set-tfpes we are forced to
guess a set ai-types, making only polynomially many guesses. The guessing is
needed because we must ensure that we select a single dnigpe for each con-

stant, even though there may be many ways to make these choices to build a satis-
fying model.

Theorem 6: Satisfiability for C-Tarskian constraint sets is decidable in expo-
nential time.

Proof: We give a nondeterministic exponential time procedure involving only
polynomially many nondeterministic choices. Any such procedure can be runin
deterministic exponential time. First we guess-gype for each constant sym-
bol that appears iB. Note that this can be done with quadratically many nonde-
terministic choices (for each constantdn and each set expression in we
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need to decide whether that set expression is irEthype associated with the
constant). Now initialize&Sto be allZ-types not containing any constante(

types containing efor each constant symboloccurring inX) plus the selected
>-types for the constants. Then, as in the previous section, repeatedly remove
from S any typert such thatr containsR(C,, ..., C,) but there are no types

oy, ..., Op IN Ssuch that eacl; containsC; andR(o,, ..., ) » 1 . Acceptt

as satisfiable if the removal process does not remove any of the types containing
constants and the final stontains a type for each negative constraing W

in X that contain€ but notwW.

The proof of correctness of this procedure is a straightforward modification of
the proof of the preceding section. Every type eliminated by the procedure must
be uninhabited in any model corresponding to the choice of types for constants.
Therefore, if the procedure does not accephenX must be unsatisfiable. On

the other hand if the procedure does accepten the final se§ of types con-
structed by the procedure can serve as the domain of a madeiof

4.4 Upper Bound forF -Tarskian Constraints

In this section we show that satisfiability for nonrecursive Tarskian set constraints
without constant symbols but including function symbols can be decided in nonde-
terministic exponential time. We start by proving the following lemma which
states that when no constant symbols are involved it suffices to consider nonstand-
ard models in which function symbols are allowed to denote “total” relations.

Definition 11. Let Sbe a subset ob"*1 . The relatidis calledtotal if for
every tuple (X, ..., X, D" there exists someye D such that
(X, --» X Y) € S. A nonstandard modabs a model( M, p) such that for each
function symbolf we have thatM(f) is a total (but not necessarily functional)
relation.

The meaning of a set expression in a nonstandard model is defined in an identical
manner to its meaning in standard models. We can now state the following lemma
for Tarskian set constraints without constant symbols.

Lemma 3: If ¥ is a set ofF-Tarskian constraints then is satisfiable if and
only if ¥ is satisfied by a nonstandard model.

Proof: Since every model is a nonstandard model the only if direction is trivial.
Now suppose that there is a nonstandard madi&| p) which safisfidset

D be the domain oM. By the Léwenheim-Skolem theorem for first order logic
we can assume without loss of generality thas countable. We will construct

a standard model satisfying whose domain iD x » i.e, the set of pairs
(x, 1) for x e D andi a natural number. We definetarget constraintto be a
tuple of the form( f, x,, ..., X, (Y, K) wheré is a function symbol occurring
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in X, eachx; andy is in D, k is a natural number, andx,, ..., X, ) € M(f)
Intuitively, a target constraint states ttisghould map the tuplgx,, ..., x) to

the pair (y, Kk . We define alomain constraintto be a tuple of the form
(f,(Xg, Jp)s - (X ) - INtuitively a domain constraint expresses the con-
straint thaff must be defined on the tuplg(xy, j;), ..., (X, J,»» - The setof all
possible target and domain constraints is itself countableEL€E,, ... be an
enumeration of all target and domain constraints (each target and domain con-
straint appears somewhere in this enumeration). We now define a series of mod-
els (M, p") , (Mo, p") , (Mg, p") ..., all of which have domaiD x® . The
model (M4, p’) is defined by the following conditions:

» For any set variabl&, p’'(X) is the set of pairs of the forngx, i)y where
x € p(X),

» For any nondeterministic operation symidbccurring inX and any values
of j, «.ov iy @ndk, ((Xg, jp)s oo (X I 1> (Y, K) € M4(R) if and only if
(Xg, .s X YD € M(R),

+ For any function symbdl occurring inz, M,(f) is empty.

Each modeM;, ; is defined in terms bf, and the constrairf;. If E; is a tar-
get constraint( f, x;, ..., X, {(y, K) then we leM;,; be identical M

except thatM, , ,(f) contains exactly one more tuple thgf) and that tuple
IS ({Xy, J1)» -oor Xpp Ip> (Y> K) Where j,, ..., j, are the lexicographically
least sequence of numbers such tNg(f) does not contain any tuple of the

form ((Xy, Jps .- (X I1» 2 . If Ej is a domain constraint of the form
(F, (X Jp)s -0 (X ]y then if M;(f) contains a tuple of the form
({Xg, 15 -0 (X I1» Z2) then M, ; equaldl;, otherwiseM; , ,(f) contains
one more tuple tharM,(f) and that tuple {§Xq, j), .-, (Xpp I (Y. O))
where (X4, ..., X, ¥) € M(f) . Such & must exist becaudd(f) s total.

We let (M’, p") be the model such th&t’'(R) is the union of all relations of the
form M,(R) for any (deterministic or nondeterministic) operation synfRolt

is not difficult to verify that for any function symbdl M’(f) is functional.
HenceM’ is a standard model. Furthermore, one can also verify by structural
induction on set expressions that for aayTarskian set expressidb we have

that M'[ C] p' is the set of pairgx, iy such thate M[C] p . This implies
that (M, p’) satisfiex. [

We now show that a sét of F-Tarskian set constraints is satisfiable if and only if
there exists a set &-types satisfying the easily checked conditions of local con-
sistency (see Definition 10). This gives a simple nondeterministic exponential time
procedure which simply guesses an appropriate setygies.

Lemma 4: Let X be a set oF-Tarskian set constraintX. is satisfiable if and
only if there exists a locally consistent seketfypes.
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Proof: (sketch) The proof is very similar to the proofs in the preceding two
sections. Ii¥ is satisfiable then lefM, p) be a model®find takeSto be the

set of types which are inhabited i M, p) . Itis not difficult to show th&is
locally consistent. Conversely, IBbe a set of types satisfying the above condi-
tions. Let(M, p) be the nonstandard model whose domain is th® cktlypes

and where the set variables and operation symbols are interpreted as follows. As
in the earlier proofs interpret each set variable and monadic relation symbol as
the set of types isthat contain that symbol. We interpret each operation sym-
bol Rso thatM(R) is the relation containing those tuplgs,, ..., 5, ©) such
that R(o,, ..., o) =t . The argument given in Section 4.2 can be used to show
that for each typa € S and each set expres§iarccurring in we have that

1€ M[C] p ifand only if C € t. This can be used to show tha¥, p) is a
model ofZ. [

This lemma leads to a procedure that is quite similar to the procedures of
Section 4.2 and Section 4.3; however, this procedure requires a potentially expo-
nential degree of nondeterminism. We can construct th& eétypes by initializ-

ing it to be all types and then eliminating those types which are provably empty in
any model. A problem arises however when attempting to satisfy the third condi-
tion in the definition of locally consistent (Definition 10): that any function symbol
and tuple of types from® have a corresponding possible output type als® Bup-

pose that there is a function symidahndX-typesc,, ..., 5,, inS wherenis the

arity of f, such thatthereisnoe S such théfc,, ...,c,) »1 . In this case one
of the 5; must be removed fron% but we are left with a choice of which; to
remove. We must nondeterministically explore the possible choices because some
may lead to a locally consisteBtwhile others fail to do so. This can lead to expo-
nentially many choice points.

