Approximate Policy Iteration
with a Policy Language Bias

Alan Fern and SungWook Yoon and Robert Givan
Electrical and Computer Engineering, Purdue Universityl ¥fayette, IN 47907

Abstract

We explore approximate policy iteration (API), replacihg usual cost-
function learning step with a learning step in policy spadte give
policy-language biases that enable solution of very largational
Markov decision processes (MDPSs) that no previous tecleign solve.
In particular, we induce high-quality domain-specific piars for clas-
sical planning domains (both deterministic and stochastitants) by
solving such domains as extremely large MDPs.

1 Introduction

Dynamic-programming approaches to finding optimal corindicies in Markov decision
processes (MDPs) [4, 14] using explicit (flat) state spapeasgentations break down when
the state space becomes extremely large. More recent wiakascthese algorithms to use
propositional [6, 11, 7, 12] as well as relational [8] stapace representations. These ex-
tensions have not yet shown the capacity to solve largeicidgdanning problems such as
the benchmark problems used in planning competitions [Aps& methods typically cal-
culate a sequence of cost functions. For familiar STRIPS/A2nning domains (among
others), useful cost functions can be difficult or imposstiol represent compactly.

The above techniques guarantee a certain accuracy at eayh d$tlere, we focus on in-
ductive techniques that make no such guarantees. Existitugiive forms of approximate
policy iteration (API) select compactly represented, agpnate cost functions at each it-
eration of dynamic programming [5], again suffering wheatstepresentation is difficult.

We know of no previous work that applies any form of API to bemark problems from
classical planning. Perhaps one reason is the complexity of typical cost funstior
these problems, for which it is often more natural to speaifyolicy space. Recent work
on inductive policy selection in relational planning dom&[17, 19, 28], has shown that
useful policies can be learned using a policy-space biasyritieed by a generic knowledge
representation language. Here, we incorporate that waokarpractical approach to API
for STRIPS/ADL planning domains.

We replace the use of cost-function approximations as podipresentations in APwith

direct, compact state-action mappings, and use a stanelattbnal learner to learn these
mappings. We inherit from familiar APl methods a (sampledligy-evaluation phase
using simulation of the current policy, or rollout [25], aad inductive policy-selection

IRecent work inrelational reinforcement learnirigas been applied to STRIPS problems with
much simpler goals than typical benchmark planning domaind is discussed below in Section 5.

2\We have recently learned that Lagoudakis and Parr are mgrsusimilar policy-bias approach
to API in attribute-value domains [18].

phase inducing an approximate next policy from sampleceatiolicy values.

We evaluate our API approach in several STRIPS/ADL plandioigains, showing itera-
tive policy improvement. Our technique solves enfitanning domains, finding a policy
that can be applied to any problem in the domain, rather tblmg) just a single problem
instance from the domain. We view each planning domain asgleslarge MDP where
each “state” specifies both the current world and the goak ARI method thus learns
control knowledge (a “policy”) for the given planning domai

Our API technique naturally leverages heuristic functigosst function estimates), if

available—this allows us to benefit from recent advancesomain-independent heuris-
tics for classical planning, as discussed below. Even wheedy heuristic search solves
essentially none of the domain instances, our API technigueessfully bootstraps from
the heuristic guidance. We also demonstrate that our tqakris able to iteratively im-

prove policies that correspond to previously publisheddhemded control knowledge (for
TL-plan [3]) and policies learned by Yoon et al. [28]. Ourhegue gives a new way

of using heuristics in planning domains, complementingenoaditional heuristic search
strategies.

2 Approximate Policy Iteration

We first review API for a general, action-simulator—-basedMi@presentation, and later,
in Section 3, detail a particular representation of plagmiomains as relational MDPs and
the corresponding policy-space learning bias.

Problem Setup. We follow and adapt [16] and [5]. We represent an MDP usingreege
tive model(S, A, T, C, I), whereS is a finite set of states{ is a finite set of actions, and
T is a randomized “action-simulation” algorithm that, giveates and actior, returns a
next state. The component’ is an action-cost function that mafsx A to real-numbers,
and! is a randomized “initial-state algorithm” with no inputstireturns a state if. We
sometimes treat and7 (s, a) as random variables.

