
1

Online Ensemble Learning: An Empirical Study

Alan Fern AFERN@ECN.PURDUE.EDU

Robert Givan GIVAN@ECN.PURDUE.EDU

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA

Abstract

We study resource-limited online learning, motivated by the problem of conditional-branch outcome predic-

tion in computer architecture. In particular, we consider (parallel) time and space-efficient ensemble learners

for online settings, empirically demonstrating benefits similar to those shown previously for offline ensem-

bles. Our learning algorithms are inspired by the previously published “boosting by filtering” framework as

well as the offline Arc-x4 boosting-style algorithm. We train ensembles of online decision trees using a

novel variant of the ID4 online decision-tree algorithm as the base learner, and show empirical results for

both boosting and bagging-style online ensemble methods. Our results evaluate these methods on both our

branch prediction domain and online variants of three familiar machine-learning benchmarks. Our data justi-

fies three key claims. First, we show empirically that our extensions to ID4 significantly improve perfor-

mance for single trees and additionally are critical to achieving performance gains in tree ensembles.

Second, our results indicate significant improvements in predictive accuracy with ensemble size for the

boosting-style algorithm. The bagging algorithms we tried showed poor performance relative to the boost-

ing-style algorithm (but still improve upon individual base learners). Third, we show that ensembles of small

trees are often able to outperform large single trees with the same number of nodes (and similarly outper-

form smaller ensembles of larger trees that use the same total number of nodes). This makes online boosting

particularly useful in domains such as branch prediction with tight space restrictions (i.e., the available real-

estate on a microprocessor chip).

Keywords: online learning, ensemble learning, boosting, bagging, decision trees, branch prediction

2

1 Introduction

Ensemble methods such as boosting and bagging have been shown to provide significant advantages in offline learn-

ing settings—however, little work has been done exploring these methods in online settings. Here we consider an on-

line setting, motivated by the problem of predicting conditional branch outcomes in microprocessors. Like many

online learning problems, branch prediction places tight time and space constraints on a learning algorithm (i.e., the

space is limited by the available microprocessor chip real-estate and the time is limited by the frequency the processor

encounters conditional branches, typically every few nanoseconds). Thus, time and space efficiency are crucial fac-

tors in the design of our online ensemble methods. Our application does offer the benefit of cheap natural parallelism

(at the silicon level) to assist in meeting the time constraint.

Ensemble learning algorithms provide methods for invoking a base learning algorithm multiple times and com-

bining the results into an ensemble hypothesis. Many empirical investigations have shown that ensemble learning

methods often lead to significant improvements across a wide range of learning problems (Breiman, 1996a; Freund &

Schapire, 1996; Quinlan, 1996; Bauer & Kohavi, 1999; Dietterich, 2000). To our knowledge, however, all of these in-

vestigations have taken place in an offline learning setting. The main goal of this research is to demonstrate that simi-

lar performance gains can be obtained in online learning settings by using time and space efficient online ensemble

algorithms. Secondary goals include designing and evaluating appropriate online base learners for use in ensembles,

and measuring the cost/value of ensembles in reducing the space requirement needed to achieve a given classification

accuracy.

We consider the simplified problem of online binary-concept learning with binary features—however, it is likely

that the methods presented here can be extended to non-binary problems in familiar ways. For this work, we use deci-

sion-tree base learners, partly because our hardware-oriented application requires nanosecond prediction delays. Due

to our resource constraints, we prefer an online decision-tree method that does not store a large number of training in-

stances, and so as our base learner we use a novel variant of ID4 (Schlimmer & Fisher, 1986) (which is an online ver-

sion of the ID3 (Quinlan, 1986) offline decision-tree algorithm). We present empirical evidence that our extensions to

ID4 improve performance in single trees and are critical to good performance in tree ensembles—our results support

the suggestion that the original ID4 warms up too erratically and slowly for use in online ensembles.

We note that our time and space constraints also rule out the direct application of offline ensemble algorithms by

storing the training instances and invoking the offline algorithm when each new instance arrives. When a training in-

stance arrives we update our ensemble immediately and the instance is then discarded.

Freund (1995) describes a version of theboost-by-majority (BBM)boosting algorithm for the “boosting by filter-

ing” ensemble learning framework. In the “boosting by filtering” framework ensembles are generated online and

without storing previous instances, as in our methods. The BBM algorithm implements a sequential ensemble gener-

3

ation approach where the ensemble members are generated one at a time. In practice, to use a sequential generation

approach such as BBM for online problems we must address at least two challenging issues. First, we must select

some method for the learner to determine when to stop generating one ensemble member and to begin generating the

next. BBM provides a theoretical method in terms of parameters of the base learner that are generally not known in

practice. Second, we must provide a means for the ensembles to adapt to drifting target concepts, since BBM itself

does not update ensemble members once they are created. In light of these issues we consider a variation of the

‘boosting by filtering’ approach that generates ensemble members in parallel—that is when a training instance ar-

rives, more than one (and potentially every) ensemble member may be updated rather than a single member as is done

by sequential approaches such as BBM. Because these updates occur in parallel in our application, there is no addi-

tional time cost to our parallel approach. In addition to being simpler to specify (for the reasons above), we also ex-

pect parallel-generation approaches to yield learners that warm up more quickly (in parallel time) because each

training instance is potentially used to update many ensemble members rather than just one (we discuss empirical re-

sults supporting this expectation in Section 7). Unlike BBM, however, the online boosting-style algorithm we present

has not been proven to be a boosting algorithm in the theoretical sense (hence the term boosting-style rather than

boosting)—the results we give are empirical in nature.

We describe two such “parallel-generation” online ensemble algorithms: one inspired by the offline ensemble

method of bagging, and one inspired by the offline boosting-style algorithm Arc-x4. These methods have an efficient

parallel hardware implementation where the time complexities of updating and making predictions with the ensemble

grow only logarithmically with the numberT of ensemble members. The space complexity of this implementation

grows linearly withT and is typically dominated by the space occupied by the ensemble members. This efficient par-

allel implementation is extremely important in the branch prediction domain where the implementation platform

(VLSI circuits) invites parallelism.

We note that ensemble learning methods generally lend themselves to parallel implementation, and thus are nat-

ural for use under tight time constraints. We also note that online learning domains are naturally likely to present such

time constraints. These facts suggest that ensemble methods may be particularly useful in online settings. In addition,

parallel-generation approaches incur no extra time cost in parallel implementations and so may also be particularly

well-suited to online settings. However, our results also indicate that online ensembles improve classification error

over single base learners in sequential implementations—in this case the ensemble will take much more time than the

base learner, and other time-consuming approaches may be competitive.

Using our ID4-variant as the base learner, we empirically evaluate our online ensemble methods against in-

stances of the branch prediction problem drawn from widely-used computer-architecture benchmarks, as well as

against online variants of several familiar machine-learning benchmarks. Our results indicate that our boosting-style

4

algorithm online Arc-x4 consistently outperforms our online bagging methods. Online Arc-x4 is also shown to signif-

icantly improve the error rate compared to single base learners in most of our experiments. In addition, we show that

ensembles of small trees often outperform large single trees that use the same total number of tree nodes—similarly,

large ensembles of small trees often outperform smaller ensembles of larger trees that use the same number of nodes.

These results are important to domains with tight space constraints such as branch prediction. Finally, we give results

indicating that our base-learner extensions are critical to obtaining these effective ensembles.

The remainder of this paper is organized as follows. In Section 2 we briefly describe our motivating application

of branch prediction. In Section 3 we briefly discuss the problem of online concept learning and then present our

novel online boosting-style algorithm, online Arc-x4. Section 4 discusses the parallel time and space complexity of

online Arc-x4. In Section 5 we give and discuss empirical results for online Arc-x4. In Sections 6 and 7, we describe

our extensions to ID4 (used as the base learner) and give results evaluating their effect on single tree and ensemble

performance. Finally, Appendix A describes our online ensemble algorithms based on bagging and gives empirical

results showing poor performance for online bagging in our domains relative to online Arc-x4 (however, online bag-

ging still improves upon individual base learners).

2 Branch Prediction

This research is motivated by the problem of dynamic conditional-branch outcome prediction in computer architec-

ture. It is not our primary goal here to beat current state-of-the-art branch predictors but rather to open a promising

new avenue of branch-predictor research, as well as to explore empirically an online setting for boosting (which is of

interest independently of branch prediction)

Problem Description. Critical to the performance of nearly all modern out-of-order processors is their ability to pre-

dict the outcomes (taken or not-taken) of conditional branch instructions—this problem is known as branch predic-

tion. During out-of-order execution if a branch instruction is encountered whose condition is unresolved (i.e., the

condition depends on instructions that have not yet finished execution) the prediction of its outcome guides the pro-

cessor in speculatively executing additional instructions (down the path the branch is predicted to take). Finding accu-

rate branch prediction techniques is a central research goal in modern microprocessor architecture.

Typical programs contain conditional branches about every third instruction, and individual branches are encoun-

tered hundreds of thousands of times. For each encounter, the branch predictor predicts the outcome (i.e., taken or

not-taken) using a feature vector composed of a subset of the processor state during prefetch. After the true branch

outcome is known the feature vector and outcome are used by the branch predictor as a training example leading to an

updated predictive model. Branch prediction is thus a two-class concept-learning problem with a binary feature space

5

in an online setting.

Machine learning ideas have previously been applied to the different but related problem ofstaticbranch predic-

tion (Calder et al., 1997). Static branch prediction involves predicting the most likely outcomes of branches before

program execution (i.e., at compile time) rather than predicting the outcome of actual branch instances as they are en-

countered during program execution which is the goal ofdynamicbranch prediction. To the best of our knowledge

there has been no other work in the machine learning community focused on dynamic branch prediction.

Qualitative Domain Characteristics. Branch prediction is a bounded time/space problem—predictions must be

made quickly, typically in a few nanoseconds. Additionally, a hardware implementation is required, so the resource

constraints are much tighter and qualitatively different than those usually encountered in software machine-learning

applications. Generally, giving a well-designed predictor more time/space results in a corresponding increase in pre-

diction accuracy (e.g., allowing deeper trees). Using a larger predictor, however, implies less chip space for other ben-

eficial microprocessor machinery. Thus when applying machine learning ideas to this problem it is important to

carefully consider the time/space complexity of the approach—exploiting the VLSI parallel implementation platform

to meet these time and space constraints.

Additional domain characteristics of interest from a machine learning perspective include: branch prediction re-

quires an online rather than offline learning setting—conditional branches must be predicted as they are encountered;

the number of encountered instances of a given branch is unknown ahead of time; context switching creates concept

drift; branch prediction provides a fertile source for large automatically-labelled machine-learning problems; and fi-

nally, branch prediction is a domain where significant progress could have a large impact (reducing branch predictor

error rates by even a few percent is thought to result in a significant processor speedup (Chang et al., 1995)).

Contribution to branch prediction. An electronic appendix (Fern & Givan, 2001) contains an overview of past and

present branch prediction research. Virtually all proposed branch predictors are table-based (i.e., they maintaining

predictive information for each possible combination of feature values) causing their sizes to grow exponentially with

the number of features considered. Thus, state-of-the-art predictors can only use a small subset of the available pro-

cessor state as features for prediction.1 The methods we describe avoid exponential growth—our predictors (ensem-

bles of depth-bounded decision trees) grow linearly with the number of features considered. This approach is able to

flexibly incorporate large amounts of processor state into the feature space while remaining within architecturally-re-

1. One approach to easing the exponential growth problem is to use a fixed hash function that combines the feature vector bits into a smaller num-
ber of hashing bits used to access the prediction table (e.g., XOR’ing bit sets together). Such methods lose information but reduce the exponent
of the space complexity. To avoid exponential dependence on the number of features the number of hashing bits must be logarithmic in the
number of features—therefore exponentially many different branch instances are mapped to the same hash location. It seems unlikely that a
single fixed hash function can be found giving logarithmic compression that avoids loss in accuracy for most branches (each branch represents
a distinct prediction problem but encounters the same hash function) relative to the accuracy attained without compression. Current methods do
not achieve logarithmic compression, rather they reduce the exponent by a linear factor and are still exponential in the number of features.

6

alistic space constraints. The ability of our predictors to incorporate substantial additional processor-state information

should lead to substantial improvements in the prediction accuracy available for a fixed space usage. The most com-

mon features used by current branch predictors are global and local history bits.Global historybits store the out-

comes of the most recently resolved branches. In contrast,local historybits store the most recent previous outcomes

of the branch whose outcome is being predicted. Examples of additional processor state (beyond local and global his-

tory) that are known to contain predictive information include register bits and branch target address bits; however,

current methods for utilizing this information are table-based, e.g., (Heil et al., 1999; Nair, 1995). Our intended con-

tribution to branch prediction (and to the design of other architecture-enhancing predictors) is to open up the possibil-

ity of using much larger feature spaces in prediction.