4.5 Upper Bound forFC-Tarskian Constraints

We now consider the problem of determining the satisfiability of nonrecursive Tar-
skian set constraints allowing both functions and constants. The procedure pre-
sented in this section nondeterministically reduces set constraint satisfiability to a
system of diophantine constraints. The first step of the procedure guesses a locally
consistent set of inhabited-types as defined in Section 4.1. The procedure then
constructs a system of diophantine inequalities describing cardinality constraints.
In order to describe the cardinality constraints we need some additional terminol-
0gy.

When both functions and constants are present, it is not sufficient to find a
locally consistent set of types. Consider the constrainsu ¢, < f(cy) and
c, ¢c, wherecy, ¢, c3, andf are all deterministic. This constraint set has a
locally consistent set of types but it is not satisfiable becdisg) must be a sin-
gleton set whilec; U c, must contain two elements. In addition to finding a
locally consistent set of types, we must also check that cardinality constraints on
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the selected set of types can be met.

Consider an elememtwhich inhabits &-typec in a model(M, p) . For each
application expressionR(C,, ..., C.) inc there must existyy, ...,Yy, Iin
M[Cq] p.,..., M[C,] p, respectively, such thaty,, ..., y,, X) € M(R) and such
thaty, e M[C] p for each. The valueyy,..., Yy, can be viewed as “predeces-
sors” of x which “justify” the fact thatx is in the setR(C,, ..., C) . Suppose the
predecessoryy, ..., Y, each haveX-typescy, ..., o, The elementx can be
viewed as inhabiting the image of ..., o, underf. These observations lead to
the following definitions.

Definition 12. Let Sbe a set oE-types. Arange expressiors an expression of

the form f(s4, ..., 5,) , wheres,, ..., c,, ar&-types inSandf is a function
symbol appearing ifrx. We say that a domain elemedtof a model (M, p)
inhabits a range expressiori(c,, ..., 5,)  if there are some domain elements
dy, ..., d, inhabiting X-types oy, ..., 0, in (M, p), respectively, such that
(dy, ..., d,, d) e M(f). We will say that a range expressionirtabited in

(M, p) when some element of the domairifnhabits that expression.

Simply writing and solving inequality constraints on the cardinalities of the sets of
inhabitants of the-types and the range expressions is still not enough to force the
existence of a model. To understand why consider the constraiptscs :
cyucsc f(cgucy), and c,ucgc f(cg Uy . These constraints are satisfi-
able but in any model we will have thdt(c,) = f(cy) . Adding the constraint
c, U cs c f(c, U cy) makes the constraint set unsatisfiable, even though the natu-
ral local cardinality constraints on the range expressions are all satisfied. There
exist locally consistent sets &iftypes for all four constraints. THetypes in these

sets appear consistent even if cardinality constraints-types and range expres-
sions are considered (the natural local cardinality constraints, similar to those
given below, are satisfiable). Furthermore, each individual constraint of the form
U c V appears consistent with the cardinalities. This problem forces us to explic-
itly allocate predecessors for eadtype, as follows.

Definition 13. A predecessor justificatiofor a function application expression
f(Cq, ..., C,) is arange expressiof(ty, ...,t,)  suchthat e&he 1, X-A
predecessor-types a pair (o, A) wheres is aZ-type andA is a mapping from
function applications appearing in the typdo range expressions such that for
any function applicatiotJ in ¢ we have that\(U) is a predecessor justification
of U and A(U) - o . An objectx inhabits aX-predecessor-typéoc, A) in a
modelM if x inhabitse and, for each application expressionn o, x inhabits
A(U).

An application expressiori(C,, ..., C,) can often be justified in more than one
way, i.e., many different predecessors of many differ&atypes can simulta-
neously explain the presence »in the setM[ f(C,, ..., C_))] p . However, for
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each element in M[ o] p there will be at least onE-predecessor-typéac, A)
inhabited byx. We will assume that some choice function is provided with each
model (M, p) so that for each elemexitof the domain ofM we can choose a
uniqueX-predecessor-type for

Note that the number af-types is at mose/®l . The number of justification
functionsA is no greater than the number of functions from expressiors tim
range expressions. We can assume without loss of generality that no application
expressions involve more than two arguments (larger arities can be eliminated with
the use of a pairing function). Under this assumption there are at (B2
range expressions. Hence the number of justification functhoissno more than
(12|221ZH 2 which is 22I2I? + [ZlloglZl and hence is exponential|@l . This implies
that the number of-predecessor-types is also exponentiakin

Definition 14. Let Sbe a set of-types. For each type € S let be a vari-
able representing the number of inhabitantssofFor each range expression

f(ty, ..., 7)) witheacht; € S and appearing i, letz;. ., be avariable
representlng the number of domain members mhablfl(’rg T . For each
Y -predecessor-typéc, A) |€t<G’A be a variable representlng the number of
individuals whose selected predecessor typédsA) . We d&f(ise to be
the system of diophantine constraints including the following constraints:
Habitation: z, > 1
Constants: z, = 1 whence o for constant

\%

Range: Zt(ry, ... 1,)

2 o)

(o, Ay such that (3U € 6.A(U) = f(tq, ..., 1)

IA

Predecessor:  z¢, ., l_LzTi for deterministicf only

We now come to the first main theorem of this section.

Theorem 7: A setX of FC-Tarskian constraints is satisfiable if and only if
there exists a locally consistent seof X-types such that the constraint set
D(S) is satisfiable over the positive integers plus

Proof: First suppose tha is satisfied by a modelM, p) . L&be the set of
>-types inhabited byM. It is easy to check thab is locally consistent. Now
select for each elementin the domain ofM a Z-predecessor-type which it
inhabits. We interpret the cardinality variatdg; ,,  to be the cardinality of the
set of elements whose selectéghredecessor-type iés, Ay . If this cardinality
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is infinite then we assigz,; ,, the special valweand ignore the order of
infinity of the actual cardinality. Likewise, we interprat as the number of
inhabitants of the type, for eachc € S (again using for any infinite type),

and z;, ) as the number of inhabitants for the range expression
f(oy, ..., o) - Itis not difficult to check that all the constraintsi(S)  are sat-
isfied under this interpretation.