For MDPM = (S, A, T, C,I), apolicyn is a (possibly stochastic) mapping frasro A.
Thecost functionJ 7, (s) and theQ)-cost functior)7, (s, a) are the unique solutions to

Qh(s,a) = C(s,a) + aE[JF;(T(s,a))], whereJy; (s) = E[Q} (s, 7(s))];

representing the expected, cumulative, discounted cdetloiing policy 7 in M starting
from states, and wherel) < « < 1 is the discount factor. In this work, we seek to
heuristically minimizeE[J},(I)], due to the complexity of the problems we consider.

Given a current policym, we can define a new improved policPZ[r](s) by
argmin, . ,Q7,(s,a). The cost function ofPZ[r] is guaranteed to be no worse than that
of = at each state and to improve at some state for non-optiméalxact policy iteration
iterates policy improvemenf{Z) from any initial policy to reach an optimal fixed point.
Policy improvement s divided into two steps: computiffy (policy evaluation) and then
computing@7, and selecting the minimizing action (policy selection).

ApproximatePolicy Iteration. API [5] heuristically approximates policy iteration in ¢t
state spaces by using an approximate policy-improvemesriagqr trained with Monte-
Carlo simulation. The approximate operator performs podicaluation by simulation—
evaluating a policyr at a states by drawing some number of sample trajectoriesrof
starting ats—and performs policy selection by constructing a trainieg &f samples of
either theJ or) cost functions from a “small” but “representative” set adtes and then
using this training set to induce a new “approximately inyaa’ policy.

The use of APl assumes that states and perhaps actions egsenefed in factored form
(typically, a feature vector) that facilitates generalgproperties of the training data to the
entire state and action spaces. Due to API's inductive eathere are typically no guaran-

tees for policy improvement—nevertheless, API often “anges” usefully, e.g. [24, 26].

We start API by providing it with an initial policyr, and a real-valued heuristic function
H, whereH (s) is interpreted as an estimate of the cost of stgf@esumably with respect
to the optimal policy). We note thdf or 7o may be trivial, i.e. always returning a constant
or random action respectively. For API to be effective, hesveit is important thaty and

H combine to provide guidance toward improvement. For examniplgoal-based planning
domains eitherry should occasionally reach a goal Brshould provide non-trivial goal-
distance informatioh In our experiments we consider scenarios that use difféypas of
initial policies and heuristics to bootstrap API.

Givenmy, H, and an MDPM = (S,{a,...,an},T,C,I), APl produces a policy se-
guence by iterating steps of approximate policy improvermaerote thatr, is used in only
the initial iteration but the heuristic is always used. Agpmate policy improvement
computes an (approximate) improvemehtof a policy = by attempting to approximate
the output of exact policy improvement, i.€'(s) = argmin,. ,Q7%,(s,a). There are two
steps: estimating@-costs for all actions at a representative set of statesysind resulting
data set to learn an approximationsdf

Step 1: (-Cost Estimation via Rollout. (see [25]) Givenr, we construct a training Sé?,

~

describing an improved policy’, consisting of tuplegs, = (s), Q(s,a1),. . .,Q(s,am)>.
For each sampled stateand actior, the term@(s, a) refers toQ7,(s, a) as estimated by
drawing “sampling width” trajectories of length “horizoffom s and computing the aver-
age discounted trajectory cost over the sampled trajestonthere the cost of a trajectory
includes the value of the heuristic function at the horiztates To get a “representative
set” of states, we include each stateisited by’ (as indicated by thé) estimates) within
“horizon” steps from one of “training set size” states drawam the initial distributiorf:

Step 2: Learn Policy. Selectr’ with the goal of minimizing the cumulativ@-cost forr’
overD (approximating the same minimization ovein exact policy iteration). Traditional
API uses a cost-function space learning bias in this seleetin Section 3 we detail the
policy-space learning bias used by our technique. By lajediach training state with
the associate@-costs for each action, rather than simply with the besbactive enable
the learner to make more informed trade-affé/e note that the inclusion of(s) in each
training example enables the learner to normalize the datesired—e.g., our learner (see
Section 3) uses a bias that focuses on states where largeviempent appears possible.

