
Approximate Policy Iteration
with a Policy Language Bias

Alan Fern and SungWook Yoon and Robert Givan
Electrical and Computer Engineering, Purdue University, W. Lafayette, IN 47907

Abstract

We explore approximate policy iteration (API), replacing the usual cost-
function learning step with a learning step in policy space.We give
policy-language biases that enable solution of very largerelational
Markov decision processes (MDPs) that no previous technique can solve.
In particular, we induce high-quality domain-specific planners for clas-
sical planning domains (both deterministic and stochasticvariants) by
solving such domains as extremely large MDPs.

1 Introduction

Dynamic-programming approaches to finding optimal controlpolicies in Markov decision
processes (MDPs) [4, 14] using explicit (flat) state space representations break down when
the state space becomes extremely large. More recent work extends these algorithms to use
propositional [6, 11, 7, 12] as well as relational [8] state-space representations. These ex-
tensions have not yet shown the capacity to solve large classical planning problems such as
the benchmark problems used in planning competitions [2]. These methods typically cal-
culate a sequence of cost functions. For familiar STRIPS/ADL planning domains (among
others), useful cost functions can be difficult or impossible to represent compactly.

The above techniques guarantee a certain accuracy at each stage. Here, we focus on in-
ductive techniques that make no such guarantees. Existing inductive forms of approximate
policy iteration (API) select compactly represented, approximate cost functions at each it-
eration of dynamic programming [5], again suffering when such representation is difficult.

We know of no previous work that applies any form of API to benchmark problems from
classical planning.1 Perhaps one reason is the complexity of typical cost functions for
these problems, for which it is often more natural to specifya policy space. Recent work
on inductive policy selection in relational planning domains [17, 19, 28], has shown that
useful policies can be learned using a policy-space bias, described by a generic knowledge
representation language. Here, we incorporate that work into a practical approach to API
for STRIPS/ADL planning domains.

We replace the use of cost-function approximations as policy representations in API2 with
direct, compact state-action mappings, and use a standard relational learner to learn these
mappings. We inherit from familiar API methods a (sampled) policy-evaluation phase
using simulation of the current policy, or rollout [25], andan inductive policy-selection

1Recent work inrelational reinforcement learninghas been applied to STRIPS problems with
much simpler goals than typical benchmark planning domains, and is discussed below in Section 5.

2We have recently learned that Lagoudakis and Parr are pursuing a similar policy-bias approach
to API in attribute-value domains [18].

phase inducing an approximate next policy from sampled current policy values.

We evaluate our API approach in several STRIPS/ADL planningdomains, showing itera-
tive policy improvement. Our technique solves entireplanning domains, finding a policy
that can be applied to any problem in the domain, rather than solving just a single problem
instance from the domain. We view each planning domain as a single large MDP where
each “state” specifies both the current world and the goal. The API method thus learns
control knowledge (a “policy”) for the given planning domain.

Our API technique naturally leverages heuristic functions(cost function estimates), if
available—this allows us to benefit from recent advances in domain-independent heuris-
tics for classical planning, as discussed below. Even when greedy heuristic search solves
essentially none of the domain instances, our API techniquesuccessfully bootstraps from
the heuristic guidance. We also demonstrate that our technique is able to iteratively im-
prove policies that correspond to previously published hand-coded control knowledge (for
TL-plan [3]) and policies learned by Yoon et al. [28]. Our technique gives a new way
of using heuristics in planning domains, complementing more traditional heuristic search
strategies.

2 Approximate Policy Iteration

We first review API for a general, action-simulator–based MDP representation, and later,
in Section 3, detail a particular representation of planning domains as relational MDPs and
the corresponding policy-space learning bias.

Problem Setup. We follow and adapt [16] and [5]. We represent an MDP using a genera-
tive modelhS;A; T; C; Ii, whereS is a finite set of states,A is a finite set of actions, andT is a randomized “action-simulation” algorithm that, givenstates and actiona, returns a
next statet. The componentC is an action-cost function that mapsS �A to real-numbers,
andI is a randomized “initial-state algorithm” with no inputs that returns a state inS. We
sometimes treatI andT (s; a) as random variables.

For MDPM = hS;A; T; C; Ii, a policy� is a (possibly stochastic) mapping fromS toA.
Thecost functionJ�M (s) and theQ-cost functionQ�M (s; a) are the unique solutions toQ�M (s; a) = C(s; a) + �E[J�M (T (s; a))℄; whereJ�M (s) = E[Q�M (s; �(s))℄;
representing the expected, cumulative, discounted cost offollowing policy � in M starting
from states, and where0 � � < 1 is the discount factor. In this work, we seek to
heuristically minimizeE[J�M (I)℄, due to the complexity of the problems we consider.