Now, to show the converse direction, suppose that there exists a locally consis-
tent setS of Z-types such thabD(S) s satisfiable over positive integers @lus
Consider a particular assignment of natural numbers<atudthe variables such

that D(S) is satisfied. We will build a mod€IM, p)  afbased on this assign-
ment. The domain of our model will be the union over all inhabited type$
sets{(o,i) : 1<i<z_} .Ifz;is o then we include in the domain the object
(o, 1) for each natural number>1 , so that there will be a countably infinite
number of distinct elements of the forgo, i) . We callthe base typeof

(o,1).

We definep on each set variabl¥ to be the set of all domain elements, i)
whose base type containsX. We defineM(c) for each constant symlosdb be
(o, 1) for the uniques € S containing. We defineM(R) for each nondeter-
ministic  operation symbol R be the set of all tuples
({(og, 095 ..., (O, i, (7, ])) suchthatR(c,, ..., c,) 1

Finally, we defineM on the function symbols. We have from the constraints
D(S that for everyx-type o, z; is the sum of allz  ,, . Using this fact, we
partition the valueg o, i) into sets,, one for every-typec and everyA such

thatz ; ., is nonzero such that each has cardinalityz; ,, . To defin® on

the n-ary function symbof consider am-tuple (o, ..., ) ofX-typesinS

For each suchn-tuple, we definefon all domain tuples of the
form ({c4,iy), ..., (o, 1,) as follows. LeDombe the set of all such domain
tuples (for a fixed tuple(c,, ..., o) ) and l&angebe the set of all domain
elements that are members of any sgtsuch thatA(U) = f(cy,...,0,) for
someU € ¢ . Lett be somez-type inSsuch thatf(c,, ...,c,) >t ; we calt

the “default value” forf on oy, ..., o, (T exists due to the local consistency of
S). Both Dom and Rangeare countable sets so both can be enumerated. Now
definef to map each element @om to the corresponding element Bange
under the given enumeration. The type and range constrairin ensure
that the cardinality oRangeis no larger than the cardinality &@fom so every
element ofRangewill be the image of some element Dom If for some tuple

in Domthere is no corresponding elementR&nge(becauseddom has larger
cardinality tharRang@, thenf maps that tuple td@r, 1)

To prove (M, p) satisfiex, we first show, by structural induction on a set
expressiork, that if E occurs inE then M[ E] p is exactly the set of domain
elements of the form(c, i) such thatcontainsE. If E is a set variable or a
constant symbol then this follows directly from the definition @¥, p) and
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from the “constants” constraint iD(S) . Suppose for induction tBas the
negation of an expressidfy for which the result holds. We show that the result
holds for E. Our induction hypothesis tells us th[E,] p is the set of
domain elementst,i) whose baseype t containsE; — then of course
M[ E] p is by definition the complement of this seg., the set of domain ele-
ments whose base types does not conginThe definition ofz-type ensures
that everyX-type contains exactly one & or —-E;, so the complement of the
domain elements whose type contalifisis exactly the set of domain elements
whose type containsEs, as desired.

Now we suppose for induction thitis the union of two expressiorts andE,

for which the result holds, and show that the result holdsso®ur induction
hypothesis guarantees thisit[ E,] p (and, respectivdIfE,] p ) is just the
set of all domain memberér, i)  whose base tym®ntainsk; (respectively,

Ey). SOM[E; UE,] p is the set of all domain members whose base type con-
tains eitherE, or E,. The definition of aX-type ensures that this is exactly the
set of all domain members whose base type conEjnsE, , as desired.

Now suppose for induction thd is the applicationR(E;, ..., E,) fom-ary
nondeterministic operatioR and expression&,, ...E,,  for which the result
holds. We first show the forward direction — that every domain element whose
base type contain®(E;,...,E,)) is also iIM[R(E, ..., E,)] . Consider a
domain element(c, k) where containsR(E,, ..., E,) . Since the s& s
locally consistent there must exidt-types 14, ..., 1, In S containing the

Ei ..., E,, respectively, such tha®(t,, ..., 1) »c . But then by the definition
of (M, p), M(R) maps((t4, 1), ..., (1, 1)) to{c, k) . Butby our induction
hypothesis, each elemeqt;, 1) must be in the corresponilifg;] p , SO
(o, k) must be inM[R(E,, ..., E/))] p , as desired. For the reverse direction,
suppose that a domain element, k) iISM{R(E;, ....,E)] p . This implies
that there must be domain elements;, i) ..., (T, 1, NH{E]lp ...,
M[E,] p, respectively, such thaR(t,, ..., 7)) »c . But, by our induction
hypothesis, since eadtr;, i) isSM[Ej] p ,we have that eqclontainst;.
Since R(tq, ...,1,) »0oc , the types then must containR(E,,...,E,) , as
desired.

The final case to consider is whénis the applicationf(E,, ..., E,) of am-

ary function symbof to n expression<€E,, ..., E,, for which the result holds.
Again, we first consider one direction — we suppdse k) is a domain ele-
ment in M[ f(E,, ..., E))] p and show that containsf(E,, ..., E)) . Since
(o,k) isin M[ f(Ey, ..., E))] p, (o, k) must be the image undéi(f)  of
some tuple of domain element§(ty,iy), ..., (T, i) which are members,
respectively, of M[E;] p ... M[E,] p . Our induction hypothesis then
implies that for each, E; is a member of;. WhenM(f) was defined for tuples

of the form ({14, Ky, ..., (1., K) , the type(c, k) must have been in the
range enumeration (oo, k)  would not be the image undif) of
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({(T1, 19 -, (T, 1) ). There are two ways that this can happen. Fifst,k)
could be an element af, for someA containingf(t4, ..., t,) inits range. Sec-
ond, ¢ could be the “default value” fof on 14, ..., 1, In either case we have

f(tq, ..., 1) »0o . But then, since eaclE; is in the corresponding;,
f(Ey, ..., E;) must be inc as desired (by the definition o ).