We show pseudo-code for our variant of APl in Figure 1.

3 API for Relational Planning

In order to use our API framework, we represent classicalrptay domains (not just single
instances) as relationally factored MDPs. We then desarilvecompact relational policy
language and the associated learner for use in step 2 of durakRework.

Planning Domains as MDPs. We say that an MDRS, A, T, C, I) is relationalwhen S
and A are defined by giving the finite sets of obje€ispredicates”, and action type¥’.
A factis a predicate applied to the appropriate number of objéctstate inS is a set of
facts (taken to be “true” in the state), afds all such states. Aactionis an action type
applied to the appropriate number of objects, and the aspaneA is the set of all actions.

A classical planning domain is specified by providing a setvofld predicates, action

3This is similar to, but in general much easier than, reprsgall the cost functions encountered
during PI.

“It is important (and to our knowledge, novel) that statessampled fromr’ rather thanr to
match the training distribution to the implied “test setstlibution.

The concurrent work of [18] takes the latter approach.

API (n,u,h, H,m)

/I training set size n, sampling width w,
/I horizon h, initial policy 7o,

Draw-Training-Set(n, w, h, He,)

/I training set size n, sampling width w,
/I horizon h, cost estimator H, current policy 7

/I cost estimator (heuristic function) H. D « 0; E « setofn states sampled frorft

<= To, for each statep € E // Draw trajectory of
loop s 807 /I sample states from s
D <« Draw-Training-Set(n, w, h, H,); fori:’1 oh

m < Learn-Decision-List(D);
until satisfied withr;
/le.g. until change is small

Q@ (s) < Policy-Rollout (7, s, w, h, H);
a < action maximizingl (s, a);
s < state sampled fror#'(s, a);
D (s, m(s), Q= (s)) U D;
Return D;

Policy-Rollout (7, s, w, h, H) [/ Computes estimate of Q(s)
I/l policy w, state s, sampling width w, horizon h, cost estimator H

Initialize @~ (s), a vector indexed by the actions.h to zeroes;
for; each actiorm in A
for, sample=1tow
s« s;
fors step=1toh
Qn(s,a) < Qx(s,a) + C(s', m(s"))
s’ « a state sampled frofi(s’, 7 (s’
$,a) < Qr(s,a) + H(s');
 Qulo)

Return =;

)) I endfors
/I end for,

/I end for,

Qn(
Qnx(s,a)
Return @~ (s)

Figure 1: Pseudo-code for our API algorithm. The MDR A, T, C, I} is assumed glob-
ally known. The general approach is inherited from [5], andestated here for clarity.
Key differences are the use loéarn-Decision-List [28], as discussed in Section 3, and the
choice of actioru in Draw-Training-Set (see Footnote 4).

types, and an action simulator. We simultaneously solveralblem instances (up to a size
bound) of such a planning doméiby constructing a relational MDP as described below.

Let O be a fixed set of objects arld be the set of action types from the planning domain.
Together,0 andY define the MDP action space. Each MDP state is a single problem
instance (i.e. an initial state and a goal) from the planwiogain by specifying both the
current world and the goal. We achieve this by lettinge the set of world predicates from
the classical domain together with a new sego&l predicatesone for each world predi-
cate. Goal predicates are named by prepending a ‘g’ to thesmonding world predicate.
Thus, the MDP states are sets of world and goal facts invglsome or all objects iw.