Given a current policy�, we can define a new improved policyPI[�℄(s) by
argmina2AQ�M (s; a). The cost function ofPI[�℄ is guaranteed to be no worse than that
of � at each state and to improve at some state for non-optimal�. Exact policy iteration
iterates policy improvement (PI) from any initial policy to reach an optimal fixed point.
Policy improvement is divided into two steps: computingJ�M (policy evaluation) and then
computingQ�M and selecting the minimizing action (policy selection).

Approximate Policy Iteration. API [5] heuristically approximates policy iteration in large
state spaces by using an approximate policy-improvement operator trained with Monte-
Carlo simulation. The approximate operator performs policy evaluation by simulation—
evaluating a policy� at a states by drawing some number of sample trajectories of�
starting ats—and performs policy selection by constructing a training set of samples of
either theJ or Q cost functions from a “small” but “representative” set of states and then
using this training set to induce a new “approximately improved” policy.

The use of API assumes that states and perhaps actions are represented in factored form
(typically, a feature vector) that facilitates generalizing properties of the training data to the
entire state and action spaces. Due to API’s inductive nature, there are typically no guaran-

tees for policy improvement—nevertheless, API often “converges” usefully, e.g. [24, 26].

We start API by providing it with an initial policy�0 and a real-valued heuristic functionH , whereH(s) is interpreted as an estimate of the cost of states (presumably with respect
to the optimal policy). We note thatH or�0 may be trivial, i.e. always returning a constant
or random action respectively. For API to be effective, however, it is important that�0 andH combine to provide guidance toward improvement. For example, in goal-based planning
domains either�0 should occasionally reach a goal orH should provide non-trivial goal-
distance information3. In our experiments we consider scenarios that use different types of
initial policies and heuristics to bootstrap API.

Given�0, H , and an MDPM = hS; fa1; : : : ; amg; T; C; Ii, API produces a policy se-
quence by iterating steps of approximate policy improvement—note that�0 is used in only
the initial iteration but the heuristic is always used. Approximate policy improvement
computes an (approximate) improvement�0 of a policy� by attempting to approximate
the output of exact policy improvement, i.e.�0(s) = argmina2AQ�M (s; a). There are two
steps: estimatingQ-costs for all actions at a representative set of states, andusing resulting
data set to learn an approximation of�0.
Step 1: Q-Cost Estimation via Rollout. (see [25]) Given�, we construct a training setD,
describing an improved policy�0, consisting of tupleshs; �(s); Q̂(s; a1); : : : ; Q̂(s; am)i.
For each sampled states and actiona, the termQ̂(s; a) refers toQ�M (s; a) as estimated by
drawing “sampling width” trajectories of length “horizon”from s and computing the aver-
age discounted trajectory cost over the sampled trajectories, where the cost of a trajectory
includes the value of the heuristic function at the horizon state. To get a “representative
set” of states, we include each states visited by�0 (as indicated by thêQ estimates) within
“horizon” steps from one of “training set size” states drawnfrom the initial distribution.4

Step 2: Learn Policy. Select�0 with the goal of minimizing the cumulativêQ-cost for�0
overD (approximating the same minimization overS in exact policy iteration). Traditional
API uses a cost-function space learning bias in this selection—in Section 3 we detail the
policy-space learning bias used by our technique. By labeling each training state with
the associatedQ-costs for each action, rather than simply with the best action, we enable
the learner to make more informed trade-offs5. We note that the inclusion of�(s) in each
training example enables the learner to normalize the data,if desired—e.g., our learner (see
Section 3) uses a bias that focuses on states where large improvement appears possible.

We show pseudo-code for our variant of API in Figure 1.

3 API for Relational Planning

In order to use our API framework, we represent classical planning domains (not just single
instances) as relationally factored MDPs. We then describeour compact relational policy
language and the associated learner for use in step 2 of our API framework.

Planning Domains as MDPs. We say that an MDPhS;A; T; C; Ii is relationalwhenS
andA are defined by giving the finite sets of objectsO, predicatesP , and action typesY .
A fact is a predicate applied to the appropriate number of objects.A state inS is a set of
facts (taken to be “true” in the state), andS is all such states. Anactionis an action type
applied to the appropriate number of objects, and the actionspaceA is the set of all actions.