It remains to show the reverse direction: we take an arbitrary domain element
(o, k) such thais containsf(E,, ..., E,) and show thatoc, k) is a member
of M[ f(E, ..., E))] p.Sincec € S the habitation constraintinS)  guaran-
tees thatz; is nonzero. So, by the type constraintd{S SOME 4, must
also be nonzero, and so for soméhe sets, is nonempty. Since& contains
f(Ey, ... E), A(f(E,, ..., E;)) must be some range expressibft,, ..., 1)
such that eachr; containsE; and f(t,,...,t,)>»c . But then, for each
1<i<n, by our inductive hypothesis aboH; every domain element of base
type t; must belong toM[ E] p . Therefore, for every tuple,, ..., X, of
domain elements in the domain enumeration fan 14, ..., t, we have

x; € M[ Ej] p for eachi; this together with the definition d1(f) implies that
the entire range enumeration for the functfamn 4, ..., T, must be contained

in M[ f(E,, ..., E;)] p . But this range enumeration must include, k) since
itis a member o&, andA containsf(t,, ..., t,) inits range.

We have now shown the property that for each E occurring,iM[ E] p is
exactly the sef (c,i) | 1<i<z_,ce SEeoc} .ltiseasytoshow from this
that (M, p) satisfieg, as follows. Given a positive constraibtc W  inand

an element(c,i) ofM[U] p (o,i) mustalso be M[W] p  due to the
above property along with the factthdte ¢ implidée o by the definition
of X-type. Finally, given a negative constraidtg¢ W  dnby the definition of
locally consistent (Definition 10) there must be somie Ssuch thatJ is inc
andW is not ino. It follows that (¢, 1) € M[U] p and(oc, 1) ¢ M[W] p
and so(M, p) satisfie® ¢ W as desireal.

The above theorem shows that satisfiability F-Tarskian constraints can be
reduced in nondeterministic exponential time to the satisfiability of an exponen-
tially larger system of diophantine constraints where the variables range over posi-
tive integers plusc. We can eliminateo by nondeterministically guessing which
variables are infinite and folding this guess into the constraints. More specifically,
break any equality statements into two inequalities, and then we substitnter

the variables we guess to be infinite and check that in any inequality with an infin-
ity in the lesser side there is also an infinity in the greater side. We then remove all
inequalities involving infinity. This produces a set of diophantine constraints over
positive integers. These constraints have the following form.

Definition 15. A set of Diophantine inequalities:

{Pi(Xgs -s X)) S Qi(Xp, -, X)) 1 1<i<m}
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between polynomialg; andg; over nonnegative integer variabl&s, ..., X, is
prequadraticif every p; is linear, and every; is either linear or is a product of
variables.

The size of the prequadratic system of diophantine constr&i(s generated by
a setX of nonrecursive Tarskian constraints for any Sef X-types is exponential

in |Z| . The following theorem shows that satisfiability of prequadratic diophantine
constraints can be determined in nondeterministic exponential time. We conjecture
that satisfiability of prequadratic diophantine constraints is actually in NP.

Theorem 8: (Prequadratic Decidability Theorem)The problem of determin-
ing the satisfiability of a prequadratic set of Diophantine inequalities is solvable
in nondeterministic exponential time.

Proof: Consider a prequadratic set mfDiophantine inequalities over vari-
ables where the largest constant that appearb has. Each inequality is either
linear or has a right hand side that is the product of two variables.

Without affecting the satisfiability of the entire set, we can replace each linear
inequality pi(Xy, ..., X)) < 0i(Xq, ..., X,) with the equatiom;(Xy, ..., X)) +y;, =
g;(X4, ..., X;) Where the new variableg introduced play the role of “slack”
variables. Renaming the variables into a vector X, ..., X, we can then
write the resulting problem in matrix form &« = B

Call a variableg boundedin Ax = B if there exists a finite upper bound on the
value ofx; over allrational solutions toAx = B . We can use linear program-
ming (over the rationals) to determine which variables are bounded using the
fact that a variable is unbounded if and only if there is a solutiodio= 0

over the rationals where that variable is nonzero. An analysis (using Cramer’s
rule) of the maximum possible upper bound that can be imposed by a system of
linear constraints shows that the binary representation of the value of a bounded
variable can contain at mo€d(bnlogn  bits. Our nondeterministic procedure
can now guess the values of the bounded variables. We can then replace each
bounded variable by the guessed value giving a simplified problem. In substitut-
ing in the guesses, some of the nonlinear constraints become linear and must be
added to the resulting linear sub-problem, yielding new linear and nonlinear
subproblems in fewer variabfed/Ne repeat this process until either all variables
have been guessed or all the variables in the resulting linear problem are
unbounded. If at some point the guesses lead to a linear problem which is
unsolvable over the rationals then all variables are bounded and values for them
are guessed (of course in practice the procedure would simply terminate when
such an inconsistency is found). Once all variables in the remaining linear prob-

2. New slack variables must be added in this case to convert the nonlinear inequalities to equations,
but over the entire process at mosslack variables are introduced, one per original inequality.
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lem are unbounded we determine the solvability*of = B over the nonnega-
tive integers. At this point we call the remaining linear problem résdual
linear problem and the remaining nonlinear problem tresidual nonlinear
problem If the residual linear problem\x = B is solvable over the nonnega-
tive integers then we accept the original prequadratic problem as solvable. Oth-
erwise we fail.

We must show that this procedure is correct and that it terminates in nondeter-
ministic exponential time. First we consider the running time analysis. The
number of bits in the bounded variables can grow at most exponentially in the
number of iterations of the procedure. One can show that kftariables are
guessed the largest constant in the residual linear problem has at most
O((cnlog nk*1) bits for some constant. Since the number of variables
guessed is bounded oy we get an exponential upper bound on the size of the
numbers appearing in the sequence of linear problems examined by the proce-
dure.

Since all the linear programming operations required over the rationals can be
completed in polynomial time relative to their input size, and their input is at
most exponential in size relative to the original prequadratic problem size, the
linear programming involved in the above procedure can be completed in expo-
nential time. Moreover, the above procedure must guess values for at most lin-
early many variables (those in the original problem after slack variables are
added), and the largest value guessed involves exponentially many bits; there-
fore, there are at most exponentially many bits guessed by the procedure.
Finally, the residual linear problem (over the unbounded variables) can be
solved over the integers in NP. Combining the complexities of these parts, we
get a nondeterministic exponential running time for the procedure.

We now show the correctness of the proceduee;that if the procedure accepts

a prequadratic system of constraints then that constraint set is solvable (the con-
verse is straightforward). If the procedure accepts then there exists a residual
linear problemAx = B solvable over the nonnegative integers, and where each
variable is unbounded, plus a residual set of nonlinear constraints. It suffices to
show that this residual prequadratic problem is solvable over the nonnegative
integers. Since the procedure accepts, there exists a honnegative integer solu-
tion p to Ax = B. It is a fact of linear programming that if all variables are
unbounded then there must be a nonnegative rational solatitmAx = 0

such that all components afare nonzero. We can assume without loss of gen-
erality thata is integral because any nonintegsatan be made integral by mul-
tiplying by an appropriate constant. The vecfof ca is a solutioAxo= B

for any c. For sufficiently largec this vector also satisfies all nonlinear con-
straints because the nonlinear expressions must eventually be larger than the
linear expressions. Thus if the procedure accepts then the residual prequadratic
problem is satisfiable and so is the original problem.
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Finally, we can combine the above results to get the following.