The objective is to reach MDP states where the goal facts atdbset of the world facts
(goal states The state{on-table(a), on(a, b), clear (b), gclear (b)} is thus a goal state in
a blocks-world MDP, but would not be a goal state witholgar (b). We represent this
objective by defining” to assign zero cost to actions taken in goal states and avgosit
cost to actions in all other states. In addition, we tak® be the action simulator from the
planning domain, modified to treat goal states as termingltampreserve without change
all goal predicates. With this cost function, a low-costippimust arrive at goal states
as “quickly” as possible. Finally, the initial state disuition/ can be any program that

®As an example, the blocks world is a classical planning domaere a problem instance is an
initial block configuration and a set of goal conditions. €3igal planners attempt to find solutions to
specific problem instances of a domain.

generates legal problem instances (MDP states) of thaad@gtanning domain—e.g. one
might use a problem generator from a planning competition.

Taxonomic Decision List Policies. We adapt the API method of Section 2 by using, for
Step 2, the policy-space language bias and learning mettamg @revious work on learn-
ing policies in relational domains from small problem swlas [28], briefly reviewed here.

In relational domains, useful rules often take the form ‘lgjgetion typea to any object in
setC”, e.g. “unload any object that is at its destination”. [18{frbduced decision lists of
such rules as a language bias for learning policies. We ugelistis, and represent the sets
of objects needed usirgass expressiors written in taxonomic syntax [20], defined by

C == Cp | anything | =C | (RC) | CNC, withR:= Ry | R"* | RN R | R*.

Here,(y is any one argument relation aiy any binary relation from the predicatesih
One argument relations denote the set of objects that treetrae of,(R C) denotes the
image of the objects in clags under the binary relatio®, and for the (natural) seman-
tics of the other constructs shown, please refer to [28].efi& states and a concepf’
expressed in taxonomic syntax, it is straightforward to pata the set of domain objects
that are represented loyin s, in order to execute such a policy.

Restricting our attention to one-argument-action typese write a policy as
(C1:a1,Ca:as, . .., Chiay,), Where theC; are taxonomic-syntax concepts and theare
action types. See Yoon et al. [28] for examples and details.

Given training examplés, (s), Q(s, a1), . . ., Q(s, a,,)) in D, we define th&)-advantage
of taking actioru instead ofr () in states by A(s, a) = Q(s, w(s)) —Q(s,a). We take the
heuristic value of a concept-action rule to be the numbeadiing examples where the rule
“fires” plus the cumulative)-advantage that the rule achieves on those training exafople
Yoon et al. [28] describes a straightforward beam-seardhoddor incrementally building

a decision-list of size-bounded rules that attempt to méerthe heuristic value ovep,
which we use here. We note that the use&advantage rather thap-cost focuses the
learner toward instances where large improvement overriwgqus policy is possible.

4 Relational Planning Experiments

Our experiments support a number of claims. 1) Using onlgthdance of an (often weak)
domain-independent heuristic, API learns effective pedidor entire classical planning
domains. 2) Each learned policy is a domain-specific platiragris fast and empirically
compares well to the state-of-the-art domain-indeperielemqtian [13]. 3) APl canimprove
on previously published control knowledge and on that lediny previous systems.

Domains. We consider two deterministic domains with standard défin and three
stochastic domains from Yoon et al. [28]—these are: B)V({he n-block blocks world;
LW(I,t,p), thel location,t truck, p package logistics world; SBW], a stochastic vari-
ant of BW(n); SLW(l,c,t,p), the stochastic logistics world with cars and: trucks; and
SPW(), a version of SBWi{) with a paint action. We draw problem instances from each
domain by generating pairs of random initial and goal states

Throughout, we use the domain-independent FF-plan haufig]'°. Each experiment

"Domains involving multiple argument actions can be comagto one-argument—action domains
by adding more actions. However, this conversion may ma&egtbblem more difficult to solve.
Extending our language to multiple argument actions theraharactical motivation.

81 the first “coverage” term is not included, then coveringexample with zer@-advantage is
the same as not covering the example (both contributing zelmvever, zera)-advantage can be a
good thing (e.g. if the previous policy is optimal in thatts)a

®0ur PSTRIPS domain definitions are at http://www.ece. peretlu/givan/nips03-domains.html.

space precludes a description of this complex and well stbglianning heuristic here.