A classical planning domain is specified by providing a set ofworld predicates, action

3This is similar to, but in general much easier than, representing all the cost functions encountered
during PI.

4It is important (and to our knowledge, novel) that states aresampled from�0 rather than� to
match the training distribution to the implied “test set” distribution.

5The concurrent work of [18] takes the latter approach.

API (n; u; h; H; �0)
// training set size n, sampling width w,
// horizon h, initial policy �0,
// cost estimator (heuristic function) H .� �0;
loopD Draw-Training-Set(n;w; h;H; �);� Learn-Decision-List(D);
until satisfied with�;

//e.g. until change is small
Return �;

Draw-Training-Set(n;w; h;He; �)
// training set size n, sampling width w,
// horizon h, cost estimator H , current policy �D ;; E set ofn states sampled fromI;

for each states0 2 E // Draw trajectory of
// sample states from s0s s0;

for i = 1 to hQ�(s) Policy-Rollout(�; s; w; h;H);a action maximizingQ�(s; a);s state sampled fromT (s; a);D hs; �(s);Q�(s)i [D;

Return D;

Policy-Rollout (�; s; w; h; H) // Computes estimate of Q�(s)
// policy �, state s, sampling width w, horizon h, cost estimator H
InitializeQ�(s), a vector indexed by the actions inA, to zeroes;
for1 each actiona in A

for2 sample = 1 tows0 s;
for3 step = 1 tohQ�(s; a) Q�(s; a) + C(s0; �(s0));s0 a state sampled fromT (s0; �(s0)) // end for3Q�(s; a) Q�(s; a) +H(s0); // end for2Q�(s; a) Q�(s;a)w // end for1

Return Q�(s)
Figure 1: Pseudo-code for our API algorithm. The MDPhS;A; T; C; Ii is assumed glob-
ally known. The general approach is inherited from [5], and is restated here for clarity.
Key differences are the use ofLearn-Decision-List [28], as discussed in Section 3, and the
choice of actiona in Draw-Training-Set (see Footnote 4).

types, and an action simulator. We simultaneously solve allproblem instances (up to a size
bound) of such a planning domain6 by constructing a relational MDP as described below.

LetO be a fixed set of objects andY be the set of action types from the planning domain.
Together,O andY define the MDP action space. Each MDP state is a single problem
instance (i.e. an initial state and a goal) from the planningdomain by specifying both the
current world and the goal. We achieve this by lettingP be the set of world predicates from
the classical domain together with a new set ofgoal predicates, one for each world predi-
cate. Goal predicates are named by prepending a ‘g’ to the corresponding world predicate.
Thus, the MDP states are sets of world and goal facts involving some or all objects inO.

The objective is to reach MDP states where the goal facts are asubset of the world facts
(goal states). The statefon-table(a); on(a; b); clear(b); gclear(b)g is thus a goal state in
a blocks-world MDP, but would not be a goal state withoutclear(b). We represent this
objective by definingC to assign zero cost to actions taken in goal states and a positive
cost to actions in all other states. In addition, we takeT to be the action simulator from the
planning domain, modified to treat goal states as terminal and to preserve without change
all goal predicates. With this cost function, a low-cost policy must arrive at goal states
as “quickly” as possible. Finally, the initial state distribution I can be any program that

6As an example, the blocks world is a classical planning domain, where a problem instance is an
initial block configuration and a set of goal conditions. Classical planners attempt to find solutions to
specific problem instances of a domain.

generates legal problem instances (MDP states) of the classical planning domain—e.g. one
might use a problem generator from a planning competition.

Taxonomic Decision List Policies. We adapt the API method of Section 2 by using, for
Step 2, the policy-space language bias and learning method of our previous work on learn-
ing policies in relational domains from small problem solutions [28], briefly reviewed here.

In relational domains, useful rules often take the form “apply action typea to any object in
setC”, e.g. “unload any object that is at its destination”. [19] introduced decision lists of
such rules as a language bias for learning policies. We use such lists, and represent the sets
of objects needed usingclass expressionsC written in taxonomic syntax [20], defined byC ::= C0 j anything j :C j (R C) j C \ C, withR ::= R0 j R�1 j R \ R j R�:
Here,C0 is any one argument relation andR0 any binary relation from the predicates inP .
One argument relations denote the set of objects that they are true of,(R C) denotes the
image of the objects in classC under the binary relationR, and for the (natural) seman-
tics of the other constructs shown, please refer to [28]. Given a states and a conceptC
expressed in taxonomic syntax, it is straightforward to compute the set of domain objects
that are represented byC in s, in order to execute such a policy.