3 Online Ensembles

This research addresses the problem of online concept learning using ensembles. For our purposes, aconceptis a

mapping from some domain to either zero or one. In concept learning problems we are provided withtraining in-

stances: tuples comprised of a domain element and the class (zero or one) assigned to that element by thetarget con-

cept. Based on the training instances we are asked to find ahypothesis conceptthat accurately models the target

concept.Offline learning algorithms take as input a set of training instances and output a hypothesis. In contrast, on-

line learning algorithms take as input a single labelled training instance as well as a hypothesis and output an updated

hypothesis. Thus, given a sequence of training instances an online algorithm will produce a sequence of hypotheses.

Online learning algorithms are designed to reuse the previous hypothesis in various ways, allowing them to reduce

update times to meet the constraints of online learning problems—these constraints are typically much tighter than

for offline problems. The advantages of this hypothesis reuse are even more significant in an ensemble learning algo-

rithm, since offline ensemble construction can be very expensive.

In recent years ensemble learning algorithms have been the topic of much theoretical and experimental research.

These algorithms provide methods for invoking a learning algorithm (the base learning algorithm) multiple times and

for combining the resulting hypotheses into an ensemble hypothesis (e.g., via a majority vote). The goal in using an

ensemble of hypotheses is to be superior in some sense to the individual hypothesis generated by the base algorithm

on the training instances. In this work we consider two popular ensemble methods, boosting and bagging.

To our knowledge, all previous empirical evaluations of ensemble methods have taken place in offline learning

settings. In this research we investigate online variants of ensemble learning algorithms and demonstrate online per-

formance gains similar to those seen in the previous offline evaluations. We also ensure that our online variants have

efficient implementations that might be applied to online learning problems with significant resource constraints—

without this restriction an offline algorithm can be used directly in the online setting at substantial resource cost2.

7

In the remainder of this section we will first briefly describe (for completeness) the popular offline ensemble

method, boosting, that inspired our most successful online algorithm. Next, we distinguish between sequential-gener-

ation and parallel-generation ensemble approaches, and give reasons to focus on parallel generation in this research.

We then describe a generic online ensemble algorithm that allows for parallel generation. We show a boosting-style

instantiation of this algorithm that we have implemented called online Arc-x4. Our results for an online bagging in-

stantiation of the generic algorithm were not favorable when compared to online Arc-x4 (but still improve on individ-

ual base learners). Hence, we postpone our discussion of online bagging until Appendix A—noting that in domains

where online bagging is competitive with online Arc-x4, bagging is preferable with respect to complexity.

3.1 Offline Ensemble Generation via Boosting

Boosting is an ensemble method that has received much attention and has been shown in several studies to outper-

form another popular ensemble method, bagging, in a number of offline domains3 (Freund & Schapire, 1996; Quin-

lan, 1996; Bauer & Kohavi, 1999; Dietterich, 2000). We assume here that the base learning algorithms take into

account a weight associated with each training instance, and attempts to return a learned hypothesis that minimizes

the weighted classification error. Some of the most commonly used boosting algorithms for offline problems generate

hypotheses sequentially as follows. The first hypothesis is the result of presenting the set of training instances, all

with weights of one, to the base learning algorithm. Now assume the algorithm has already generatedt–1 hypotheses.

Weights are then assigned to the training instances such that larger weights are associated with instances that the pre-

vious hypotheses performed poorly on (the “hard” instances). These weighted instances are then given to the base

learning algorithm which outputs thet’ th hypothesis. Boosting algorithms differ mainly in the ways weights are as-

signed to instances and the ways hypotheses are combined. The AdaBoost algorithm (Freund & Schapire, 1997) and

the boost by majority algorithm (Freund, 1995) have been proven to be boosting algorithm in the theoretical sense4.

Arc-x4 (Breiman, 1996b) is another ensemble method inspired by boosting and is the basis for our online boosting-

style method. AdaBoost and Arc-x4 have been empirically compared and exhibit similar performance (Bauer & Ko-

havi, 1999; Breiman, 1996b).

3.2 Online Approaches

There are several avenues that could be explored when designing an online ensemble algorithm. A naive approach is

2. An offline algorithm can be used in an online setting by simply storing the training examples as they arrive and invoking the offline algorithm
on the stored example set whenever a new example arrives. This naive method can have a substantial cost in terms of space and update time.

3. The advantages of boosting have been shown to degrade as noise levels increase and boosting may actually hurt performance in some of these
domains (Dietterich, 2000).

4. Technically a boosting algorithm is one that ‘transforms’ a weak learning algorithm into a strong learning algorithm (Schapire, 1990).

8

to maintain a dataset of all observed instances and to invoke an offline algorithm to produce an ensemble from scratch

when a new instance arrives. This approach is often impractical both in terms of space and update time for online set-

tings with resource constraints. To help alleviate the space problem we could limit the size of the dataset by only stor-

ing and utilizing the most recent or most important instances. However, the resulting update time is still often

impractical, particularly for boosting methods—when the training set used by a boosting algorithm is altered we po-

tentially need to recalculate weights and invoke the base learning algorithm for each of theT hypotheses from

scratch. It is unclear whether there is a time-efficient online boosting variant that stores the set of previous instances

in order to duplicate the offline algorithm performance. In part because of the tight resource constraints in our appli-

cation domain of branch outcome prediction, for this research we chose to consider only methods that do not store

previous instances—other approaches may also be feasible. Below we discuss two possible online ensemble ap-

proaches that do not require previous instances to be stored; we call these the sequential-generation and parallel-gen-

eration approaches—we then argue for and focus on the parallel-generation approach.

We say that an online ensemble algorithm takes asequential-generationapproach if it generates the ensemble

members one at a time, ceasing to update each member once the next one is started (otherwise, we say the approach is

parallel-generation). We say the algorithm takes asingle-updateapproach if it updates only one ensemble member

for each training instance encountered (otherwise, we saymultiple-update). We note that any algorithm taking a se-

quential-generation approach will generally also take a single-update approach.5 The boosting by filtering framework

described by Freund (1995) can be viewed as taking the sequential-generation single-update approach—two algo-

rithms for the filtering framework are theboost-by-majority (BBM)algorithm (Freund, 1995) and MadaBoost (Dom-

ingo & Watanabe, 2000). Note that these algorithms are boosting algorithms in the theoretical sense4 while the

parallel-generation boosting-style algorithm we investigate here has not been shown to possess this property.

We wish to avoid the single-update approach (and thus the sequential approach). One reason for this is that the

offline methods of boosting and bagging both have the property that a single training instance can contribute to the

training of many ensemble members—we believe that achieving this property in the online setting is essential to ob-

taining rapid convergence to the desired target concept; this is particularly important in the presence of concept drift.

Our empirical results described on page 35 provide evidence that our parallel-generation multiple-update ensembles

converge more quickly than a sequential approach would. Sequential-generation algorithms also suffer additionally in

the presence of concept drift because at any time most ensemble members are never going to be updated again—this

patently requires adapting such algorithms with some kind of restart mechanism. Sequential methods also require a

5. The reader is advised that we use the terms “parallel generation” and “parallel implementation” for very different meanings herein (likewise for
“sequential...”). “Parallel generation” refers to a method for training ensembles which can be implemented either serially or in parallel. “Paral-
lel implementation” refers to an implementation technique in which more than one computation is carried out simultaneously.

9

difficult-to-design method for determining when to stop updating an ensemble member in favor of starting on another

member.

To address these problems, we considered in this work only algorithms taking the parallel-generation multiple-

update approach. We note that this approach interacts well with our motivating application in that multiple updates

can easily be carried out simultaneously on a highly parallel implementation platform such as VLSI.

Generic multiple-update algorithm. Here we formally present a generic online ensemble algorithm that allows for

multiple updates. Two instances of this algorithm are described (one here and one in Appendix A) and will be used in

our experiments. An ensemble is a 2-tuple consisting of a sequence ofT hypothesesh1,...,hT and a corresponding set

of T scalar voting weightsv1,...,vT. A hypothesishi is a mapping from the target concept domain to zero or one (i.e.,

hi (x)∈{0,1} for each domain elementx). Given a domain elementx the prediction returned by an ensembleH =

〈(h1,...,hT), (v1,...,vT)〉 is simply a weighted vote of the hypotheses, i.e., one if(v1[2h1(x)–1] +… + vT[2hT(x)–1]) > 0

and zero otherwise. A training instance is a tuple〈x,c〉 wherex is a domain element andc is the classification in {0,1}

assigned tox by the target concept (assuming no noise). We assumeLearn is our base learning algorithm: an online

learning algorithm that takes as input a hypothesis, a training instance, and a weight; the output ofLearn is an updated

hypothesis.

Figure 1 shows the generic multiple-update algorithm we will use. The algorithm outputs an updated ensemble,

taking as input an ensemble, a training instance, an online learning algorithm, and two functionsUpdate-Vote() and

Weight(). The functionUpdate-Vote() is used to update the (v1,...,vT) vector of ensemble member voting weights (typ-

ically based on how each member performs on the new instance). The functionWeight() is used for each ensemble

memberht to assign a weightwt to the new instance for use in updatinght.

For each hypothesisht the algorithm performs the following steps. First, in line 2 a new scalar voting weightvt is

computed by the functionUpdate-Vote(). For example, ifUpdate-Vote() always returns the number one, the ensemble

prediction will simply be the majority vote. Next, in line 3 a scalar instance weightwt is computed byWeight(). For

example, in boostingWeight() would typically be a function of the number of mistakes made by previous hypotheses

on the current instance, whereas in baggingWeight() would not depend on the ensemble members. Finally, in line 4,

ht is updated byLearn() using the training instance with the computed weightwt. After each hypothesis and voting

weight in the ensemble is updated in this manner (possibly in parallel), the resulting ensemble is returned.

The immediate research goal is to find (parallel) time and space efficient functionsUpdate-Vote() andWeight()

that produce ensembles that outperform single hypotheses in classification accuracy. In this paper we consider two

very simple memoryless instances of this algorithm that are inspired by bagging and Arc-x4.

10

3.3 Online Arc-x4

Online Arc-x4 uses the same instance weight functionWeight() as that used by the offline ensemble algorithm Arc-x4

(Breiman, 1996b). The instance weight function is computed in two steps:

Weight (H, I, t) = 1 +mt
4, (1)

The weight for thet’th hypothesiswt is calculated by first counting the numbermt of previous hypotheses that incor-

rectly classify the new instance. The weight used is then one more thanmt to the fourth power, resulting in a boosting-

style weighting that emphasize instances that many previous hypotheses get wrong. This function was arrived at

(partly) empirically in the design of offline Arc-x4. Nevertheless it has performed well in practice and its simplicity

(compared to AdaBoost for example where we would need to consider ways to avoid the floating-point computations)

made it an attractive choice for this application. For online Arc-x4 the functionUpdate-Vote() computes the new hy-

pothesis voting-weight simply by counting the number of correct predictions made by the hypothesis on the training

instances seen so far,

Update-Vote (H, I, t) = vt + 1 – , (2)

wherevt is the previous voting weight (in this case the previous count of correct predictions) as shown in Figure 1.

Thus, hypotheses that are more accurate will tend to have larger voting weights. Note that the offline version of Arc-

x4 uses a majority rather than a weighted vote. We found, however, an empirical advantage to using weighted voting

for small ensemble sizes. For large ensemble sizes the two methods gave nearly identical results.

Figure 1: Generic multiple-update online ensemble learning algorithm.

Input:
 ensemble

new training instance
 base online learning algorithmLearn (instance, weight, hypothesis)
 voting weight update functionUpdate-Vote (ensemble, instance, hypothesis-number)
 instance weight functionWeight (ensemble, instance, hypothesis-number)

1. for each , ;;possibly executed in parallel

2. do =Update-Vote (H, I, t) ;; the new voting weight of hypothesis t

3. =Weight (H, I, t) ;; the weight of this instance for updating

4. =Learn (I, wt, ht)

Output: new ensemble

H h1 …, hT,() v1 … vT, ,(),〈 〉=
I x c,〈 〉=

t 1 2 … T, , ,{ }∈

v̂t
wt ht
ĥt

Ĥ ĥ1… ĥT,() v̂1 … v̂T, ,(),〈 〉=

mt hi x() c–
i 1=

t 1–

∑=

ht x() c–

11

We now briefly compare our parallel-generation approach to sequential-generation methods in cases where the

two variations encounter the same stationary target concept and stationary distribution of instances. We assume that

the online base learner is convergent in the following sense; for sequences of training instances drawn from a given

stationary distribution and target concept the learner produces hypothesis sequences that all converge to the same hy-

pothesis regardless of the initial hypothesis in the sequence. We also assume that both methods use the same instance-

weighting and vote-weighting functions. We consider only sequential-generation methods that allow each base

learner to converge before moving on to the next.6 In parallel-generation methods, this corresponds roughly to using

a weighting scheme where the instance weights for each hypothesis depend only on the results from previous hypoth-

eses in the ensemble — we call such weighting schemes “ordered”, and note that Arc-x4 uses a ordered weighting

scheme. Under these assumptions, parallel-generation methods based on the generic algorithm in Figure 1 using a or-

dered weighting scheme converge to the same learned hypothesis that sequential methods converge to. This can be

seen by noting that in the parallel method, the ordered weighting scheme implies that the first ensemble member con-

verges independently of what is happening with later members (thus exactly as quickly as the first member in a se-

quential method); once the first member converges, the second member then converges independently of what is

happening to other members since its weighted distribution depends only on the (now converged) first member. Ex-

tending this reasoning by induction, each ensemble member will converge to the same hypothesis under either se-

quential or parallel ensemble generation.