BW(10) SR —o— BW(15) SR —e— LW(4,4,12) SR

ALH X AUH x AL(S)H -
1 1 1 6—6—6—6o—-o—5—o |
0.8 0.8 0.8
06 X X X 06 0.8 [t e K
x X
04 x 0.4 0.4
0.2 0.2 0.2
0 0
0 2 4 6 8 10 0 5 10 15 20 25 30 35 0 2 4 6 8 10
(a) iteration (b) iteration (C) iteration

Figure 2: Bootstrapping API with a domain-independent rstiar

. R —e— . SR —e— . SR ——
TL-BW-b in BW(10) ALS,H - TLBW-ain BW(10) S8 T TLLWin LW(4,64) ALSYH —x—
! 1g—o—6—o—6 o —0—o—3 1 W
08§ 09 0.9
06} 08 08
04 0.7 L e S
0.2 0.6 [T 0.6 o
0 0.5 0.5
0o 1 2 3 4 5 6 7 8 9 0o 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10
(a) iteration (b) iteration (C) iteration

Figure 3: Using TL-Plan control knowledge as initial podisi

Policyl SR —=— Policyl SR —e—

SPW(10) pgiliy2 SR SLW(4,3,3,4) gg::g’; gs e SBW(10) Policy2 SR —a—
! ! o N, A o
0.8 095 /7 Ca S 09t/
e /-
/ 0.8
0.6 0.9
= 0.7
04 1 Sy 0.85 06
0.2 0.8 0.5
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
(a) iteration (b) iteration (C) iteration

Figure 4: Using previously learned initial policies.

specifies a planning domain and an initial policy and theraits AP until “no more
progress” is made. We evaluate each policy on 1000 randobigamoinstances, recording
the success rati®R (fraction of problems solved within the horizon) amgrmalized av-
erage solution lengtAL/H (average plan length isuccessful trials divided by horizon),
omitting AL/H for very low SR. Initial-policy performanceiplotted at iteration zero.

Bootstrapping from the Heuristic. We consider the domain-independent initial poticy
FF-Greedy, which acts using the FF heuristic with one-steg-lahead. Figures 2a and b
show SR and AL/H after each API iteration for BW(10) and BW)(15F-Greedy is poor
in both domains. There is an initial period of no (apparembgpess, followed by rapid
improvement to nearly perfect SR. Examination of the ledf®/(15) policies shows that
early iterations find important concepts and later iteregifind a policy that achieves a
small SR; at that point, rapid improvement ensues. Figurehws the SR and AL/H
for LW(4,4,12). FF-Greedy performs very well here; neveltiss, API yields compact
declarative policies of the same quality as FF-Greedy. \pkoated these experiments in
the stochastic variants of these domains, with similarltegaot shown for space reasons).

Initial Hand-Coded Policies. TL-Plan [3] uses human-coded domain-specific control
knowledge to solve classical planning problems. Here wanisal policies for API that
correspond to the domain-specific control knowledge appgan [3]'3. For the blocks

we use discount factor one and select sufficiently largezbos to rank most policies accurately.
Training set size is 100 trajectories, and sampling widtiwsys 1.

2What is considered “domain independent” here is the meaneradtructing the policy.

3We are not able to exactly capture the TL-Plan knowledge impolicy language. Instead, we
write policies that capture that knowledge but prune awayestbad” actions that TL-Plan might

world TL-Plan provides three sets of control knowledge af@asing quality—we use the
best and second best sets to get the policies TL-BW-a and VWkbBrespectively. For
logistics there is only one set of knowledge given, yieldimg policy TL-LW.

Figures 3a—3c show the SR and AL/H for APl when starting withBW-a and TL-BW-

b in BW(10) and TL-LW in LW(4,4,12). In each case, APl imprevie human-coded
policies. Starting with TL-BW-a and TL-LW, which have petf&R, APl uncovers policies
that maintain SR but improve AL/H by approximately & and 13%, respectively. Starting

with TL-BW-b, which has SR of only 3@, API quickly uncovers policies with perfect SR.