Theorem 9: Satisfiability of FC-Tarskian constraint sets is decidable in nonde-
terministic doubly exponential time.

Note that if our conjecture holds, that prequadratic Diophantine constraint satisfi-
ability is in NP, then we would get a tight upper bound here of nhondeterministic
exponential time. Without this conjecture, there is an exponential gap between our
lower and upper bounds for this problem.

5. Upper Bound for R-Tarskian Constraints

In this section we consider Tarskian set constraints with recursive set expressions
but without deterministic operation symbols of any arity. Constraint set satisfiabil-
ity in this calculus turns out to be linear time equivalent to set expression satisfi-
ability in the modalu-calculus. Here we give a linear time reduction from Tarskian
constraint set satisfiability without determinism to set expression satisfiability in a
calculus we call the Herbrandcalculus. Satisfiability of a class expression in the
the Herbrandi-calculus is equivalent to the emptiness problem for an alternating
tree automata with a parity acceptance condition. This problem is known to be
decidable in exponential time (Street and Emerson, 1989) (Emerson and Jutla,
1988) (Emerson and Jutla, 1991).

To assist in our proofs about recursive expressions, we introduce syntactically
indexedpu-expressions representing the partial iterates involved in computing the
fixed-point value. These are defined as follows:

Definition 16. For each ordinap, the indexem-expressionuBX.C has the
following meaning in any given modéM, p)

M[ugX.Cl p = OLK<JB|\/|[C] p[X:=M[ 1, X.C[X]] p] (9)

Note that by definition, for any cardinal greater than the cardinality of the
domain ofM, M[uX.C] p is equal to the union of all the sek[ n X.C] p
for o less than any.

5.1 Reducing Constraint Set Satisfiability to Set Expression Satisfiability

We begin by reducing satisfiability of sets RfTarskian set constraints to satisfi-
ability for singleR-Tarskian set expressions. We say that a Tarskian set expression
C is satisfiableif there exists{M, p) suchthd[C] p is nonempty.

Definition 17. For any set of Tarskian set constraints and $ebf operation
symbols we definé[Z, F] to be the following set expression:

Tarskian Set Constraintéugust 10, 1999 30



(=W nUpu..u(=W,nU U
i : (10)
Ui (T, ., T,XT,...,T)
Here X is a set variable not occurring B, U; cW,, ..., U, cW,_ are the

positive set constraints i, T is the set expressiodw —Z  for some arbitrary
set variableZ, and the expressiof,(T, ..., T, X, T,...,T) ranges over all set
expressions whereis an operation appearing fhandX occurs as theth argu-
ment.

Intuitively, we havex € {[X, F] if there existsyareachable by inverse operations
in F from x such thay violates a positive constraint & If x € —([Z, F] then the
positive constraints i are satisfied at all points reachable by inverse operations
in F fromx. If (M, p) satisfiesE thenM[([Z, F]] p is the empty set for arfy

To formalize these properties, we introduce the following definitions, in which we
take (M, p) to be a modek a domain element d¥l, andF a set of operation sym-
bols:

Definition 18. The one step predecessorxah M relative toF, written Predx,
M, F), are the domain elemengof M such that for some operatidnn F there
is some tuple(zy, ..., z, X) iM(f) whengis equal tz; for somei.

Definition 19. Let (M, p) be a modelx a domain element d#l, andF a set of
operation symbols. For each natural numbedefine then-step inverse closure
of x relative toM andF, writtenIC(x, M, F), as follows:

X}

{x}u U IC(y,M, F)

y € Predx, M, F)
Theinverse closureof x in M underF, written1C(x, M, F), is the union over all
natural numbers of IC,(x, M, F). Theinverse closure substructue M gen-
erated by andF, written M, g is the structure whose domaini&(x, M, F) and
such that for each nondeterministic operatibr: F we have that(f) is
the restriction of the relatioM(f) ttC(x, M, F). For any variable interpreta-
tion p, the inverse image restriction of with respect toM, x, andF, written
Px wm, F- interprets each variabkeasp(X) N 1C(x, M, F) .

ICo(x, M, F)

IC,,;1(x, M, F)

A set expressior© can be thought of as a predicate on domain objects that only
“looks at” the inverse closure substructure of its given argument object over the
function symbols appearing @. This view of set expressions leads to the follow-
ing lemma about the expressidix,F] defined above:

Lemma 5: For any set of R-Tarskian set constraints and $ebf operation
symbols, the expressioffX,F] denotes in any mode{M, p) the set of all
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domain elementx such that some/ € IC(x, M, F) is a counter-example to
some positive constraint . In other words, for som& c W B, yis in the
denotation otJ but not in the denotation ®¥in (M, p).

Proof: We say that a domain elemenof M “fails” a constraintU c W inZ if

ye M[U] p andy ¢ M[W] p . We denote the indexed versions of the
expressior[X,F] as {,[2,F] for index o.. We first observe that regardless of
the cardinality of the domain d¥l, the expressiong[%,F] and ¢ [%,F] denote
the same setigM, p) — thati§,reaches a fixed-point after a countable num-
ber of iterations. We can then show by induction on natural numltbet the
following holds for alli:

Xe C.>i + 1(29 F)
iff : (11)
somey in IC;(x, M, F) fails someU c Win X

The lemma follows from this fact and tiiateaches a fixed-point gf,. [

Lemma 6: Let (M, p) be a modelwith x an element of the domain of M. Let
F be a set of operation symbols. For any set expregSimwolving only opera-
tion symbols fromF the following statement holds:

M[C] p N IC(x, M, F) = M, ([Cl py 1 - (12)

Proof: Fix a structureM, set of operationk, and elemenk of the domain oM.

It is straightforward to show by structural induction on set expressfons
involving only operations irF that for all variable interpretations, Equation

(12) holds. We need the quantification over variable interpretations in the induc-
tion hypothesis in order to handle the casg ekpressions]

It is easy to determine whetheris satisfied by the empty model, where all set
expressions denote the empty set. To determine wheéthesatisfied by a non-
empty model, we use the following lemma.