4 Complexity and Implementation of Online Arc-x4

An efficient parallel implementation is particularly significant to our target domain of conditional-branch outcome

prediction where the implementation platform of VLSI invites and requires parallelism (see Section 5.2 for details of

our target domain). In this section we show that the time complexity of a parallel implementation of online Arc-x4 is

better thanO(log2 T) plus the prediction time used by an individual base learner; and that the space complexity of the

same implementation isO(T · log T) plus the space used by theT individual base learners. The detailed bounds are

slightly tighter, and are derived below. All the results in this section are estimates in that they ignore specialized VLSI

issues such as the space cost of high fan-out.

We note that our focus here is on a direct, specialized VLSI implementation like that needed for branch predic-

tion. However, these calculations also shed some light on the complexity of a shared-memory multi-processor ensem-

ble implementation, such as might be used for other online learning applications. A detailed discussion concerning

the VLSI issues involved in a hardware implementation of online Arc-x4 is beyond the intended scope of this paper.

6. Of course practical sequential methods need a way of moving on to the next hypothesis should the current hypothesis take a long time or even
fail to converge. Similar practical adaptations can be added to a parallel-generation method, preserving our claim in practice.

12

Our estimates here, however, suggest that Arc-x4 has a space/time efficient hardware implementation provided that

the base learners have a space/time efficient hardware implementation. Our work targeted to the computer architec-

ture community (Fern et al., 2000) proposes a parallel hardware design of the decision tree base learner we use in this

paper (the base learner is described in Section 6.1).

The space and time complexity results are based mainly on the fact that the sum ofT n-bit integers can be calcu-

lated inO(log T · log(n + logT)) time and space, using a tree of 2-addend additions of at most

bits. First we show that the prediction and update time complexities in terms of ensemble sizeT are both

. Next, we show that the space complexity in terms ofT for both the prediction and update mech-

anisms is . Belowtp is the worst-case time complexity for making a prediction using any base-learner

hypothesis generated byLearn(),tu is the worst-case time complexity for updating a base-learner hypothesis, andSh

is the worst-case space complexity of a base-learner hypothesis. The voting weightsv1,..., vT as seen in Figure 1 are

taken to have a precision ofn bits (this definesn, which we treat here as a constant7).

Prediction Time. A prediction can be made by having all of the individual hypotheses make predictions in parallel

and then summing theT voting weightsv1 throughvT (where the prediction of hypothesisht determines the sign asso-

ciated withvt). The sign of this sum determines the ensemble prediction. Therefore, the worst case time complexity of

returning an ensemble prediction is the time to get the ensemble member predictions in parallel plus the time to calcu-

late the sum of the vote weights which isO(tp+ log T·log(n + log T)), which isO(log T·log(n + log T)) if we taketp to

be constant.

Update Time. To update the predictor we first obtain the predictions of all hypotheses in parallel and update the vot-

ing weights. Next, for each hypothesis the number of mistakes made by previous hypotheses is stored and the update

weights are calculated in parallel (see Equation 1). Finally the hypotheses are updated in parallel byLearn(). The

worst-case time complexity8 of calculatingwt in Equation 1 given the number of previous mistakesmt is O(log log

T).

We now consider the worst-case time complexity of calculatingmt. To calculatemt we first calculate the sumst of

all hj(x) for j ranging from 1 tot–1. Given this sum we know the value ofmt is one of two values depending on the

class ofx; if the class is one thenmt is t – st otherwisemt is justst. The worst case time complexity for calculatingst

occurs whent = T and is the time to sumT–1 bits which has complexityO(log T · log log T). Notice that we can cal-

culatest and hence the two possible values formi without knowing the class ofx (this is the reason we introducest)—

7. We note that n must be bounded in a practical hardware implementation. A common way of dealing with counter saturation is to divide all the
counters by 2 whenever one of the counters saturate—this operation maintains the ordering among the counters approximately.

8. The computation requires two multiplications. The time complexity of multiplying two n-bit numbers is (Cormen et al., 1997).
Since the maximum number of bits needed to representmt is the time complexity to perform the multiplications is .

O T n Tlog+()⋅()

n Tlog+

O Tlog Tloglog⋅()

O T Tlog⋅()

O nlog()
Tlog O Tloglog()

13

this feature of Arc-x4’s weight function is useful in domains (such as branch prediction) where a prediction is made

for a domain element before its class is known. In such domains we can calculate all thest in parallel (typically during

the prediction voting calculation) and use these values later when the class is known to generate the instance weights

used in updating the hypotheses.

Adding the base-learner prediction and update times, the time to update the voting weights, the time to calculate

st, and the time to calculatewt together, the worst-case complexity for the update time of online Arc-x4 is given by

O(tp + log n + logT · log logT + tu).

Space Complexity.Since making a prediction amounts to calculating the sum ofT n-bit integers the space complex-

ity of the prediction circuit isO(T · (n + log T)). The space needed to update all voting weights in parallel isO(T · n).

It can also be shown that a circuit for calculating all of thest values has space complexityO(T · logT), by combining

redundant computations. Also, the space required to compute the two multiplications9 needed to computewt givenmt

is O(log2 T) and since we will perform theT computations ofwt for differentt in parallel the total space complexity of

thewt computations will be . The total space required by online Arc-x4 is the sum of the space for the

update and prediction circuits as well as theT hypotheses, which isO(T ·(Sh + n + log2 T)).

5 Detailed Empirical Results for Arc-x4

From here on we refer to our online variant of Arc-x4 as simply “Arc-x4”. In this section we present empirical re-

sults using Arc-x4 to generate decision-tree ensembles for several online problems, using our online decision-tree

base learner (described later in Section 6). We focus on Arc-x4 because our preliminary results (presented in

Appendix A) indicate that our online bagging variants perform poorly in comparison to online Arc-x4. First, we per-

form online learning experiments that use ML benchmarks as the data source. Second, we describe the problem of

branch prediction and show results of our experiments in that domain. Arc-x4 is shown to significantly improve pre-

diction accuracy over single trees in most of our experiments. In addition, we show that boosting produces ensembles

of small trees that are often able to outperform large single trees with the same number of nodes (and similarly out-

perform smaller ensembles of larger trees that use the same total number of nodes). This is particularly useful in the

branch prediction domain where space is a central concern.

5.1 Machine Learning Datasets

One of our goals in this research is to evaluate online ensemble methods—this motivates our inclusion of results on

familiar ML data sets.

9. The space complexity of multiplying two n-bit numbers is (Cormen et al., 1997).O n2()

O T Tlog()2⋅()

14

5.1.1 EXPERIMENTAL PROCEDURE

The ML benchmark datasets10 we studied are usually used for offline learning experiments, but we convert them to an

online setting as follows. First, we randomly divide a dataset into testing and training sets of equal size, twenty differ-

ent times. This gives twenty different training/testing set pairs. We repeat the following procedure for each of these

pairs and average the results of the twenty trials. Given a particular training/testing-set pair, forNmax iterations an ex-

ample from the training set is randomly selected with replacement and used to update the online ensemble. After ev-

ery S (sampling interval) updates of the ensemble, the testing and training error rates are calculated; the training/

testing error is calculated by using the current ensemble to predict the class of each example in the training/testing set

and recording the error rate. Thus, for a particular training/testing set pair we obtainNmax/S time sampled measure-

ments of both training and testing error. After obtaining results from all twenty training/testing set pairs we calculate

the mean and standard deviation of these error measurements. This results in training and testing plots of an ensem-

bles mean error vs. time and standard deviation of error vs. time. Most of our plots use only the average testing error

at the final sampling, in order to compare across varying ensemble sizes or space allocations.

5.1.2 DESCRIPTION OFDATASETS

Eleven-bit Multiplexor (multiplexor). The eleven-bit multiplexor concept uses eleven binary features. The feature

vector bits are divided into three address bits and eight data bits for a total of 2048 distinct examples. The class as-

signed to a feature vector is simply the binary value of the data bit specified by the address bits. ID3 has been shown

to perform poorly on this concept with respect to induced tree size (Quinlan, 1988). Utgoff (1989) showed that the

online methods ID4 and ID5R can learn this concept (again with large trees).

Tic-Tac-Toe (TTT1 and TTT2). This problem is taken from the Tic-Tac-Toe endgame database at the UCI ML re-

pository (Merz & Murphy, 1996). There are 958 instances each described by nine three-valued features that indicate

the content of each square (x, o, or blank). The class of an instance is positive if the position is a ‘win for x’ and neg-

ative otherwise. The two versions of this problem we use correspond to different binary encodings of the features.

TTT1 uses two binary features to represent the contents of each square for a total of 18 features.TTT2 is included as

a more difficult version of this problem and uses eight bits to (ASCII) encode the contents of each square for a total of

72 binary features. This is a highly disjunctive concept and has been used as a testbed for offline constructive induc-

tion of decision trees in (Matheus & Rendell, 1989).

Vowel (vowel). This problem is taken from the letter recognition database at the UCI ML repository. There are

19976 instances each labelled by the letter it represents and described by sixteen four-bit integer features. We use a

10. These four benchmarks were selected to offer the relatively large quantities of labelled data needed for online learning as well as a natural
encoding as binary feature space two-class learning problems. We have not run these algorithms on any other machine learning benchmarks.

15

naive binary feature representation that simply views each of the four relevant bits from the integers as a feature for a

total of 64 features. We define the class of an instance to be positive if it is a vowel and negative otherwise.

5.1.3 RESULTSFOR ML BENCHMARKS

We vary the number of treesT in an ensemble from 1 to 100, and the maximum allowable depthd of any tree11 from

one to ten. By varyingd we change the representational strength of the trees. Figures 2 and 3 show the mean ensem-

11. The depth of a tree-node is the number of arcs on the path from the tree root to the node. The depth of a tree is the depth of its deepest node.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
(a) multiplexor: Training Error

T (ensemble size)

%
 e

rr
or

d=1

d=4

d=8 & 10

d=6

d=2

0 5 10 15 20 25
0

5

10

15

20

25

30

35
(b) TTT1: Training Error

T (ensemble size)

%
 e

rr
or

d=1

d=4
d=8 & 10

d=6

d=2

0 5 10 15 20 25
0

5

10

15

20

25

30

35
(c) TTT2: Training Error

T (ensemble size)

%
 e

rr
or

d=1

d=4

d=8 & 10

d=6

d=2

0 5 10 15 20 25
0

5

10

15

20

25
(d) vowel: Training Error

T (ensemble size)

%
 e

rr
or

d=1

d=4

d=8 & 10

d=6

d=2

Figure 2: Final Training Error vs. Ensemble Size for the machine-learning benchmarks.(Note that the x-axis is not time).
Results after ensembles encounter 50,000 training instances formultiplexor, TTT1, andTTT2 and 100,000 forvowel. The en-
sembles corresponding to a particular curve all have the same depth limit, as indicated on the graph. The stars indicateT=1 per-
formance for unbounded depth (i.e., single trees).

16

ble training and testing errors (respectively) versusT for the four benchmarks (averaged over different test/training

divisions and different random online presentation sequences, as described above). We show results forT ranging

from 1 to 25; the errors do not change significantly asT increases further. We used 100,000 training instances (Nmax

= 100,000) for thevowel dataset and 50,000 instances for the other datasets. The standard deviations are not shown,

but were small relative to the differences in means. Each figure has six curves with each curve corresponding to en-

sembles that use a particular value ofd.

Advantages with larger ensemble size.In all four problems, increased ensemble size generally reduces the training

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
(a) multiplexor: Testing Error

T (ensemble size)

%
 e

rr
or

d=1

d=2

d=4

d=6

d=8 & 10

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
(b) TTT1: Testing Error

T (ensemble size)

%
 e

rr
or

d=1

d=2

d=4

d=6

d=8 & 10

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
(c) TTT2: Testing Error

T (ensemble size)

%
 e

rr
or

d=1

d=2

d=4

d=6

d=8 & 10

0 5 10 15 20 25
0

5

10

15

20

25
(d) vowel: Testing Error

T (ensemble size)

%
 e

rr
or

d=1

d=2
d=4

d=6

d=8 & 10

Figure 3: Final Testing Error vs. Ensemble Size for the machine-learning benchmarks.(Note that the x-axis is not time).
Results after ensembles encounter 50,000 training instances formultiplexor, TTT1, andTTT2 and 100,000 forvowel. The en-
sembles corresponding to a particular curve all have the same depth limit, as indicated on the graph. The stars indicateT=1 per-
formance for unbounded depth (i.e., single trees).