There is a dramatic difference in the quality of FF-Greedsrétion 0 of Figure 2a), TL-
BW-a, and TL-BW-b in BW(10); yet, for each initial policy, AFinds policies of roughly
identical quality—requiring more iterations for lower dit)ainitial policies.

Initial Machine-Learned Policies. In Yoon et al. [28], policies were learned from so-
lutions to randomly drawn small problems for the three ststic domains we test here,
among others. A significant range of policy qualities reswltie to the random draw. Here,
we use API starting with some below-average policies froanwork!*. Figures 4a-c show
results for SPW(10), SLW(4,3,3,4), and SBW(10). For eaamala, APl is shown to im-
prove the SR for two arbitrarily selected, below-averagaried starting policies to nearly
1.0. API successfully exploits the previous, noisy leagrtmrobustly obtain a good policy.

Comparing learned policies to FF-plan. Table 1: FF-plan vs. learned policies.
We selected a blocks-world policy and .
logistics-world policy corresponding to the . FF-plan (in C)| API (Scheme)
. omains| SR AL Time| SR AL Time
learned policies (beyond iteration 0) in Fig-
ures 2a and c with the best SR, breaking ties BW(10)/1 ~ 33 0.150.9925 1.5s
with AL. We applied FF-plan and the appro- ~ BW(15)| 0.96 58 2'7f 0.9939 2.5s
priate selected policy to each of 1000 new test Ewggg 8'12 18:2,) 1262818'33 gg 3;2
problems from each of the domains shownLW(44 12) 1. 42 0'0;1' 43 2'75
in Table 1. Planning cutoff times were se s . :
at 600, 300, and 100 seconds for BW(30),W(5‘14’20) 1 73 0491 74 36s
BW(20), and all other domains, respectively. Table 1 resdle percent of problems
solved within the time cutoff (SR), the average lengthsadcessful trials (AL), and the
average time fosuccessful trials (Time) for both FF-plan and our two selected policies

In blocks worlds with more than 10 blocks, the API policy irapes on FF-plan in every
category, with scaling much better to 20 and 30 blocks. Uliegsame heuristic informa-
tion (in a different way), API uncovers policies that sigcéfintly outperform FF-plan.

FF-plan’s heuristic is well suited to logistics worlds yeihating search for these problems.
Our method performs equivalently, but for the slow protet@zheme implementation.

5 Redated Work

Typically, previous “learning for planning” systems [228arn from small-problem solu-
tions to improve the efficiency and/or quality of planningwol primary approaches are
to learn control knowledge for search-based planners,[23).27, 10, 15, 1], and, more
closely related, to learn stand-alone control policies [1 28].

The former work is severely limited by the utility probleneés[21]), i.e., being “swamped”
by low utility rules. Critically, our policy-language bia®nfronts this issue by preferring
simpler policies. Regarding the latter, our work is novaléing API to iteratively improve
policies, and leads to a more robust learner, as shown ablovaddition, we leverage

consider (so our TL-Plan—based policies are actually betta the corresponding TL-Plan policy).
YFor these stochastic domains we provide the heuristicqdedifor deterministic domains) with
a deterministic STRIPS domain approximation (using thetipdikely outcome of each action).

a domain-independent planning heuristic to avoid the needdcess to small problems.
Our learning approach is also not tied to having a base ptanne

The most closely related work is relational reinforcemeathing (RRL) [9], a form of on-
line API that learns relational cost-function approxiras. (Q-cost functions are learned
in the form of relational decision tree@f{trees) and are used to learn corresponding poli-
cies (P-trees). The RRL results clearly demonstrate the difficoftgarning cost-function
approximations in relational domains. Compared?drees,Q-trees tend to generalize
poorly and be much larger. RRL has not yet demonstratedtstglao problems as com-
plex as those considered here—previous RRL blocks-wopéments include relatively
simple goal®®, which lead to cost-functions that are much less complaxthaones here.
However, unlike RRL, our APl assumes an unconstrained sitoubnd (for the FF-plan
heuristic) a world model, which must be provided or learngadditional techniques.