Lemma 7: Suppose is a set of Tarskian constraints not involving determinis-
tic operations. Theil is satisfiable by a nonempty model if and only if the set
expression

fUn=Wy, .., U,n=W) N =([Z, F] (13)
is satisfiable, wheréis a fresh operation symbdl), ¢ W, .,. U, ¢ W, are

all the negative constraints ¥y andF is the set of all operation symbols occur-
ring in X together with.
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Proof: First suppos€ M, p) satisfies We show that the set expression above
(13) is satisfiable. Note that by LemmaBL[ {[Z, F]] p is empty. For each
negative constrain); ¢ W irX select ay; such thaty; e U; n =W, . Now
extendM to M’ by interpretingf as the operation containing the single tuple
(Y1, --» Y X Wherex is an arbitrary domain element ®. Now X is the
desired element of the above set expression in the extended thd/'del

Conversely suppose thatis in the denotation of set expression (13) in some
model (M, p) . Lemmas 5 and 6 imply that the inverse image substructure
(M, £ Py M. p is a model off, as follows. Sincex e M[ ([, F]] p by
inspection of (13), andk € IC(x, M, F) by definition, we can conclude by
Lemma 6 thatx e M, [ =C[%, F]] py, m ¢ » @nd thus by Lemma 5 that there
are no counterexamples to positive constraints ielative to (M, ¢, p, y p)

in 1IC(x, M, ¢, F). But IC(x, M, ¢, F) is the entire domain o,  , and so
(My £ Py m, p satisfies all the positive constraintsin (My B Py M, F) sat-
isfies the negative constraints because by inspection of (13) and our chaice of
xisin M[ f(U;n =Wy, ..., U, n=W_)] p and by the definition olfC, X is in
IC(X, M, F) —sowe havexin My el f(U =Wy, ., U W)L py i E

by Lemma 6. This implies the existence of some domain eleyédntthe set

M, [U;n=W] p, u. g for eachi, implying that (M, r, p, v p Satisfies
each negative constraitd; ¢ W, inas desired[] o

Lemma 7 fails if we allow deterministic operations. For exampleXlebnsist of

the constraint seT ¢ F  and(T) cF , whefds deterministic andl  andF
denote the universal and empty sets, respectiveig. not satisfiable but the set
expressioy(T N —=F) N =([Z, F] is satisfiable. The proof fails because we can-
not simply restrict the meaning of a deterministic operatiomthe smaller domain

of IC(x, M, F) for somex as we did for nondeterministic operations — the rela-
tion resulting from this restriction may not be a suitable meaning for a determinis-
tic operation because it may not be total.

5.2 The Herbrandpu-calculus

Set satisfiability in both the modalcalculus and the Tarskiarcalculus are poly-
nomial time reducible to set satisfiability in a language we call the Herhxecal-

culus. All of these calculi include set variables, Boolean operations on sets, and
least fixed point expressions of the fopX. C[ X] wheteccurs positively in

C[X]. The modalu-calculus has no application expressions but instead has set
expressions of the forl{R)C  whef is a binary symbol. The set expression
(R)C denotes the sefx: 3y e CR(x y)} . The Tarskigrcalculus consists of

the Tarskian set expressions defined here but without deterministic operations. The
Herbrandu-calculus has same syntax as the Tarskiacalculus but with only
deterministic operations which are interpreted over the fixed universe of (possibly
infinite) Herbrand terms. The set expressi(€,, ..., C,) denotes the set of (pos-
sibly infinite) terms of the formf(t,, ...,t,) with each € C; . In the Herbrand
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calculus we only consider the satisfiability problem for closed set expressions
(those not containing free set variables).

The closed Herbrang-calculus seems most natural for understanding the
exponential time satisfiability algorithms for set expressions in these calculi (Street
and Emerson, 1989) (Emerson and Jutla, 1988) (Safra, 1988). The Herbrand calcu-
lus is based on the Herbrand universe of possibly infinite terms over a given set of
function symbols. This would seem to indicate a relationship between the Her-
brand calculus and Herbrand set constraints. However, in traditional Herbrand set
constraint problems we are concerned with the existence of cestésof Her-
brand terms while here we are concerned with the existence of a single (possibly
infinite) term satisfying given constraints (because here we are concerned with sat-
isfiability of set expressions rather than satisfiability of sets of subset constraints).

There are many interesting examples of term sets definable in the Hegbrand
calculus. The expressignX.a v f(X) s the set of all finite terms which are some
number of applications dfto a. We let vX.C[ X] , a greatest fixed point expres-
sion, be an abbreviation feruX.—-C[—X] . The expression. f(X) denotes a
singleton set containing the infinite terf(f(f(...))) . We will abbreviate this
expression ag® . Another interesting examplaXs.g® u f(X) u g(Xx) . This is
the set of infinite terms constructed from monadic function symbailsdg that
have only finitely many occurrences ofOne can similarly define the set of infi-
nite terms constructed fromandg that have only finitely many occurrencesgf
Any satisfiability testing procedure must be capable of determining that the inter-
section of these two term sets is empty. It is known that the Herbnacalculus
defines exactly those term sets definable by Rabin tree automaton, or alternatively
by formulas of SnS (the second order theory of n successors) (Emerson and Jutla,
1991).

Satisfiability of a class expression in the the Herbrarzhlculus is equivalent
to the emptiness problem for an alternating tree automata with a parity acceptance
condition. This problem is known to be decidable in exponential time (Emerson
and Jutla, 1988) (Emerson and Jutla, 1991) (Street and Emerson, 1989). In the next
subsection we reduce Tarskian set expression satisfiability to Herpraaltulus
set expression satisfiability and thus provide an exponential time upper bound for
both Tarskian set expression and constraint set satisfiability.

5.3 Reducing Tarskian Set Satisfiability to Herbrandu-Calculus Satisfiability

Here we provide a reduction froR-Tarskian set expressions to Herbrandalcu-

lus set expressions, preserving expression satisfiability. Note that there is a trivial
satisfiability preserving reduction from the modeakalculus to the Tarskiap—
calculus whereg(R)C is translated 8 C) . The reduction from the Tarskian cal-
culus to the Herbrand calculus is almost as simple syntactically but quite a bit
more difficult to prove correct.
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Definition 20. For any expressio@ of the Tarskian calculus we defifi¢C) by
the following equations:

T(Y) = Y,for variablesy

T(=C) = —T(O
T(C,uC,y) = T(CHuUT(C
T(uY.C) = unY.T(O)
T(f(Cp, ..., CL) = puX.(f(T(Cy, ..., T(C)) v o(T, X) ug(X, T))
where a fresh variable X is used for each expresdigd,, ..., C,) that is trans-

lated, andy is a binary operation symbol not@h

We will show that ifC is a closed Tarskian set expression tkEs satisfiable if
and only if T(C) is satisfiable. Since free set variables can be replaced with set con-
stants (nondeterministic operations of no arguments) it suffices to consider closed
expressions. For an expressiorof the Herbrandi-calculus we defing C] p by
analogy withM[ C] p —in the Herbrand calculus no structure is required.i$f
closed then we writ§ C]  to denote the meaningahdependent of any variable
interpretation.