17

error effectively. It is particularly interesting that increasing ensemble size leads to significant improvements for

TTT2, since we have hit an apparent performance limit for single trees with increasing depth as shown by the star on

the graph (showing unbounded-depth single base-learner error)—for this problem the ensemble approach is of crucial

value. The difficult problem encoding inTTT2 is completely overcome, but only with the use of ensembles.

It is also interesting to note that the weaker learners (lowd values) are generally less able to exploit ensemble

size. For instance, large ensembles of depth one trees perform very similarly to single trees on thevowel problem.

This phenomenon is also observable in less extreme instances by comparing the slopes of the plots for varying depth

bounds—we find a steeper error reduction with ensemble size for deeper trees. This observation indicates that ensem-

ble learning is exploiting different leverage on the problem than increased depth. However, the ability of learners to

exploit ensembles must also eventually fall off as we consider “stronger” base learners—once the individual learner

approaches the Bayes optimal error it clearly will not benefit from ensembles.

Testing error graphs. As expected Figure 3 shows that the testing error is generally larger than the corresponding

training error (as seen in Figure 2), but with the same trends. This indicates that Arc-x4 is producing ensembles that

generalize the four concepts well. Also note that larger ensembles can yield improved testing error even when a small

ensemble achieves zero training error—consider thed=10 curve for theTTT1 problem. This observation has been

made in many empirical studies of offline boosting methods and is a a counterexample to the Occam’s razor principle.

The reason(s) for this phenomenon are still not fully understood (Grove & Schuurmans, 1998).

Warmup behavior. Figures 4a and 4b show how the error rate relates to the number of instancesN used to update

the ensembles (our measure of time) for theTTT1 andvowel problems. We show graphs ford∈ {4,10} andT∈ {1,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

35

N (Number of Training Instances)

%
 e

rr
or

TTT1: Testing Error (d=10)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

35

N (Number of Training Instances)

%
 e

rr
or

(a) TTT1: Testing Error (d=4)

T=1

T=25

T=1

T=25

T=100

T=100

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

20

25

N (Number of Training Instances)

%
 e

rr
or

(b) vowel: Testing Error (d=4)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

20

25

N (Number of Training Instances)

%
 e

rr
or

vowel: Testing Error (d=10)

T=1

T=25

T=1

T=25

T=100

T=100

Figure 4: Performance versus time.Testing error vs. Number of instances (time) for two benchmarks. Each curve corresponds
to a single ensemble and shows how its performance changes as more training instances are observed.

18

25, 100}. We observe that larger ensembles warm up more slowly than small ensembles—confirming the intuition

that ensembles are particularly useful when many training instances are available and we are willing to wait for a

slower warmup. However, we note that the smaller 25-member ensemble achieves nearly identical warmup perfor-

mance to the single base learner (T=1) if we assume a parallel implementation (so that number of instances encoun-

tered is a fair measure of parallel time), but the 25-member ensemble achieves a strikingly lower error after warmup.

These comments rely heavily on the assumption of efficient parallel implementation—the 25-member ensemble is

nearly 25 times cheaper to train when implemented in parallel due to the highly parallel nature of ensembles. These

results suggest that a 25-member ensemble is equal or superior to a single tree for any but the very smallest antici-

pated numberN of training examples as long as the implementation is parallel. This comparison is useful in domains

(such as branch prediction) where the number of training instances is unknown.

The warmup comparison betweenT=25 andT=100 indicates that there is a warmup price to pay for large ensem-

bles—this price may be worth paying when large numbers of training instances are expected. It may be possible to

exploit the warmup properties of smaller ensembles along with the increased accuracy of larger ensembles by provid-

ing a dynamic mechanism for selecting how many ensemble members to use for each prediction.

5.2 Branch Prediction Results

Our empirical work in this section has the immediate goal of exploring the utility of online ensemble methods to im-

prove performance under time and space constraints when compared to single-learner methods. With this goal in

mind, we limit our current exploration of the branch prediction problem to the same feature space used by most cur-

rent state-of-the-art predictors (rather than exploit our linear growth in feature space dimension to consider additional

processor state). Future work will explore the use of additional processor state to exceed the state of the art in branch

prediction—this work will require an expensive empirical comparison to current techniques12 over large benchmarks

containing thousands of different branches (with millions of dynamic instances) to be considered convincing in the

architecture community, and will be targeted to the architecture rather than machine learning community.

5.2.1 EXPERIMENTAL PROCEDURE& DESCRIPTION OFDATASETS

Our branch prediction experiments were carried out by interfacing our tree-ensemble predictor to the trace-driven mi-

croprocessor simulator provided by the SimpleScalar 2.0 suite (Burger & Austin, 1997). We focused our study on

eight branches from three different benchmark programs in the SPEC95 benchmark suite (Reilly, 1995)—the

branches were selected because previous experiments indicated that single tree learners were performing significantly

12. Since simulations are carried out on serial machines the cost of running large simulations is proportional to the ensemble size and will take
months on current high-performance multiprocessors.

19

worse than Bayes optimally on these branches. Table 1 provides information about the benchmark programs used and

the branches selected from these benchmarks. The ideal-hybrid accuracy column presents for reference results for the

highly specialized “hybrid” predictor from computer architecture (McFarling, 1993)—it is not our immediate goal to

exceed these results with our general-purpose approach. Because the “hybrid” predictor scales exponentially in space

with number of features considered, we expect that our general-purpose approach will open new avenues of leverage

on the problem in the long term. The experiments we present are “interference-free”, meaning that each predictor is

only updated by and used to predict the outcomes of a single branch. In the “interference-free” setting the hybrid pre-

dictor is arguably among the best proposed predictors that restricts itself to using only local and global history bits as

features—this predictor is often used in the branch prediction literature to evaluate new designs and a variant has been

implemented in the Alpha 21264 microprocessor (Gwennap, 1996), making it arguably the state-of-the-art imple-

mented branch predictor. Many newer branch prediction architectures have been proposed, but almost all of these aim

at extending table-based methods to better deal with branch aliasing13 (e.g., the YAGS predictor (Eden & Mudge,

1998) and references therein) which is orthogonal to the focus of our current work.

We assigned each selected branch its own tree ensemble predictor. We then simulated the benchmark programs to

completion, arranging that when a selected branch was encountered (during prefetch) its ensemble was queried for a

prediction (using the current state to determine the branch features), and then later updated with the true branch out-

come when the branch is resolved.14 We counted the number of errors made by each ensemble and computed a final

percent error by dividing by the total number of occurrences of the branch. The percent errors given for the ideal-hy-

brid predictor were arrived at as follows: first, for a particular branch we simulated the hybrid predictor for all sizes

(measured in number of global and local history bits used to index the table) ranging from 2 to 50 (which was the

13. Branch aliasing is when a predictor is used to predict the outcomes and learn from branch instances from two different branch instructions.

14. In an out-of-order processor an instruction is referred to as resolved (committed) when the processor state has been updated with the result of
its execution. Otherwise the instruction is unresolved.

TABLE 1. Information about branches used in our experiments.

Branch Name # of Instances % Taken ideal-hybrid
%error

Benchmark Program

go-A 413,908 35% 5.3%
go-B 370,719 47% 20.3% go: This program plays the game of go.
go-C 407,380 33% 14.4%
go-D 451,042 57% 14.1%

li-A 2,653,159 20% 5.4% li: This program is a lisp interpreter
li-B 1,238,803 71% 1.6%

com-A 253,031 56% 5.9% com: This is the unix compress program

com-B 17,104 75% 3.1%

20

maximum size we could simulate due to memory limitations). We then recorded the error rate for each of these pre-

dictors and reported the smallest of these rates as the ideal-hybrid error rate. This results in an optimistic estimate of

how well a particular hybrid predictor would perform when encountering these branches.

5.2.2 RESULTS FORONLINE ARC-X4

We varied ensemble size (T) and tree depth (d) from 1 to 100 and from one to twelve, respectively. The features used

by the predictors included the most recent 32 global and 32 local history bits for a total of 64 binary features.

Basic Arc-x4 Performance.Figures 5a-5f give the percent error versus ensemble size for six branches, with curves

plotted for six different depth bounds (d). Each graph also shows (with a star) the percent error achieved by a single

online tree of unbounded depth and the error achieved by the ideal-hybrid predictor (with a dotted line). The curves in

these graphs exhibit some of the same trends as the results above for the machine learning benchmarks. In general as

T increases the errors tend to significantly decrease with respect to the error of single trees.

Particularly interesting are branches such asgo-A andgo-B where there is very little improvement for single

trees whend is increased from 12 to∞. By increasing the ensemble size, however, we are able to further decrease the

error. As was the case for thevowel andTTT2 benchmarks, the extra dimension of ensemble size appears to be cru-

cial to improving the error rate by exploiting additional space when using an online decision tree algorithm.

Small ensemble effects.When compared to the curves from the ML benchmarks the branch prediction error curves

exhibit more erratic behavior particularly for smalld andT values. One conjectured explanation for this erratic behav-

ior is that trees that are close to each other will see similar weighted input sequences and hence may form similar hy-

potheses. Some of these weighted sequences may be particularly hard for the trees and therefore we may get several

trees that are similarly bad. WhenT is small these trees are more likely to be able to incorrectly determine the predic-

tion. We note that when unweighted voting is used (not shown) the erratic behavior for smallT becomes worse. AsT

increases, however, the performance of unweighted voting and weighted voting are nearly identical.

Large ensemble effects.We note that in many cases there is a slight increase in error rate as we approach large en-

semble sizes. We attribute this increase to the fact that later ensemble members generally take a longer time to warm-

up than earlier members. For a fixed number of training instances it is possible that the later members of large ensem-

bles do not adequately warm-up. Despite this lack of warm-up, our scheme still uses the later members to make pre-

dictions—degrading the error rate for ensembles too large for the training set size. This hypothesis is based on

experience with the ML-dataset experiments which showed the error increased for the larger ensemble sizes when the

number of training instances was small, but the increase disappeared for a large enough training set (this information

can be inferred from Figure 4). These observations suggest future study of dynamic ensemble size selection.

21

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55
(b) go−B

%
 e

rr
or

T (ensemble size)

d = 1

d = 2

d = 4

d = 6
d =10

d = 12

State−of−the−art

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50
(c) go−C

%
 e

rr
or

T (ensemble size)

d = 1

d = 4

d = 6

d = 10

d = 12State−of−the−art

d = 2

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40
(d) go−D

%
 e

rr
or

T (ensemble size)

d = 1

d = 2

d = 4

d = 6d = 10

d = 12

State−of−the−art

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20
(e) li−A

%
 e

rr
or

T (ensemble size)

d = 1

d = 2

d =4

d = 6

d = 10

d = 12

State−of−the−art

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18
(f) li−B

%
 e

rr
or

T (ensemble size)

d = 1

d = 2

d = 4

d = 6,10 & 12

State−of−the−art

Figure 5: Percent Error vs. Ensemble Size for sixhard branches.Each curve corresponds to ensembles of varying size with
the same depth limit. The stars on each graph show the error achieved by a single tree with unbounded depth.

0 20 40 60 80 100
0

5

10

15

20

25

30

35
(a) go−A

%
 e

rr
or

T (ensemble size)

d =1

d = 2
d = 4

d = 6

d = 10

d = 12

State−of−the−art

ideal-hybrid

ideal-hybrid

ideal-hybrid

ideal-hybrid

ideal-hybrid

ideal-hybrid

22

Comparing to ensemble size one.The graphs in Figure 5 all exhibit a similar trend with respect to increasingd. For

smalld, large ensembles are needed to see much benefit, but the eventual benefits are larger (than whend is large).

However, every curve shows peak performance at an ensemble size larger than one. The stars on the graphs showing

the best single tree performance indicate that bounded-depth ensembles can be used to outperform single trees of any

depth for every branch tried exceptli-B.

Moreover, even if there were no such advantage, our examination below of the performance obtained for a fixed

space usage indicates that ensembles of smaller trees outperform single deep trees with the same space requirement.

Achieving same error using less space.Note that in the branch prediction domain we are assuming a hardware im-

plementation. For such implementations, it is not easy to dynamically allocate tree nodes15—thus, we must provide

space for full bounded-depth decision trees. Therefore, our predictors necessarily grow exponentially with the tree-

depth bound. This implies that doubling the number of trees in an ensemble is roughly size-equivalent to increasing

the depth bound of the trees in the ensemble by one. Using ensembles allows us to more effectively use the limited

space by trading off depth for more trees.