Restricting our attention to one-argument–action types7, we write a policy ashC1:a1; C2:a2; : : : ; Cn:ani, where theCi are taxonomic-syntax concepts and theai are
action types. See Yoon et al. [28] for examples and details.

Given training examplehs; �(s); Q̂(s; a1); : : : ; Q̂(s; am)i inD, we define theQ-advantage
of taking actiona instead of�(s) in states by�(s; a) = Q̂(s; �(s))�Q̂(s; a). We take the
heuristic value of a concept-action rule to be the number of training examples where the rule
“fires” plus the cumulativeQ-advantage that the rule achieves on those training examples8.
Yoon et al. [28] describes a straightforward beam-search method for incrementally building
a decision-list of size-bounded rules that attempt to maximize the heuristic value overD,
which we use here. We note that the use ofQ-advantage rather thanQ-cost focuses the
learner toward instances where large improvement over the previous policy is possible.

4 Relational Planning Experiments

Our experiments support a number of claims. 1) Using only theguidance of an (often weak)
domain-independent heuristic, API learns effective policies for entire classical planning
domains. 2) Each learned policy is a domain-specific plannerthat is fast and empirically
compares well to the state-of-the-art domain-independentFF-plan [13]. 3) API can improve
on previously published control knowledge and on that learned by previous systems.

Domains. We consider two deterministic domains with standard definitions and three
stochastic domains from Yoon et al. [28]—these are: BW(n), then-block blocks world;
LW(l,t,p), the l location, t truck, p package logistics world; SBW(n), a stochastic vari-
ant of BW(n); SLW(l,
,t,p), the stochastic logistics world with
 cars andt trucks; and
SPW(n), a version of SBW(n) with a paint action. We draw problem instances from each
domain by generating pairs of random initial and goal states.9

Throughout, we use the domain-independent FF-plan heuristic [13]10. Each experiment
7Domains involving multiple argument actions can be converted to one-argument–action domains

by adding more actions. However, this conversion may make the problem more difficult to solve.
Extending our language to multiple argument actions then has a practical motivation.

8If the first “coverage” term is not included, then covering anexample with zeroQ-advantage is
the same as not covering the example (both contributing zero). However, zeroQ-advantage can be a
good thing (e.g. if the previous policy is optimal in that state).

9Our PSTRIPS domain definitions are at http://www.ece.purdue.edu/g̃ivan/nips03-domains.html.
10Space precludes a description of this complex and well studied planning heuristic here.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

iteration

BW(10) SR
AL/H

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

iteration

BW(15) SR
AL/H

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

iteration

LW(4,4,12)
SR

AL(S)/H

(a) (b) (c)

Figure 2: Bootstrapping API with a domain-independent heuristic.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

iteration

TL-BW-b in BW(10) SR
AL/H

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

iteration

TL-BW-a in BW(10) SR
AL/H

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

iteration

TL-LW in LW(4,6,4)
SR

AL(S)/H

(a) (b) (c)

Figure 3: Using TL-Plan control knowledge as initial policies.

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

iteration

SPW(10)
Policy1 SR
Policy2 SR

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10

iteration

SLW(4,3,3,4) Policy1 SR
Policy2 SR

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

iteration

SBW(10)
Policy1 SR
Policy2 SR

(a) (b) (c)

Figure 4: Using previously learned initial policies.

specifies a planning domain and an initial policy and then iterates API11 until “no more
progress” is made. We evaluate each policy on 1000 random problem instances, recording
thesuccess ratioSR (fraction of problems solved within the horizon) andnormalized av-
erage solution lengthAL/H (average plan length insuccessful trials divided by horizon),
omitting AL/H for very low SR. Initial-policy performance is plotted at iteration zero.

Bootstrapping from the Heuristic. We consider the domain-independent initial policy12

FF-Greedy, which acts using the FF heuristic with one-step look-ahead. Figures 2a and b
show SR and AL/H after each API iteration for BW(10) and BW(15). FF-Greedy is poor
in both domains. There is an initial period of no (apparent) progress, followed by rapid
improvement to nearly perfect SR. Examination of the learned BW(15) policies shows that
early iterations find important concepts and later iterations find a policy that achieves a
small SR; at that point, rapid improvement ensues. Figure 2cshows the SR and AL/H
for LW(4,4,12). FF-Greedy performs very well here; nevertheless, API yields compact
declarative policies of the same quality as FF-Greedy. We replicated these experiments in
the stochastic variants of these domains, with similar results (not shown for space reasons).