References
[1] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Usingginprogramming to learn and improve
control knowledgeAlJ, 141(1-2):29-56, 2002.
[2] Fahiem Bacchus. The AIPS '00 planning competitidh.Magazine, 22(3)(3):57-62, 2001.

[3] Fahiem Bacchus and Froduald Kabanza. Using temporadag express search control knowl-
edge for planningAlJ, 16:123-191, 2000.

[4] R. Bellman.Dynamic Programming. Princeton University Press, 1957.
[5] D. P. Bertsekas and J. N. Tsitsiklisleuro-Dynamic Programming. Athena Scientific, 1996.

[6] Craig Boutilier and Richard Dearden. Approximating waltrees in structured dynamic pro-
gramming. In Lorenza Saitta, edité€ML, 1996.

[7] Crai(_i Boutilier, Richard Dearden, and Moises GoldszmiSitochastic dynamic programming
with factored representationalJ, 121(1-2):49-107, 2000.

[8] Craig Boutilier, Raymond Reiter, and Bob Price. Symbalynamic programming for first-
order MDPs. InJCAI, 2001.
[9] S Dzeroski, L DeRaedt & K Driessens. Relational reinfarent learningMLJ, 43:7-52, 2001.
[10] Tara A. Estlin and Ralymond J. Mooney. Multi-strateggrieing of search control for partial-
order planning. IPAAAI, 1996.

[11] Robert Givan, Thomas Dean, and Matt Greig. Equivalera®ns and model minimization in
Markov decision processeélJ, 147(1-2):163—-223, 2003.

[12] Carlos Guestrin, Daphne Koller, and Ronald Parr. Maram projections for factored MDPs.
In 1JCAI, pages 673—680, 2001.

[13] Jorg Hoffmann and Bernhard Nebel. The FF planning systeast plan generation through
heuristic searchJAIR, 14:263-302, 2001.

[14] R. Howard.Dynamic Programming and Markov Decision Processes. MIT Press, 1960.

[15] Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learnileglarative control rules for
constraint-based planning. IEGML, pages 415-422, 2000.

[16] Michael J. Kearns, Yishay Mansour, and Andrew Y. NJg. Arge sampling algorithm for near-
optimal planning in large markov decision processdkJ, 49(2—3):193-208, 2002.

[17] Roni Khardon. Learning action strategies for plannitognains.AlJ, 113(1-2):125-148, 1999.

[18] M. Lagoudakis and R. Parr. Reinforcement learning assification: Leveraging large margin
classifiers. InCML, Submitted.

[19] Mario Martin and Hector Geffner. Learning generalizealicies in planning domains using
concept languages. KRR, 2000.

[20] D. McAllester & R. Givan. Taxonomic syntax for 1st-ordeference JACM, 40:246-83, 1993.
[21] S. Minton. Quantitative results on the utility of expktion-based learning. WAAI, 1988.
[22] S. Minton, editor.Machine Learning Methods for Planning. Morgan Kaufmann, 1993.

[23] S. Minton, J. Carbonell, C. A. Knoblock, D. R. Kuokka, Etzioni, and Y. Gil. Explanation-
based learning: A problem solving perspectiié], 40:63—118, 1989.

[24] G. Tesauro. Practical issues in temporal differenaenieg. MLJ, 8:257-277, 1992.
[25] G. Tesauro & G. Galperin. Online policy improvement miante-carlo search. INIPS 1996.
[26] J. Tsitsiklis and B. Van Roy. Feature-based methodsafgie scale DPMLJ, 22:59-94, 1996.

[27] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Finkdal. Blythe. Integratin(T:] glanning and
learning: The PRODIGY architecturdournal of Experimental and Theoretical Al, 7(1), 1995.

[28] S. Yoon, A. Fern, and R. Givan. Inductive policy selentfor first-order MDPs. IfJAI, 2002.

5The most complex blocks-world goal for RRL was to achien¢A, B) in ann block environ-
ment. We consider blocks-world goals that involveralblocks.