The graphs in Figures 6a-6f show the percent error versus the logarithm of the ensemble tree-node count, giving

a basis for selecting d and T to optimize accuracy when facing space constraints. Each curve corresponds to ensem-

bles with a particular depth-bound d. An ensemble of T base learners of bounded-depth d has T · (2d+1 – 1) non-leaf

nodes. Here we assume the number of nodes is linearly related to the physical size of an ensemble when implemented

in hardware (e.g., on a silicon microchip).

Note that asd increases the ensemble curves shift to the right. Generally for a fixed number of nodes the best per-

cent error is achieved by an ensemble withT greater than one. This observation is strongest for thego branches and

weakest for theli-A branch. For example on each graph consider ensembles with approximately 1000 nodes, and de-

termine which depth-boundd gives the lowest error—the smallerd values correspond to larger ensembles (to get to

1000 nodes). It is clear that for five of the six branches, ensembles with depth four (and thusT=66) achieve the best

percent error when we are constrained to 1000 nodes. The graphs indicate that in many cases when facing size con-

straints, ensembles are preferable to single trees—given any space constraint larger than 400 nodes (and often much

less), all of our branches show the best performance for an ensemble size larger than one.

Now suppose that instead of a size constraint we are given a maximum percent error constraint. From these

graphs we can see that using ensembles often allows us to achieve a particular percent error using a much smaller

15. Note that a software implementation need only allocate space for nodes that are actually encountered during learning. This technique would be
very difficult to implement in hardware. A similar space-equivalence study could be conducted for the software implementation, but we have
not done so here.

23

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35
(a) go−A

%
 e

rr
or

of Nodes

d = 8

d = 4 d = 6

d = 10

d = 12

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

40

45

50
(b) go−B

%
 e

rr
or

of Nodes

d = 4
d = 6

d =8

d = 10

d = 12

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35
(c) go−C

%
 e

rr
or

of Nodes

d = 4

d = 6

d =8

d = 10

d = 12

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

40
(d) go−D

%
 e

rr
or

of Nodes

d = 4
d = 6

d =8 d = 10

d = 12

10
1

10
2

10
3

10
4

10
5

10
6

0

2

4

6

8

10

12

14
(f) li−B

%
 e

rr
or

of Nodes

d = 4

d = 6
d =8

d = 10 d = 12

10
1

10
2

10
3

10
4

10
5

10
6

0

2

4

6

8

10

12

14

16
(e) li−A

%
 e

rr
or

of Nodes

d = 4

d = 6

d =8

d = 10

d = 12

Figure 6: Percent Error vs. Tree Nodes Allocated for sixhard branches.Each curve corresponds to ensembles of varying size
made up of trees with the same depth on every path (our hardware implementation requires static tree node allocation).

24

number of nodes by using large ensembles of small trees rather than smaller ensembles of larger trees (in many cases,

a single tree cannot achieve the desired error at any depth). All of these observations suggest that online boosting may

be particularly advantageous in online domains that place tight space constraints on the predictors.

Poor performance oncom benchmark branches. Two of the eight branches we studied showed relatively poor

performance for Arc-x4 ensembles. Figures 7a and 7b show the error rate versusT plots for thecom-A andcom-B

branches. The error rates for com-A tend to increase for the smaller values ofT and then begin to decrease asT be-

comes larger. The error reduction achieved for these large values ofT is relatively small compared with the other six

branches. These results are particularly interesting because we know a much better error rate is possible since the ta-

ble-driven “hybrid” branch predictor used in computer architecture today (see (Fern & Givan, 2001) for a description

of the hybrid predictor) achieves a much better error rate as indicated on the graph. Currently we do not have an ade-

quate explanation for the poor performance on thecom-A branch, however the poor performance for the unbounded-

depth single base learner (shown by the star on the graph) suggests that this concept is not well captured by the online

decision trees used as base learners here (the same explanation applies as well forcom-B). Thecom-B branch shows

the opposite trend: the error rate exhibits a bowl shaped trend and for large values ofT is actually larger than the error

rates of single trees. Again we know a much better error rate is possible as demonstrated by the ideal-hybrid predictor

results. Thecom-B error curve suggests that the larger ensembles have not had enough training data to warm up (see

Figure 4). Table 1 shows that the number of occurrences ofcom-B is an order of magnitude less than the other

branches suggesting the ensembles have not observed enough examples to stabilize. Further training data on the con-

cept would likely improve the larger-ensemble performance; however, it appears that the ideal-hybrid performance is

0 20 40 60 80 100
0

5

10

15

20

25

30

(a) com−A

%
 e

rr
or

T (ensemble size)

d = 2

State−of−the−art

d = 4,6,10 & 12

0 20 40 60 80 100
0

5

10

15

20

25

(b) com−B

%
 e

rr
or

T (ensemble size)

d = 2

State−of−the−art

d = 4,6,10 & 12

Figure 7: % Error vs. Ensemble Size for two branches where performance was poor.Each line on a curve corresponds to
ensembles that all use the same depth limit, as labelled.

ideal-hybrid

ideal-hybrid

25

again out of reach of this approach.

Comparison to ideal-hybrid branch predictor. We wish to emphasize that the branches used in these experiments

were selected because of the poor performance of single base learners in our previous experiments (not shown here),

as compared to the “hybrid” branch predictor. On many branches not shown, single decision-tree base learners can

equal or exceed the performance of the hybrid predictor. Considering branch predictor performance averaged over en-

tire benchmark programs with millions of different branches (one target concept for each), the single base-learner is

only slightly inferior to the hybrid predictor. It is our expectation that incorporation of ensemble methods into branch

prediction can lead to better performance than the hybrid predictor. It is not our goal here to demonstrate this im-

proved performance, but rather to explicate the methods and effects of ensembles in online settings. Clearly evaluat-

ing branch predictors across large benchmarks is extremely compute-intensive.16

We also note again that the hybrid predictor scales exponentially in space usage with the number of branch fea-

tures considered. As a result, practical instances of this predictor typically use a very small number of features (less

than sixteen bits out of thousands of bits of processor state), and are highly specialized to using those features well.

Because our ensemble/decision-tree approaches avoid exponential scaling in space usage, we hope to dramatically

improve branch prediction performance in future studies by cheaply incorporating a larger portion of processor state

in learning and making predictions (our approach scales linearly in the number of features considered).

6 Online Decision-tree Induction

In this section we describe the novel online decision-tree learning algorithm (a variant of ID4) that we used as the

base learner in our ensemble experiments—our extensions to ID4 prove important to single-tree accuracy and more

importantly critical to ensemble accuracy. Empirical results shown in Section 7 suggest that smooth and rapid war-

mup behavior is important for the base learners in our ensembles, and that ID4 without our extensions often lacks

smooth rapid warmup.

Most decision-tree algorithms are designed for offline settings, as in the well-known ID3 algorithm (Quinlan,

1986); however, there has also been previous research into online decision tree algorithms, with two key proposed

methods being ID5R (Utgoff, 1989) and ID4 (Schlimmer & Fisher, 1986). ID5R is an online algorithm that is guaran-

teed to produce the same tree as offline ID3 when applied to the same training instances. To guarantee ID3-equiva-

lence ID5R must store all of the previous examples, and restructure the tree as new examples arrive. Empirical work

has demonstrated that the ID3-equivalent tree produced by ID5R often outperforms the ID4-generated trees that avoid

16. Since simulations are carried out on serial machines the cost of running these simulations is proportional to the ensemble size and will take
months on current high-performance multiprocessors.

26

storing instances, given a limited amount of training data (Utgoff, 1989). In this sense, ID5R online learners “warm

up” more quickly than ID4 learners. In online domains where it is not practical to store all of the training instances,

some mechanism must be used to select what instances to store for ID5R, and ID3-equivalence is lost—in such do-

mains it is not clear if the advantages relative to ID4 persist.

While ID5R avoids the full cost of running the offline ID3 algorithm as every instance arrives, the tree restructur-

ing operations that must be supported can be expensive and somewhat complex for use in resource-bounded online

settings. In addition, although the recursive restructuring operation is straightforward to implement in software, our

motivating domain requires a hardware implementation that appears quite difficult for ID5R—the same can be said

for the related and more recent ITI algorithm (Utgoff et al., 1997). For this reason we chose to use a variant of the

simpler online decision tree algorithm ID4, described below. ID4 does not store training instances and does not per-

form any complicated tree restructuring. Below we describe ID4 and our extensions to it.

6.1 The ID4 Online Decision-tree Induction Method

We assume familiarity with the offline top-down-tree-induction approach of ID3 (Quinlan, 1986). A key difference

between ID3 and ID4 is that ID4 incrementally maintains an estimate of the split criterion17 of each feature at each

tree node as it observes new training instances. ID3 on the other hand calculates the split criterion for each feature at

each node once, based on a fixed offline set of training examples. Of the commonly used split criteria, accuracy is by

far the simplest to compute incrementally (particularly from a hardware perspective). Because our motivating appli-

cation requires a hardware implementation, we use accuracy as the split criterion in this research.

In order to dynamically monitor the usefulness of each candidate split feature at each tree node and dynamically

select the best feature over time, ID4 maintains certain data structures at each tree node (in addition to child-node

pointers). For each nodeN, these data structures include the observed split criterion values for each featurei, denoted

N.SC[i], the currently selected split feature indexN.SplitFeature(an element of {1, ...,m} wherem is the number of

features), and a leaf indicatorN.leaf?which is true if the node is a tree leaf. Given values for these data structures and

a particular unlabeled query, the prediction returned is the majority class of the leaf reached by starting at the root

node and following a path down the tree determined by the currently selected split features at each node encountered

in combination with the features of the query.

Figure 8 shows pseudocode for a weighted version of the original ID4 online decision-tree update algorithm. A

decision tree is updated by invoking this procedure with the root node of the tree, a training instanceI, a weight for

the training instancew, and a depth limitd. Unbounded-depth trees can be induced by setting the depth limit equal to

17. The split criterion of a feature at a tree node assigns a numerical value to the feature based on some estimate of the desirability of splitting
based on that feature at that tree node—e.g. information gain, gini index, or prediction accuracy.

27

the number of features. The procedure recurses through the tree, updating the split criterion information stored at

each node and selecting new split features and/or pruning when indicated. The algorithm proceeds as follows.

• (lines 1–2) First, the split criterion information stored at the root node is updated based on the new training
instance and the weight. The functionUpdateSplitCriterion(N, I, w, i) incrementally maintains the valueN.SC[i]
based on instanceI and weightw—for accuracy, this amounts to updating a weighted count of the number of cor-
rect predictions made by featurei at nodeN over time (as well as the total weight of instances encountered atN).

Figure 8: Weighted ID4 online decision tree update procedure (without extensions).

Figure 9: Extended version of the weighted ID4 online decision tree update procedure.

Procedure: ID4Update2 (root, I, w, d) ;; comments highlight differences from Figure 8
Input:
 subtree root node root

new training instance
 training instance weight w
 depth limit d

1. for each , ;; feature m+1 is the subtree monitoring feature
2. do root.SC[i] = UpdateSplitCriterion (root, I, w, i)
3. root.leaf? = LeafTest2 (root, d) ;; LeafTest2must implement post-pruning by

;; subtree monitoring (see text).
4. ;; Note: we continue updating even if root is a leaf for

;; predictions in order to implement advanced warmup
5. newSplit = indexOfMax (root.SC [1], ..., root.SC [m+1])
6. if () and () ;;don’t change split feature if subtree is winning
7. then { root.splitFeature = newSplit
8. PruneSubtrees (root) }
9. if (depth(root) < d) ;; root.leaf? indicates leaves for prediction, so

then ID4Update2 (SelectChild (root, I), I, w, d) ;; termination here is based directly on depth

I x c,〈 〉=

i 1 2 … m m 1+, , , ,{ }∈

newSplit root.splitFeature≠ newSplit m 1+≠

Procedure: ID4Update (root, I, w, d)
Input:
 subtree root node root

new training instance
 training instance weight w
 depth limit d

1. for each , ;; possibly executed in parallel
2. do root.SC [i] = UpdateSplitCriterion (root, I, w, i) ;; update split criterion for feature i
3. root.leaf? = LeafTest (root, d) ;; determine if root is a leaf
4. if (NOT root.leaf?) ;; stop if root is a leaf
5. then newSplit = indexOfMax(root.SC[1], ..., root.SC[m]) ;; find the best split feature
6. if () ;; if the split feature changed
7. then { root.splitFeature= newSplit
8. PruneSubtrees (root) } ;; discard the subtrees when changing split feature
9. ID4Update (SelectChild (root, I), I, w, d) ;; update the appropriate child

I x c,〈 〉=

i 1 2 … m, , ,{ }∈

newSplit root.splitFeature≠

28

• (line 3) Next, the functionLeafTest determines whether the node should be treated as a leaf or a decision node. In
the original version of ID4 (Schlimmer & Fisher, 1986)LeafTest returns true if the feature with the best split cri-
terion passes anχ2-test of independence and false otherwise—this is the pre-pruning mechanism used by ID3. In
Utgoff’s (1989) version of ID4 there is no pruning andLeafTest is true when all of the instances observed at the
node have the same class and false otherwise. In comparing the original ID4 to our extended ID4 (for the results
shown in Section 7, we used Utgoff’s version of ID418). In bounded-depth settings, a node is also determined to
be a leaf if its depth is equal to the specified depth limit.