Initial Hand-Coded Policies. TL-Plan [3] uses human-coded domain-specific control
knowledge to solve classical planning problems. Here we useinitial policies for API that
correspond to the domain-specific control knowledge appearing in [3]13. For the blocks

11We use discount factor one and select sufficiently large horizons to rank most policies accurately.
Training set size is 100 trajectories, and sampling width isalways 1.

12What is considered “domain independent” here is the means ofconstructing the policy.
13We are not able to exactly capture the TL-Plan knowledge in our policy language. Instead, we

write policies that capture that knowledge but prune away some “bad” actions that TL-Plan might

world TL-Plan provides three sets of control knowledge of increasing quality—we use the
best and second best sets to get the policies TL-BW-a and TL-BW-b, respectively. For
logistics there is only one set of knowledge given, yieldingthe policy TL-LW.

Figures 3a–3c show the SR and AL/H for API when starting with TL-BW-a and TL-BW-
b in BW(10) and TL-LW in LW(4,4,12). In each case, API improves the human-coded
policies. Starting with TL-BW-a and TL-LW, which have perfect SR, API uncovers policies
that maintain SR but improve AL/H by approximately 6.3% and 13%, respectively. Starting
with TL-BW-b, which has SR of only 30%, API quickly uncovers policies with perfect SR.

There is a dramatic difference in the quality of FF-Greedy (iteration 0 of Figure 2a), TL-
BW-a, and TL-BW-b in BW(10); yet, for each initial policy, API finds policies of roughly
identical quality—requiring more iterations for lower quality initial policies.

Initial Machine-Learned Policies. In Yoon et al. [28], policies were learned from so-
lutions to randomly drawn small problems for the three stochastic domains we test here,
among others. A significant range of policy qualities results, due to the random draw. Here,
we use API starting with some below-average policies from that work14. Figures 4a-c show
results for SPW(10), SLW(4,3,3,4), and SBW(10). For each domain, API is shown to im-
prove the SR for two arbitrarily selected, below-average, learned starting policies to nearly
1.0. API successfully exploits the previous, noisy learning to robustly obtain a good policy.

Table 1: FF-plan vs. learned policies.

FF-plan (in C) API (Scheme)
Domains SR AL Time SR AL Time

BW(10) 1 33 0.1s 0.99 25 1.5s
BW(15) 0.96 58 2.7s 0.99 39 2.5s
BW(20) 0.75 62 27.7s0.98 55 3.7s
BW(30) 0.14103 166.0s0.99 86 2.8s

LW(4,4,12) 1 42 0.0s 1 43 2.7s
LW(5,14,20) 1 73 0.4s 1 74 3.6s

Comparing learned policies to FF-plan.
We selected a blocks-world policy and
logistics-world policy corresponding to the
learned policies (beyond iteration 0) in Fig-
ures 2a and c with the best SR, breaking ties
with AL. We applied FF-plan and the appro-
priate selected policy to each of 1000 new test
problems from each of the domains shown
in Table 1. Planning cutoff times were set
at 600, 300, and 100 seconds for BW(30),
BW(20), and all other domains, respectively. Table 1 records the percent of problems
solved within the time cutoff (SR), the average length ofsuccessful trials (AL), and the
average time forsuccessful trials (Time) for both FF-plan and our two selected policies.

In blocks worlds with more than 10 blocks, the API policy improves on FF-plan in every
category, with scaling much better to 20 and 30 blocks. Usingthe same heuristic informa-
tion (in a different way), API uncovers policies that significantly outperform FF-plan.

FF-plan’s heuristic is well suited to logistics worlds, eliminating search for these problems.
Our method performs equivalently, but for the slow prototype Scheme implementation.

5 Related Work

Typically, previous “learning for planning” systems [22] learn from small-problem solu-
tions to improve the efficiency and/or quality of planning. Two primary approaches are
to learn control knowledge for search-based planners, e.g.[23, 27, 10, 15, 1], and, more
closely related, to learn stand-alone control policies [17, 19, 28].