The fresh function symbda in Definition 20 is used to represent the many pos-
sible output values of the Tarskian relatiofor particular arguments — in the Her-
brand calculug can have only one output for each domain tuple. This intuition is
captured with the following definition and the Tarskian model we define using it
below.

Definition 21. Given a setS of Herbrand terms, we define the set of tergas
accessibldrom S, writteng-acqS) as follows:

g-acg(S = S
g-acG, (9 = g-acg(S v {gy, 2 :ye g-acgS v ze g-ace(S) }
g-acq 9 = kiJg-acq(S)

We further defineMy to be the Tarskian structure whose domain is the set of all
(possibly infinite) Herbrand terms and such thag(f) is the infinite set of
tuples(y,, ..., ¥, X) such thatis g-accessible fron{ f(y,, ..., ¥,) }

Using this definition, we can show thatTi{C) is satisfiable in the Herbrand calcu-
lus, then so i€ in the Tarskian calculus, as follows.

Theorem 10: For any set expressidg, for any variable environment map-
ping variables to sets of (possibly infinite) Herbrand terms we M\é{aC] p
equals[ T(C)] p .
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Proof: (sketch) The main proof is by induction on the structure of the set
expressiorC, noting that the quantification overis in the inductive hypothesis

(i.e., the induction hypothesis gives us the theorem for all small class expres-
sions for all variable interpretatiops. We discuss only the key case here, when

C is an application expressioi(C,,...,C,)  for which for gl we have
Mg[Ci] p equal to[ T(C;)] p for each. Note that the translatioR(C) is ap-
expression, and as such has a denotation defined as the union over an infinite
collection of indexedu-expressions. We writ& (C) for the expressiol(C)

with the p-expression indexed by, and observe thal,(C) is equal to
T,+1(C). We can now show by induction on the natural num ket

g-acG({ flyy, ... ¥n) 1 ¥Y; € MGICil p}) = [T;,1(C)] p. (14)

Observing thal\/lg[ C] p is by the definition My equal to the set of Herbrand
termsg-acq{ f(y,....y,): yj € Mg[Cj] p}), it now follows thatMg[C] p
is equal to T(C)] p as desired]

Corollary 2: If T(C) is satisfiable in the Herbrand calculus then s€im the
Tarskian calculus.

Proof: WhenT(C) is satisfiable, the sgtT(C)] p is nonempty and then so is
the setM [ C] p , henc€ s satisfiable[]

Now we prove the converse. This proof is essentially a simplification of the proof
given in (Street and Emerson, 1989) that any satisfiable set expression of the modal
u-calculus can be satisfied by a model with bounded branching. First we simplify
the problem by converting every expression to a purely positive form. This is done
by introducing conjunctions, greatest fixed poirtX.C and “disapplications”
[f1(Cy, ..., C,). We defineM[ vX.C] p to be the greatest sulSef the domain

of M such thatS = M[ Q p[X:=S] . We define the meaning of disapplications
by [f](Cy, ...,C,) = =f(=Cy, ...,=C,). In the Tarskian calculus we have
xe M[[fI(C,,...,C)] p if and only if for every tuple(y,, ...,y,) such that

(Y1, .- Yo X € M(f) we have thaty, e M[C;] p for at least omeWe can now
eliminate negation from any closed expression using de Morgan’s laws and the fol-
lowing rules to push negations down:

ﬁf(Cl, ceesy Cn) = [f](—|C1, ceesy ﬁCn)
—|[ f ](Cl’ cees Cn) = f(—|C1, cees —|Cn)

Since all recursion must be monotone, variables can not appear in negative con-
texts in closed expressions and negation disappears eritifelyany set expres-
sion of either the Tarskian or Herbrapdcalculus we letpogC) be the positive
form of C achieved by pushing negations down using these rules. We can extend
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our Tarskian-to-Herbrand translatidrto handle greatest fixed points and disappli-
cations by adding:
T(vX.C) vX.T(C)

We now have thal (poqC)) is semantically equivalent{€) and thatpoqC) is
semantically equivalent t€. So to prove thal preserves satisfiability we need
only consider positive expressions.

As with p-expressions, we add syntactically indexed fixed point expressions
for v-expressions of the forn&rB X.C whefeis any ordinal. The semantics of
these expressions are defined by the following equétion.

MIvgX.C[X]] p = QBM[C[VQX-C[X]]] p

As with p-expressions, we have tht[ vX.C] p = M[vB X.C]l p  whd¥es

any cardinal larger than the cardinalityMf The same statement holds for greatest
fixed-point expressions. An unindexed fixed point expressiof. C can be
viewed as a syntactic variant pf X.C  wheras the class of all ordinals. Intu-
itively, o plays the role of a “largest ordinal”. So we can assume that all fixed point
expressions are indexed. An expression in which all fixed point expressions are
indexed withwo (i.e., unindexed) will be called maximally indexed expression

The following definitions lead to a definition of the term “execution tree”. An exe-
cution tree can be viewed as an “explanation” of why a given Tarskian set expres-
sion is satisfiable. By showing how to encode execution trees as Herbrand terms
we show how to construct a Herbrand term satisfyli(@) whenever we have an
execution tree “explanation” of the satisfiability@f

Definition 22. We define a@ypeto be a set of positive closedr-Tarskian set
expressions satisfying the following conditions:

e f CUWeotheneitherCeoc OrWeo.

o If ngX.C[X] e o thenC[p, X.C[X]] € c forsomen<f .

o If v X.C[X] e o thenC[vBX.C[X]] €0c.
Definition 23. We define arexecution tredo be a pair{(c, A) such thatis a

type andA is a set of expressions of the ford(y,, ...,y,)  where eacls
(recursively) an execution tree. We will be interested in infinite execution trees.

3. If P is a zero-ary nondeterministic operation of the Tarskian calculus then we can tff#k of
as a syntactic variant ofP

4. In these equatiop  can be empty, in which case the empty union denotes the empty set and the
empty intersection the entire domainMf B . can be either a limit or successor ordinal.
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We write C € y ifyis atree of the form'c, A) witlC € o .Atreg’ iscalled
asubtreeof atreey = (o, A) ifeithery =y’ orthereissomiy,,...,y,) in
A such thaty” is (recursively) a subtreeydior somei.

Definition 24. An execution tree is calleldcally consistentf for every subtree
(o, Ay we have that botls andA are countable sets such that:

» forevery f(y,, ...,y €A and[f](W,, ..., W) € 6 there is somesuch
thatW, € vy, , and

 for every f(W,,...,W,) € 6 there is somé(y,,...,y, € A such that for
all'i we haveWw,; e v, .