• (line 4) Next, if theroot node was determined to be a leaf then the update procedure is finished.

• (line 5) Otherwise, the procedure finds the feature (newSplit) with the best split criterion valueroot.SC[newSplit].
The functionindexOfMax() accepts a sequence of split criterion values and returns the index of the best one.

• (lines 6–8) If the best feature is different from the current split feature then the split feature is changed and the
subtrees are pruned. The functionPruneSubtrees(root) deletes both subtrees (if any) of noderoot.

• (line 9) Finally, if the node is not a leaf then the update routine is recursively called to update either the left or right
subtree of the root based on the value of the split feature in the training instance. The functionSelectChild(root, I)
selects the appropriate child, creating and initializing that child if it does not already exist.

A critical feature of the ID4 algorithm is its pruning of subtrees whenever a split feature changes. The reason for this

pruning is that the split criterion information maintained in the subtree nodes is conditioned on the value of the cur-

rent root split feature. When the root split feature changes, the subtree split criterion data is no longer conditioned on

the correct feature. The ID4 algorithm prunes the subtrees rather than use the incorrect split criterion data. In domains

where two or more features at a particular node have similar split criterion values, the split feature is likely to fre-

quently switch between the competing features—as a result the subtrees will be repeatedly pruned. Generally we ex-

pect such split feature switching to occur most frequently when a node has observed a “small” number of examples.

This is due to the high variance in the split criterion estimates at that point. As more examples are observed the vari-

ance decreases and if there is a unique best feature it will eventually prevail over the others. But until that point the

subtrees of a node may be pruned at anytime by ID4 and the information from all previous training examples will be

lost. This is one reason ID4 often takes a longer time to “warmup” than ID5R

6.2 Extensions to ID4

Here we describe three extensions to ID4 that improved its performance significantly in both single tree and ensemble

experiments (see Section 7). The pseudocode for our extended ID4 is shown in Figure 9 and described below.

Advanced warmup (AW). In the ID4 algorithm when a node is a leaf, the node has no children and hence no data is

sent below it during a tree update. This means that after a node selects a split feature (i.e., becomes a non-leaf) its

18. Preliminary experiments did indicate that theχ2-test pruning mechanism performed similarly to the pruning at class purity in Utgoff’s version;
however, a full comparative evaluation ofχ2 pruning was beyond our means because it requires careful study of the ideal confidence parameter
setting as well as storing a larger amount of data at each tree node and additional floating point calculations (this data storage and calculation is
repeated millions of times over in our experiments—essentially once per feature per tree-node per ensemble-member per parameter setting per
experiment).

29

children must begin learning from scratch. One way we extend ID4 is to allow foradvanced warmup—we allow

nodes that behave as leaves during prediction to have descendents that are continually learning from examples (even

though they are not used for predictions). Thus, when a leaf node becomes a non-leaf node its subtrees have already

had the opportunity to “warmup”.

To implement advanced warmup we make a couple of changes to ID4. First, leaf nodes will have split features—

simply the feature with the best split criterion value. These split features are used only during tree updates and not

when making predictions. Additionally, we assume bounded-depth trees, and will always store a full tree of the max-

imum specified depth.19 To make a prediction with the tree a path from the root is followed based on the split features

at each node until a node marked as a leaf is reached—at this point a prediction is made. To update the tree a training

instance is sent down a single path (based on the split feature at each node) from the root to a node at the maximum

tree depth. The pseudocode in Figure 9 reflects this change in the absence of the conditional statement in line 4 (com-

pare Figure 8), so that the extended ID4 is called recursively until the maximum depth is reached. For each node

along the path the split criterion data is updated (line 2), the leaf bit indicator is set as appropriate (line 3), and the

split feature is selected (line 5). Note that when the selected split feature at a node changes, the subtrees of the node

are pruned—the functionSelectChild will automatically create those subtrees again as needed.

Post-pruning by subtree monitoring (PP).Recall that the decision to make a node a leaf in the original ID4 is de-

termined by aχ2-test on a potential split feature. This form of pruning is known aspre-pruningsince it makes a prun-

ing decision before subtrees are constructed. When using advanced warmup, however, it is possible to monitor the

performance of subtrees and to use that information to decide whether to prune or not. In the decision tree literature

this is known aspost-pruning. To implement post-pruning, we maintain at each node an estimate of the split criterion

value that would be obtained making predictions with the subtrees. For notation uniformity, we introduce the notion

of a subtree monitoring “feature”—this is an additional instance “feature” (with indexm+1) given by the prediction

of the subtrees when selected according to the current split feature.The split criterion value of this feature is then de-

noted byroot.SC[m+1], and is set in line 2 by treating the prediction returned by the selected subtree as featurem+1.

Unlike the other instance features, the value of the subtree monitoring “feature” is dependent on the tree node

(and the tree itself)—hence the scare quotes on “feature”. Specifically the value of a node’s subtree monitoring fea-

ture is found by selecting the appropriate subtree of the node based on the current split feature value (even nodes

marked as leaves have split features) and then querying that subtree for a prediction—i.e., the subtree monitoring fea-

ture is set equal to the prediction of the first leaf node encountered in the selected subtree. The functionUpdateSplit-

Criterion must compute the subtree monitoring feature when called with indexm+1. The functionLeafTest2(node, d)

19. Actually, we only create a given node when there is some training instance that will need to update that node—this has allowed us to conduct
experiments up to a depth bounds of 64. However, this approach is difficult to implement in silicon for our branch prediction application.

30

implements post-pruning by subtree monitoring—this function returns true if and only if the subtree-monitored crite-

rion valuenode.SC[m+1] is worse than the criterion value obtained by treating the node as a leaf that uses the major-

ity class to make a prediction20, otherwise it returns false and the node is a decision node. This pruning mechanism is

considerably less expensive to implement than theχ2-test when accuracy is used as the criterion. Post-pruning by sub-

tree monitoring is similar in spirit to the virtual pruning mechanism used in the ITI incremental decision tree induc-

tion algorithm (Utgoff et al., 1997). In ITI, previous training instances are stored and used to compute a pruning

heuristic based on minimum description length—when a node is made a leaf its subtrees are not destroyed and hence

it is referred to as a virtual leaf, subsequent pruning decisions may take these virtually pruned subtrees into account.

Feature-switch suppression by subtree monitoring (FS).Our third extension attempts to reduce the detrimental

effect that subtree pruning has in the original ID4 algorithm. Recall that ID4 prunes the subtrees of a node whenever

the current split feature at the node changes. It is possible that the pruned subtrees are performing well and that the

leaf node resulting from pruning will have much lower accuracy—nevertheless these subtrees are discarded because

the current split feature is slightly worse than the newly selected feature (using the split criterion). If a node has sev-

eral features with similar split criterion statistics, this pruning can occur repeatedly, preventing the use of deeper and

more accurate subtrees. We address this problem by refusing to change the split feature of a node unless the candidate

new split featurei is better than the subtree-monitoring feature, comparing split criterion values (i.e., comparing

root.SC[i] and root.SC[m+1]). In other words, we refuse to adopt a new split feature if the predictions given by the

current subtrees are preferable to the predictions of the candidate feature as a leaf—this extension suppresses some

feature switching that would otherwise occur. This extension to ID4 is shown in the more restrictive conditional test

in line 5 of Figure 9 (compare Figure 8). With the stronger condition the split feature is changed and the subtrees are

pruned only when the new split feature has a higher split criterion value than that of the subtree-monitoring feature.21

7 Empirical Results Evaluating Our ID4 Extensions

Here we show empirical results comparing the performance of different ID4-based base learners when training online

ensembles using Arc-x4—these results show a significant improvement in accuracy for all ensemble sizes (including

single trees) when ID4 is modified with our suggested extensions, and indicate that our extensions are particularly im-

portant for ensemble performance. We include results that suggest that Arc-x4-ensemble performance critically relies

20. This requires tracking the criterion value of the majority class prediction at each node. We omit these straightforward details for clarity.

21. There may be cost to adopting the FS extension in that it is possible to select a feature that does not optimize the split criterion before the split
criteria statistics being collected have converged, and then refuse to later switch to a locally better feature because the subtrees have developed
enough to add enough accuracy that the locally optimal feature cannot beat them. We expect that this variant of ID4 is significantly less likely
to converge to the tree produced by ID3 on the same data in the infinite limit. Our empirical data indicate that the advantages of FS outweigh
this possible disadvantage in our domains.

31

on smooth and rapid warmup behavior in the base learners. The ID4 variants we consider include different combina-

tions of the extensions described above in Section 6. The experimental protocols used here, as well as many details of

the experimental benchmarks and methods, are all the same as those in Section 5.

In the following we will refer to the ID4 algorithm described by Utgoff (1989) as simply ID4 (i.e., this algorithm

differs from the original version of ID4 (Schlimmer & Fisher, 1986) by replacing the forward pruningχ2-test with a

test for class purity). The algorithm is described in Section 6.1, and accuracy is used as the split criterion. We will ab-

breviate the three ID4 extensions by:AW for advanced warmup, PP for post-pruning by subtree monitoring, and FS

for feature-switch suppression by subtree monitoring. In our experiments we will distinguish between different com-

binations of these extensions by showing the abbreviations for the included extensions (e.g., the version of ID4 that

includes all three extensions as given by the pseudocode in Section 6.2, Figure 9 will be referred to as

ID4(AW,PP,FS)). The experimental results we show are for pure ID4, ID4(AW,PP), ID4(AW,FS), and

ID4(AW,PP,FS). We found that the performance of ID4 and ID4(AW) were not significantly different and likewise for

ID4(FS) and ID4(AW,FS); also note that no ID4(PP) experiments were run since the PP extension requires AW.

Figures 10a-10i show the percent error versus ensemble size (T) curves for nine of our benchmarks. The go-D

benchmark results are not included but are similar to the go-C results. Each graph has four curves that correspond to

ensembles trained with the online Arc-x4 algorithm using ID4 as the base learner with four different combinations of

the extensions as labelled on the graph. A depth limit of twelve was used for all of these results.

Single-tree performance.The leftmost point on each curve shows that the single-tree performance with our exten-

sions is moderately but significantly better than the unextended algorithm, and indicates that the feature-switch sup-

pression (FS) extension is particularly important in single tree learners. In all of the single-tree experiments ID4 is

outperformed by ID4(AW,PP,FS)—typically the extensions reduce the single tree percent-error by a fifth. Also, in

most cases the single tree performance of ID4(AW,FS) is very near to that of ID4(AW,PP,FS) and is always better

than ID4(AW,PP). This supports our claim that feature-switch suppression (FS) is crucial to improving the single-tree

performance—much more so than the post-pruning (PP) extension. Apparently discarding subtrees due to changing

split features (the issue addressed by the FS extension) significantly degrades single-tree performance.

Performance in online Arc-x4 ensembles.When considering ensembles of ID4 base learners, the curves in

Figure 10 show a substantial benefit for the combination of all three extensions, revealing that the post-pruning PP ex-

tension yields benefits in ensembles that are not seen in single base learners. Compare the ID4 and ID4(AW,PP,FS)

curves—in many cases when ID4 is used as the base learning algorithm very little benefit is observed by increasing

the ensemble size and in some cases the performance degrades with ensemble size even for small sizes. In contrast,

ID4(AW,PP,FS) nearly always yields substantial improvements in accuracy with ensemble size. Also observe that in

most cases for small ensembles feature-switch suppression (FS) is more important than post-pruning (PP), but as the

32

ensemble size is increased ID4(AW,PP) usually outperforms ID4(AW,FS). Not only is the fully extended ID4 usually

the best curve shown, we note that often a single ID4(AW,FS,PP) tree outperforms substantial ensembles of the other

variants. In other cases (e.g.TTT1, TTT2), the extensions are of relatively little value to single trees, but prove criti-

cal to achieving low percent error with ensembles—often these benefits are seen only with post-pruning (PP).