The former work is severely limited by the utility problem (see [21]), i.e., being “swamped”
by low utility rules. Critically, our policy-language biasconfronts this issue by preferring
simpler policies. Regarding the latter, our work is novel inusing API to iteratively improve
policies, and leads to a more robust learner, as shown above.In addition, we leverage

consider (so our TL-Plan–based policies are actually better than the corresponding TL-Plan policy).
14For these stochastic domains we provide the heuristic (designed for deterministic domains) with

a deterministic STRIPS domain approximation (using the mostly likely outcome of each action).

a domain-independent planning heuristic to avoid the need for access to small problems.
Our learning approach is also not tied to having a base planner.

The most closely related work is relational reinforcement learning (RRL) [9], a form of on-
line API that learns relational cost-function approximations.Q-cost functions are learned
in the form of relational decision trees (Q-trees) and are used to learn corresponding poli-
cies (P -trees). The RRL results clearly demonstrate the difficultyof learning cost-function
approximations in relational domains. Compared toP -trees,Q-trees tend to generalize
poorly and be much larger. RRL has not yet demonstrated scalability to problems as com-
plex as those considered here—previous RRL blocks-world experiments include relatively
simple goals15, which lead to cost-functions that are much less complex than the ones here.
However, unlike RRL, our API assumes an unconstrained simulator and (for the FF-plan
heuristic) a world model, which must be provided or learned by additional techniques.

References
[1] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using genetic programming to learn and improve

control knowledge.AIJ, 141(1-2):29–56, 2002.
[2] Fahiem Bacchus. The AIPS ’00 planning competition.AI Magazine, 22(3)(3):57–62, 2001.
[3] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control knowl-

edge for planning.AIJ, 16:123–191, 2000.
[4] R. Bellman.Dynamic Programming. Princeton University Press, 1957.
[5] D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, 1996.
[6] Craig Boutilier and Richard Dearden. Approximating value trees in structured dynamic pro-

gramming. In Lorenza Saitta, editor,ICML, 1996.
[7] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dynamic programming

with factored representations.AIJ, 121(1-2):49–107, 2000.
[8] Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic dynamic programming for first-

order MDPs. InIJCAI, 2001.
[9] S Dzeroski, L DeRaedt & K Driessens. Relational reinforcement learning.MLJ, 43:7–52, 2001.

[10] Tara A. Estlin and Raymond J. Mooney. Multi-strategy learning of search control for partial-
order planning. InAAAI, 1996.

[11] Robert Givan, Thomas Dean, and Matt Greig. Equivalencenotions and model minimization in
Markov decision processes.AIJ, 147(1-2):163–223, 2003.

[12] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections for factored MDPs.
In IJCAI, pages 673–680, 2001.

[13] Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search.JAIR, 14:263–302, 2001.

[14] R. Howard.Dynamic Programming and Markov Decision Processes. MIT Press, 1960.
[15] Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learningdeclarative control rules for

constraint-based planning. InICML, pages 415–422, 2000.
[16] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for near-

optimal planning in large markov decision processes.MLJ, 49(2–3):193–208, 2002.
[17] Roni Khardon. Learning action strategies for planningdomains.AIJ, 113(1-2):125–148, 1999.
[18] M. Lagoudakis and R. Parr. Reinforcement learning as classification: Leveraging large margin

classifiers. InICML, Submitted.
[19] Mario Martin and Hector Geffner. Learning generalizedpolicies in planning domains using

concept languages. InKRR, 2000.
[20] D. McAllester & R. Givan. Taxonomic syntax for 1st-order inference.JACM, 40:246–83, 1993.
[21] S. Minton. Quantitative results on the utility of explanation-based learning. InAAAI, 1988.
[22] S. Minton, editor.Machine Learning Methods for Planning. Morgan Kaufmann, 1993.
[23] S. Minton, J. Carbonell, C. A. Knoblock, D. R. Kuokka, O.Etzioni, and Y. Gil. Explanation-

based learning: A problem solving perspective.AIJ, 40:63–118, 1989.
[24] G. Tesauro. Practical issues in temporal difference learning.MLJ, 8:257–277, 1992.
[25] G. Tesauro & G. Galperin. Online policy improvement viamonte-carlo search. InNIPS, 1996.
[26] J. Tsitsiklis and B. Van Roy. Feature-based methods forlarge scale DP.MLJ, 22:59–94, 1996.
[27] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and J. Blythe. Integrating planning and

learning: The PRODIGY architecture.Journal of Experimental and Theoretical AI, 7(1), 1995.
[28] S. Yoon, A. Fern, and R. Givan. Inductive policy selection for first-order MDPs. InUAI, 2002.

15The most complex blocks-world goal for RRL was to achieveon(A;B) in ann block environ-
ment. We consider blocks-world goals that involve alln blocks.