We are now ready for a key lemma stating that any satisfi@lgien be “explained”
by an execution tree.

Lemma 8: If Cis a closed satisfiable positi-Tarskian set expression then
there exists a locally consistent execution freach thatC € y .

Proof: Consider an arbitrary modéIM, p) . We say that a set of expres3ions
is true atx (in (M, p)) if xe M[ W] p for all W € X. For any countable set

of expressions true at a poixtn (M, p) we describe how to construct a locally
consistent execution treg,, p(Z, X)  whose root type containket ¢ be a
countable type containing and true atx in (M, p). For each expression
f(C4, ...,C,) In o construct an element oA as follows. Select points
(Y, ---» Y such that(y,, ...y, X € M(f) andy,e M[C] p . For each
[fI(W,, ..., W,) € o select a\ such thaty, e M[W,] p . LeE; consist ofC;
and all selected. Now add f(EM’p(Zl, 12) N EM’p(Zn, y,) toA. Finally
return the paic, A) ag, p(Z, X) . Itis straightforward to prove by induction
on the structure ok, p(z, X) theky, p(Z, X) is alocally consistent execution
tree with a root containinb.

SinceC is satisfiable, there must be sonbl, p) and domain elemsuth
that {C} is true atx in (M, p), and thereforeEM,p({C}, X) is the desired
locally consistent execution tree containtg]

We now show how to construct a closed Herbrand tefynfrom any execution
treey such that(y) e [T(C)] wheneveris a locally consistent tree with € y

Definition 25. For any execution treg for a a constant not appearingynwe
define the Herbrand tertfy) by the following rules, recursively on

(o, {})) = a

(o, { (g o)} UAY) = OFA s oo ) t(0.Ap) )

The second rule is applied “fairly” so thatifis (o, A) and f(y,, ...,y,) € A
thent(y) is g-accessible fronf f(t(y,), ..., t(v,) }
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In order to prove the desired property fdy), we need to define an unusual well-
founded order for use in an induction proof.

Lemma 9: There exists a well founded ordering < on closed syntactic expres-
sions such that:

« W< C for anyW andC such thaWV is a closed proper subexpression of C,
* Clpy X.C[X]] < pg X.C[X] whenao <3, and
* C[v, X.C[X]]< vz X.C[X] whena <.

Proof: We define the Fisher-Ladner closure (Fischer and Ladner, 1979) of an
expressiorC to be the least set FO)) of maximally indexed expressions such
that:

* C_ € FL(C) for C, the result of maximally indexing all fixed-points@n
» any closed subexpression of an element ofCfli§ an element of FIX),
e if pX.C[X] € FL(C) then C[p_ X.C[X]] € FL(C) , and

e if v, X.C[X] € FL(C) thenC[v_ X.C[X]] € FL(C) .

The set FLC) is finite — it has one member for each (possibly open) subex-
pression ofC. We define theank of an expressioi to be the level of nesting

of recursion oftlosedsubexpressions & — the rank ofE is zero if it has nqu

or v subexpressions, the rank of acipsedp or v expression is one more than

the rank of its body, and the rank of any other expression is equal to the largest
rank of any proper subexpression. We definesigeatureof an expressio to

be the tuplea,, ..., 0, Wwhera is the largest rank of any expression in El)(

and eaclhy,; is the maximum index of all closed recursion subexpressiors of

of ranki, or zero if there is no such subexpression.

We order signatures first by length and then lexicographically within signatures
of the same length. We can now define the order < to order expressions first by
signature then by syntactic depth (breaking any remaining ties randomly).

To see the first property of the ordering claimed in the lemma observe that the
following hold wheneveC€ is a closed subexpression\Wf

* FL(C) = FL(W),
» the signature of is shorter or equal in length to thatwfand
» every indexedl- or v-subexpression a is also counted in the signature\oft

These properties allow us to conclude that the signatu@isflways less than
or equal to that ofV. BecauseC is a subexpression &¥, the syntactic depth of
Cis always less than or equal to thatWfas well, allowing us to conclude that
C is ordered ahead vfl
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To see that the second and third properties claimed in the lemma hold, note first
that the closure of g-expression FLig, X.C[ X] ) is equal to the closure of the
unrolling FL(C[MB X.C[X]]), and t%erefore both thp-expression and its
unrolling have the same signature length. Observe then that the signature of any
closedu-expressiomB X.C isoftheform{a,, ..., o _q, B,0,...,00 wheje

is the rank of Hg X.C . The signature of an unrollin@[p , X.C[ X]] of
MBX-C with o < B is then given by(a,, ..., 01, 0 Y, oo Y - The second
signature is lexicographically smaller than the first (giver 3 ) and hence
unrolling strictly reduces signature (the same holdsvfexpressions). We can
conclude that unrolling reduces the ordering we have defined and thus that the
ordering satisfies all the desired properties.

Lemma 10: |If y is a locally consistent execution an@ ey then
ty) e [T(O] .

Proof: We define av-reindexing of an expressiod to be any expressiot’
identical toC except for the indices of-expressions. We prove by transfinite
induction on expressions using the ordering of Lemma 9 thHatsfanyv-rein-
dexing of an expressio’ € y  thefy) € [ T(C)] . To show the needvfor
reindexing we will explicitly give the proof fov-expressions. Consider an
expression v, X.C[X] which is av-reindexing of an expression
vs X.C'[X] e y. We haveC'[vg X.C'[X]] € y from the closure properties of
types given in Definition 22. Now consider any ordimak . By the induction
hypothesis we have that(y) e [T(C[v, X.C[X]])] . But we have that
[T(VB X.C[X])] is the intersection of all such sets so we have
t(y) e [ T(vg X.C[X])] . The other cases of the induction are straightforward
given the agove properties of the well-founded ordering on expressions.

Corollary 2 along with Lemmas 8 and 10 now imply the following theorem:

Theorem 11: T(C) is satisfiable if and only i€ is satisfiable.

6. Conclusions

A wide variety of set calculi have been studied in the logic and computer science
literature. Tarskian set expressions yield a natural set calculus that has received
surprisingly little attention. We have answered a variety of questions concerning
the computational complexity of Tarskian set constraints but several problems
remain open. It seems likely that Tarskian set constraints without recursion (but
with deterministic operations) can be solved in nondeterministic singly exponen-
tial time. This would follow from a demonstration that the satisfiability of prequa-
dratic Diophantine equations is in NP. The decidability of Tarskian set constraints
with recursion and deterministic operations of arity at least one, or with arity just
zero, remains open. It seems likely that techniques used in decision procedures for
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the modalu-calculus can also be used to construct decision procedures for these
cases, although this has not yet been done.
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