Why do the extensions help?We hypothesize that one way the PP and FS extensions improve ensemble perfor-

mance is that they combine to produce trees that warmup more quickly and more smoothly. Warmup performance is

particularly important in ensembles because later ensemble members already pay a warmup-rate penalty because they

0 10 20 30 40 50
0

5

10

15

20

25

T (ensemble size)

%
 e

rr
or

(a) multiplexor: Testing Error

ID4

ID4(AW,PP,FS) & ID4(AW,FS)

ID4(AW,PP)

0 10 20 30 40 50
0

5

10

15

T (ensemble size)

%
 e

rr
or

(b) TTT1: Testing Error

ID4

ID4(AW,PP,FS) & ID4(AW,FS)

ID4(AW,PP)

0 10 20 30 40 50
0

5

10

15

20

25

30

T (ensemble size)

%
 e

rr
or

(c) TTT2: Testing Error

ID4

ID4(AW,PP,FS)

ID4(AW,PP)

ID4(AW,FS)

0 10 20 30 40 50
0

5

10

15

20

25

30

T (ensemble size)

%
 e

rr
or

(e) go−A

ID4

ID4(AW,PP,FS)

ID4(AW,PP)

ID4(AW,FS)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

T (ensemble size)

%
 e

rr
or

(f) go−B

ID4

ID4(AW,PP,FS)

ID4(AW,PP) ID4(AW,FS)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

T (ensemble size)

%
 e

rr
or

(g) go−C

ID4

ID4(AW,PP,FS)

ID4(AW,PP)
ID4(AW,FS)

0 10 20 30 40 50
0

2

4

6

8

10

12

14

T (ensemble size)

%
 e

rr
or

(h) li−A

ID4

ID4(AW,PP,FS)

ID4(AW,PP)

ID4(AW,FS)

0 5 10 15 20
0

1

2

3

4

5

6

7

8

T (ensemble size)

%
 e

rr
or

(i) li−B

ID4

ID4(AW,PP,FS)

ID4(AW,PP)

ID4(AW,FS)

0 10 20 30 40 50
0

5

10

15

20

25

T (ensemble size)

%
 e

rr
or

(d) vowel: Testing Error

ID4

ID4(AW,PP,FS)

ID4(AW,PP)

ID4(AW,FS)

Figure 10: Final testing percent error vs. ensemble size forArc-x4 using different ID4-variants as base learners.Each
graph is labelled by the particular benchmark problem generating the curves. Each curve corresponds to ensembles ranging in size
from 1 to 50 trained using Arc-x4 and the indicated ID4-variant. Abbreviations (AW, PP, and FS) are defined in the text.

33

do not see a stable weighted distribution of training instances until the earlier members converge. We note that online

settings often naturally include concept drift, since a dynamic process is typically generating the training data—war-

mup is also naturally important in online settings, as queries are typically interleaved with training data so that poor

warmup performance directly translates to poor performance on those interleaved queries.

Clearly we expect that if individual ensemble members warmup faster, then the ensemble as a whole will also

warmup faster (particularly for ordered-weighting schemes such as Arc-x4). The smoothness of ensemble member

warmup is also likely to impact the ensemble performance. Note that when subtrees are discarded by ID4 the tree per-

formance may abruptly jump. Such jumps in accuracy directly translate to “jumps” in the weighted distribution of ex-

amples seen by subsequent ensemble members (whose instance weights depend on the performance of previous

members), and hence may prevent or delay convergence of these subsequent members. Our extensions are specifi-

cally designed to reduce the frequency of such subtree pruning. Next, we provide evidence to support these ideas.

To provide such evidence, we show in Figure 11 the unweighted error rate of selected individual ensemble mem-

bers over time. Note that we are not concerned here with the absolute error of these trees (a tree may have a large ab-

solute error even though the tree contributes well to the ensemble) but rather with the rates and qualitative smoothness

of their convergence to stable hypotheses—a fluctuating absolute error rate suggests failure to converge either due to

a fluctuating local concept or to a poorly converging base learner, thus the absolute error rate gives some indication of

ensemble member convergence.

The results in Figure 11 show, first, that ID4 without all of our extensions gives a percent error that often varies

sharply as instances are encountered. More significantly, the results show a strong correlation between erratic (high

variance) error rate and poor rate of convergence (relative to other variants). In other words, on different benchmarks,

different base learner variants show this erratic error rate and poor convergence (generally together). All variants

show slower convergence in later ensemble members—in erratic variants this results in error rates that do not appear

to converge, or converge so slowly that the error at the end of the experiment is similar to that at the beginning. The

variant with our extensions is generally much smoother than the other variants and never much more erratic, leading

to the expectation that it will perform better in ensembles than the other variants. In particular, we note that forTTT1,

the variants including FS both perform well in ensembles (see Figure 9) and give individual members that perform

smoothly and warmup quickly—in contrast, the variants without FS perform poorly in ensembles and give individual

members that perform erratically and converge poorly, particularly as position in the ensemble increases. Similar

trends appear for the other two benchmarks, except that in those cases both the PP and FS extensions appear neces-

sary for smooth warmup and consequent convergence in later ensemble members. Thevowel benchmark is the least

clear, and further study will be needed to fully understand the trends manifested forvowel—nevertheless, the exten-

sions appear to increase the smoothness of the error rate curve and the rate of convergence for ensemble members in

34

this benchmark too. The plots (not shown) formultiplexor strongly resemble those forTTT1.

From the above observations we see there is a correlation between the qualitative warmup characteristics of the

individual ensemble members and the overall ensemble performance, and that our extensions appear to provide the

desired qualitative characteristics (smooth, rapid convergence). It is likely that the inclusion of the feature-switch sup-

pression (FS) extension improves smoothness over time by reducing feature switching and hence subtree pruning. We

0 1 2 3 4 5

x 10
4

10

15

20

25

30

35

40

45

50
(b) TTT1 (T=10)

N (Number of Training Instances)
%

 e
rr

or

ID4(AW,PP,FS)
ID4

ID4(AW,PP)

ID4(AW,FS)

0 1 2 3 4 5

x 10
4

10

15

20

25

30

35

40

45

50
(c) TTT1 (T=20)

N (Number of Training Instances)

%
 e

rr
or

ID4(AW,PP,FS)

ID4

ID4(AW,PP)

ID4(AW,FS)

0 1 2 3 4 5

x 10
4

20

22

24

26

28

30

32

34

36

38
(d) TTT2 (T=1)

N (Number of Training Instances)

%
 e

rr
or

ID4(AW,PP,FS)

ID4

ID4(AW,PP)

ID4(AW,FS)

0 1 2 3 4 5

x 10
4

15

20

25

30

35

40

45

50
(e) TTT2 (T=10)

N (Number of Training Instances)

%
 e

rr
or

ID4(AW,PP,FS)

ID4 & ID4(AW,FS)

ID4(AW,PP)

0 2 4 6 8 10

x 10
4

25

30

35

40

45

50
(i) vowel (T=20)

N (Number of Training Instances)

%
 e

rr
or

ID4(AW,PP,FS)

ID4, ID4(AW,PP) & ID4(AW,FS)

0 1 2 3 4 5

x 10
4

10

15

20

25

30

35
(a) TTT1 (T=1)

N (Number of Training Instances)

%
 e

rr
or ID4(AW,FS)

ID4 & ID4(AW,PP)

ID4(AW,PP,FS)

0 1 2 3 4 5

x 10
4

15

20

25

30

35

40

45

50
(f) TTT2 (T=20)

N (Number of Training Instances)

%
 e

rr
or

ID4(AW,PP,FS)

ID4 & ID4(AW,FS)

ID4(AW,PP)

0 2 4 6 8 10

x 10
4

25

30

35

40

45

50

55
(h) vowel (T=10)

N (Number of Training Instances)

%
 e

rr
or

ID4(AW,PP,FS)

ID4, ID4(AW,PP) & ID4(AW,FS)

0 2 4 6 8 10

x 10
4

10

15

20

25

30

35

40
(g) vowel (T=1)

N (Number of Training Instances)

%
 e

rr
or

ID4(AW,PP,FS)

ID4

ID4(AW,PP)

ID4(AW,FS)

Figure 11: Comparing base learners—% test error for individual ensemblemembers versus time.Graphs are labelled at
the top with benchmark and the position in the ensemble of the member being measured.The curves show the testing percent error
for the indicated ensemble tree trained using Arc-x4 with the indicated ID4-variant as the base learner versus the number of train-
ing instances. Abbreviations (AW, PP, and FS) are defined in the text. The graphs formultiplexor (not shown) resemble those for
TTT1. Note: our interest here is in the qualitative behavior—to best show this we have varied the axis scales across the graphs to
optimally display the qualitative behavior (each row uses a common x-axis scale, however).

35

also suspect that the inclusion of the post-pruning by subtree monitoring (PP) extension improves the effectiveness of

the FS extension in suppressing feature switching as follows. Recall that the FS extension monitors the performance

of the subtrees at a node and only changes the split feature if the accuracy of some other feature is better than that of

making predictions with the subtrees. When the PP extension is not included it is likely that during early stages of

learning the subtree performance will look bad (since the subtrees are being used before they are fully warmed up) re-

sulting in a feature switch in spite of the FS extension. The PP extension can correct this problem by only using the

portions of the subtrees that have warmed up enough to give a predictive advantage—dynamically extending these

portions as the subtrees warm up. It is unclear why in many cases only the FS extension is needed for single trees (see

the discussion of Figure 10), while the PP and FS extensions are both crucial to improving ensemble performance—

we hypothesize that the benefits of PP are emphasized in the presence of drifting distributions over instances. Because

we are generating our ensembles in parallel, later ensemble members see a drifting weighted instance distribution as

the earlier members converge, and so can be said to be facing concept drift even when the domain itself has none.

Evidence favoring parallel-generation multiple-update ensemble creation.Our central purpose for showing the

results in this section is to demonstrate the advantages of using our three extensions to the original ID4 online deci-

sion-tree algorithm. However, the results in Figure 11 also provide evidence to support our expectation that parallel-

generation multiple-update ensembles warm up with fewer training examples than sequential-generation ensembles.

There are many ways to design sequential generation approaches, so the approach we discuss here could be in some

sense a “straw man”; however, it is perhaps the most obvious method. We consider a sequential method that trains

each tree until the error reduction with new training instances is negligible— the graphs in Figure 11 then allow us to

estimate how many training instances would be required to train the first ensemble member (in three different bench-

marks). For example, in Figure 11 (a) we might conclude that a simple sequential-generation approach would require

at least 5000 examples to train the first ensemble member to convergence. If we assume later ensemble members take

this same number of examples (each) to train, we can estimate that 100,000 examples will be required to train 20 en-

semble members to convergence during sequential generation. In contrast, the parallel-generation approach shown in

Figure 11(c) achieves convergence in ensemble member 20 after about 40,000 examples.

8 Future Work

Parallel versus sequential generation.Above we distinguished between parallel-generation and sequential-genera-

tion ensemble approaches—we suggested that by taking a parallel approach it may be possible to improve ensemble

warmup times, which is a practical concern in many online problems. In this work, however, we evaluated only the

parallel-generation approach, and thus did not attempt to compare the approaches empirically. A related issue we

36

would like to investigate in the future is the use of parallel update methods designed to take into account the fact that

the ensemble members are continually learning—in parallel-generation methods the early ensemble members are still

changing while the later members are being generated. The methods explored here all use ordered weighting schemes

(where the instance weights used for each ensemble member depend only on the previous ensemble members). We

would like also to study unordered weighting schemes for parallel update (sequential update methods cannot use such

weighting schemes) and to compare the asymptotic and warmup properties to ordered weighting schemes.

Dynamic ensemble size selection.Recall that our results show that the ideal ensemble size varies during warmup

(see Figure 4). This fact suggests that we investigate methods for dynamically selecting the best ensemble size to use

when making a prediction—such methods are likely to be particularly beneficial during warmup and/or in the pres-

ence of concept drift. This approach could provide some of the robustness of sequential generation during warmup

while retaining the (possibly) more rapid warmup of parallel generation (much like our “advanced warmup” exten-

sion to ID4 in that some ensemble members might be learning without being used for prediction, during warmup).

Varying tree-depth bound across the ensemble.In this work we used the same depth bound for every tree in an en-

semble. Is there a better way of distributing the space used by an ensemble? Methods for distributing the depth dy-

namically may allow better utilization of available memory. To explore this issue, it is possible to collect data on the

depths at which predictions are actually being made—this may reveal that parts of the ensemble are simply not using

the full depth available (note that the space for the full depth is in use due to our advanced-warmup extension to ID4).

Base learners.Our results showed that the extensions to ID4 are crucial to ensemble performance for most of the

problems considered here. This suggests that we try to gain a better understanding of what base-learner properties in-

teract well with our online ensemble methods. In addition, it will be useful to consider online base-learning algo-

rithms other than ID4—for instance, in our branch prediction domain we could consider base learners resembling

state-of-the-art traditional-style branch predictors such as the “hybrid” predictor described in (Fern & Givan, 2001).

An additional base-learner issue that must be explored is the extension to features that are not binary or even finite do-

main, such as numerical features (e.g. exploring incremental methods for selecting numeric threshold values).

Other online domains. We would like to find other naturally occurring online learning domains. Some possibilities

are: problems like branch prediction in which a system (perhaps a network? a car?) can improve its performance via

prediction, data compression (e.g., online ensembles can be used to give probability estimates that are fed into an

arithmetic coder), and problems where training data are distributed across a network where the network bandwidth

limits the ability to consider all the data at once.

37

9 Conclusions

In this work we empirically investigated two online ensemble learning algorithms. The algorithms take bagging and

boosting-style ensemble approaches and do not require the storage of online training instances. The algorithms have

efficient parallel hardware implementations which is crucial to solving online problems with tight time and space

constraints such as our target problem of conditional branch outcome prediction. The online boosting-style algorithm

(online Arc-x4) is based on previous online boosting research in the “boosting by filtering” framework and on the of-

fline boosting-style algorithm Arc-x4. In this work we generated decision-tree ensembles using these new algorithms

with an online decision-tree base learning algorithm that extends ID4. Our extensions to ID4 led to significant perfor-

mance gains for both single trees and ensemble learners in most of our experiments. Empirical results were given for

instances of the conditional branch outcome prediction problem from computer architecture and online variants of

several familiar machine-learning benchmarks. The results indicate that online Arc-x4 significantly outperforms our

online bagging method in most all of the experiments. In addition, the ensembles produced by online Arc-x4 are

shown to achieve significantly higher accuracies than single trees in most of our experiments. Finally, it was shown

that ensembles of small trees were often able to outperform single large trees that use the same number of total nodes.

Similarly large ensembles of small trees were often able to outperform small ensembles of large trees that use the

same number of total nodes. This observations suggests that ensembles may be particularly useful in domains such as

branch prediction that have tight space constraints. We hope this research motivates future theoretical and empirical

investigating into online ensembles.

10 Acknowledgements

This work was supported by a National Science Foundation Graduate Fellowship and NSF Award No. 9977981-IIS.

11 References

Bauer & Kohavi1999Bauer & Kohavi, 1999Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: bagging, boosting and
variants.Machine Learning, 36, 105–142.

Breiman1996aBreiman, 1996aBreiman, L. (1996a). Bagging predictors.Machine Learning, 24, 123–140.

Breiman1996bBreiman, 1996bBreiman, L. (1996b).Arcing classifiers(Technical Report). Dept. of Statistics, Univ. of California, Berkeley, CA.

Burger & Austin1997Burger & Austin, 1997Burger, D., & Austin, T. (1997). The SimpleScalar tool set, version 2.0 (Technical Report 1342). Computer Science
Department, University of Wisconsin-Madison.

Calder et al.1997Calder et al., 1997Calder, B., Grunwald, D., Lindsay, D., Jones, M., Martin, J., Mozer, M., & Zorn, B. (1997). Evidence-based static branch
prediction using machine learning.ACM Transactions on Programming Languages and Systems, 19, no. 1, 188-222.

Chang et al.1995Chang et al., 1995Chang, P.-Y., Hao, E., & Patt, Y. (1995). Alternative implementations of hybrid branch predictors.Proceedings of the
28th ACM/IEEE International Symposium on Microarchitecture.

38

Cormen et al.1997Cormen et al., 1997Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1997). Arithmetic circuits. InIntroduction to Algorithms.Cambridge,
Mass. MIT Press.

Dietterich2000Dietterich, 2000Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees:
bagging, boosting, and randomization.Machine Learning, (to appear).

Domingo & Watanabe2000Domingo & Watanabe, 2000Domingo, C., and Watanabe, O. (2000). MadaBoost: a modification of AdaBoost.Proceedings of the Thirteenth Annual
Conference on Computational Learning Theory.

Eden & Mudge1998Eden & Mudge, 1998Eden, A., and Mudge, T. (1998). The YAGS branch predictor.31th Annual IEEE/ACM Symposium on Microarchitecture
(pp. 69-77).

Evers et al.1996Evers et al., 1996Fern2001Fern & Givan, 2001Fern, A., and Givan, R. (2001). State-of-the-art Branch Predictors. (Electronic Appendix).

Fern2000Fern et al., 2000Fern, A., Givan, R., Falsafi, B., & Vijaykumar, T. N. (2000)Dynamic feature selection for hardware prediction(Tech-
nical Report TR-ECE 00-12). School of Electrical & Computer Engineering, Purdue University.

Freund1995Freund, 1995Freund, Y. (1995). Boosting a weak learning algorithm by majority.Information and Computation, 121(2).

Freund & Schapire1996Freund & Schapire, 1996Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm.Proceedings of the Thirteenth Inter-
national Conference on Machine Learning.

Freund & Schapire1997Freund & Schapire, 1997Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boost-
ing. Journal of Computer and System Sciences, 55(1),119–139.

Grove & Schuurmans1998Grove & Schuurmans, 1998Grove, A., & Schuurmans, D. (1998). Boosting in the limit: Maximizing the margin of learned ensembles.Proceedings
of the Fifteenth National Conference on Artificial Intelligence.

Gwennap1996Gwennap, 1996Gwennap, L. (1996). Digital 21264 sets new standard.Microprocessor Report, Oct. (pp. 9–15).

Heil et al.1999Heil et al., 1999Heil, T., Smith, Z., & Smith, J. (1999). Improving branch predictors by correlation on data values.Proceedings of the
32nd Annual International Symposium on Microarchitecutre (pp. 28–37).

Herbster & Warmuth1998Herbster & Warmuth, 1998Matheus & Rendell1989Matheus & Rendell, 1989Matheus, C. J., & Rendell, L. A. (1989). Constructive induction on decision trees.Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence (pp. 645–650). Detroit, MI: Morgan Kaufmann.

McFarling1993McFarling, 1993McFarling, S. (1993). Combining branch predictors (WRL Technical Note TN-36).

Merz & Murphy1996Merz & Murphy, 1996Merz, C. J., & Murphy, P. M. (1996). UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/
MLRepository.html.

Michaud et al.1997Michaud et al., 1997Nair1995Nair, 1995Nair, R. (1995). Dynamic path-based branch correlation.28th International Symposium on Microarchitecture(pp. 15–
23).

Pan et al.1992Pan et al., 1992Quinlan1986Quinlan, 1986Quinlan, J. R. (1986). Induction of decision trees.Machine Learning, 1, 81–106.

Quinlan1988Quinlan, 1988Quinlan, J. R. (1988). An empirical comparison of genetic and decision-tree classifiers.Proceedings of the Fifth Inter-
national Conference on Machine Learning.Ann Arbor: Morgan Kaufmann.

Quinlan1996Quinlan, 1996Quinlan, J. R. (1996). Bagging, boosting and C4.5.Proceedings of the Thirteenth National Conference on Artificial
Intelligence(pp. 725–730). AAAI Press.

Reilly1995Reilly, 1995Reilly, J. (1995). SPEC describes SPEC95 products and benchmarks.Standard Performance Evaluation Corporation
August 1995 newsletter, http://www.spec.org.

Schlimmer & Fisher1986Schlimmer & Fisher, 1986Schlimmer, J. C., & Fisher, D. (1986). A case study of incremental concept induction.Proceedings of the Fifth National
Conference on Artificial Intelligence(pp. 496–501). Philadelphia, PA: Morgan Kaufmann.

Schapire1990Schapire, 1990Schapire, R. E. (1990). The strength of weak learnability.Machine Learning, 5, 197–227.

Smith1981Smith, 1981Utgoff1989Utgoff, 1989Utgoff, P. E. (1989). Incremental induction of decision trees.Machine Learning, 4, 161–186.

Utgoff et al.1997Utgoff et al., 1997Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997) Decision Tree Induction Based on Efficient Tree Restructuring.

39

Machine Learning, 29, 5-44.

Yeh & Patt, 1991

Appendix A. Results for Online Bagging

In this work we also considered two online ensemble algorithms inspired by bagging—but our empirical results

showed these methods to be inferior to online Arc-x4 in our domains, although online bagging still showed improve-

ment over individual base learners. In this appendix we briefly describe bagging and our two online variants as well

as show empirical results comparing them to Arc-x4. In application domains where online bagging is competitive

with online Arc-x4 one might choose to implement online bagging since it is somewhat less complicated.

Bagging. Bootstrap aggregrating (abbreviated “bagging”) is an ensemble learning algorithm introduced by Breiman

(1996a). In an offline setting bagging first generatesT bootstrap datasets where each set is created by randomly draw-

ing with replacementN instances from the sizeN training set. Then the base learner is used to produce a hypothesis

for each dataset giving us an ensemble withT members. The ensemble prediction is the majority vote of the members.

Online Bagging. The bagging ensemble method has a natural parallel implementation since it does not require any

interaction among theT hypotheses. This was the reason we first investigated bagging for creating online ensembles.

In this work we considered two online bagging variants—both variants simply ensure that each of theT hypotheses

are the result of applying the base learnerLearn() to different sequences of weighted training instances.

Our first bagging variant is called BagB (“B” stands for “Bernoulli” because the training instance weights are de-

termined by a coin flip). BagB follows the generic algorithm in Figure 1 with the instance weight function given by

Weight (H, I, t) = flip (Pu), 0 <Pu < 1 (3)

whereflip(Pu) returns one with probabilityPu and zero with probability 1– Pu. The update probabilityPu is a user

specified parameter. The parameterPu dictates a trade-off between the diversity of the training sequences used to up-

date different hypotheses and the fraction of the training data ignored by each hypothesis.

Our second online bagging variant is called BagP (“P” because the training instance weights have a Poisson dis-

tribution). The BagP method is designed to select instance weights from approximately the same distribution as the

weights produced by offline bagging22 for large datasets. Given a training data set of sizeN, offline bagging selects

any instance exactlyw times with a probability given by the binomial distribution. For moderately large values ofN

the binomial distribution is closely approximated by the Poisson distribution with a parameter of one. For this reason,

the BagP algorithm draws weights from the Poisson distribution, takingWeight (H, I, t) to bew with probability

for each . Both BagB and BagP used the voting weight update function of online Arc-x4 (i.e., accuracy).23

22. The weight distribution in the offline setting is a distribution over the number times a training instance is included in a bootstrap dataset.

e 1–

w!

w ℵ∈

40

Empirical Results. Our BagB, BagP, and Arc-x4 methods were used to train sizeT ensembles of online decision

trees bounded to depth twelve. Figures 12a-12c compare the performance of bagging and Arc-x4 on three online

learning problems—in each figure we plot percent error versus ensemble size for each method. The experimental pro-

tocols used in each benchmark are the same as those described for evaluating Arc-x4 in Section 5, except that the

plots for branch prediction are now averaged over ten runs due to the random choices made in the bagging algo-

rithm—results for the other branch prediction problems and the ML benchmarksTTT2 andvowel exhibit the same

trends as Figure 12a, and results for the multiplexor ML benchmark resemble those for Arc-x4 depth ten in

Figure 3(a) (except that BagB(Pu=0.1) performed poorly as expected, no better than an accuracy of 6.3%).

Neither BagP nor BagB seems to dominate the other. We show in Figure 12b the most significant improvement

over Arc-x4 achieved by bagging in any of our bagging experiments. In the problems not shown (except formulti-

plexor) the bagging methods led to relatively little improvement in accuracy (compared to online Arc-x4) as the en-

semble size grew (Figure 12a is a typical example). Generally the bagging curves flatten out asT increases much

sooner than the Arc-x4 curves do, indicating that bagging is not as successfully exploiting ensemble size to reduce er-

ror. Overall, Arc-x4 significantly outperforms bagging for small ensembles (usually) and large ensembles (all experi-

ments exceptmultiplexor where bagging and Arc-x4 tie at zero error). We note however that online bagging is still

generating significant error reductions compared to single base learners for some of the domains.

23. We have also implemented online bagging using straight majority vote and the empirical results are not substantially different.

0 10 20 30 40 50
0

5

10

15

20

25

30
(a) go−A

T (ensemble size)

%
 e

rr
or

Arc−x4

BagC(Pu=0.7)

BagC(Pu=0.9)

BagC(Pu=0.1)

BagP

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45
(b) go−B

T (ensemble size)
%

 e
rr

or

Arc−x4

BagC(Pu=0.7)

BagC(Pu=0.9)

BagC(Pu=0.1)

BagP

0 10 20 30 40 50
0

2

4

6

8

10

12

14

T (ensemble size)

%
 e

rr
or

(c) TTT1: Testing Error

BagC(Pu=0.1)

BagC(Pu=0.9)
BagC(Pu=0.7)

Arc−x4

BagP

Figure 12: Bagging versus Arc-x4.(note that the x-axis isnot time).Percent error versus the ensemble sizeT for three problems
(as indicated above each graph). Three curves per graph show the performance of BagB forPu = 0.1, 0.7, 0.9, one curve shows

the performance of BagP, and one curve shows the performance of Arc-x4. The trees in all of the ensembles have a depth bound
of twelve. Graph (a) strongly resembles the same plot for our other branch prediction problems as well as the ML benchmarks
TT2 andvowel. For themultiplexor benchmark bagging was able to reduce the testing error to zero percent as was the case for
Arc-x4.

B

B

B

B

B

B

B

B
B

