Feature-discovering Approximate Value Iteration
Methods

Jia-Hong Wu and Robert Givan

Electrical and Computer Engineering, Purdue Universityl fayette, IN 47907
{iw, givan}@purdue.edu

Abstract. Sets of features in Markov decision processes can playieatnible
in approximately representing value and in abstractingstate space. Selection
of features is crucial to the success of a system and is mtest abnducted
by a human. We study the problem of automatically selectiodplpm features,
and propose and evaluate a simple approach reducing thiepral selecting a
new feature to standard classification learning. We leatassifier that predicts
the sign of the Bellman error over a training set of statesit@wtively adding
new classifiers as features with this method, training betwesrations with ap-
proximate value iteration, we find a Tetris feature set thaéperforms randomly
constructed features significantly, and obtains a scorbafizthree-tenths of the
highest score obtained by using a carefully hand-constdufegtature set. We also
show that features learned with this method outperformetiearned with the
previous method of Patrascu et al. [4] on the same SysAdmima@oused for
evaluation there.

1 Introduction

Decision-theoretic planning and reinforcement-learmiraghods facing astronomically
large state spaces typically rely on approximately represkvalue functions (see, e.g.,
[2, 7]). Many such approximate representations rely on gr@piate set of problem
features; for example, by taking a weighted combinatiorheffeature values as the
value function [1]. Human engineering of the problem feesuused has repeatedly
proven critical to the success of the resulting system. Kample, in [8, 7], TD-
gammon exploits human-constructed problem-specific featto achieve a playing
strength that can compete with world-class players.

A Markov decision process (MDP) is a formal model of a singjerst facing a
sequence of action choices from a pre-defined action spadédjvng within a pre-
defined state space. After each action choice is made, arstagition within the state
space occurs according to a pre-defined, stochastic artiosition model. The agent
receives reward after each action choice according to tite sisited (and possibly
the action chosen), and has the objective of accumulatimyues$ reward as possible
(possibly favoring reward received sooner, using disdognbr averaging over time,
or requiring that the reward be received by a finite horizon).

MDP solution techniques often critically rely on finding aoglvalue functionthis
is a mapping from states to real numbers with the intent tkeairdble states receive

* Many thanks to Alan Fern for very useful discussions andtinpu

high values. Informally, a good value function should res$glee action transitions in
that good states will either have large immediate rewardswe actions available that
lead to other good states; this property is formalize@&iman equationthat define
the optimal value function (see below). The degree to whigivan value function fails
to respect action transitions in this way, formalized belieweferred to as thBellman
errorof that value function.

Unfortunately, virtually every interesting MDP problemsten extremely large state
space, preventing direct table-based representatioe oftlne function. As a result, ab-
straction, approximation, and problem reformulation @agritical role in successfully
representing and finding good value functions. A typicalrapph is to find usefufea-
tures which also map the state space to real numbers, and takealhe function at
each state to be a weighted combination of the features tdtdita. Here, good values
for the weights can often be found using machine learninigrtieges involving search
and gradient descent. In this paper, we address the proHiémdang good features
automatically: in most previous work the features are syngalected by the human
designer. Learning features for this purpose can be redasléearning an abstraction
of the MDP state space: differences between states withatine $eature values have
been abstracted away.

Here, we study the problem of automatically selecting probfeatures for use in
approximately representing value in Markov decision psses. We focus our initial
work on this problem on binary features, i.e., mappings fetate to Boolean values.
We view each such feature as a set of states, those states tivbdeature is true.

We propose and evaluate a simple, greedy approach to findingbmary fea-
tures for a linear-combination value estimate. Our heigrggiproach assumes an initial
“base” value estimate described by a linear approximatibare the weights have al-
ready been tuned to minimize Bellman error. We attempt tocedhe Bellman error
magnitude of this value estimate further by learning a neatufiee that is true in states-
pace regions of positive statewise Bellman error and cpomdingly false in regions
of negative statewise Bellman error, or vice versa. Thenlegrproblem generated is a
standard supervised classification problem, and for thikkwe address this problem
using the decision-tree learner C4.5 [5].

One view of this approach is that we are conducting approbdnaalue iteration
with an added mechanism for extending the available feateireGiven an initial fea-
ture set, imagine a sufficient period of approximate valkeration (or any similar weight
adjustment method) to achieve convergence of the appréxime a value function
V. We can think of the approximate value iteration processsasck”, in that it can
represen¥’ but not the Bellman update 8f. (Of course, this assumes that the induc-
tive updates being performed would fiid if they could represent it, which is only
heuristically true.) We are then trying to induce featucesriable representation of the
Bellman update of’, so that the approximate value iteration process can asetio
reduce Bellman error, with the larger feature space.

If the learner succeeds in capturing features that destiribetatespace regions of
positive and negative Bellman error, we can guarantee titihg these features makes
available weight assignments closer to the Bellman updateedbase value estimate.

Our practical method retrains the weights including the fremture(s), using approxi-
mate value iteration (AVI), and then repeats the processleting a new feature.

We have found surprisingly little previous work on selegtfeatures automatically
in MDPs. Patrascu et al. [4] give a linear programming teghaifor selecting new
features. In their work, the primary technique for selagtireights is approximate linear
programming (ALP). It is observed in [4] that ALP “only minines; error”; perhaps
for this reason, that work proposes to construct featuras@ito minimize thd., error
of the resulting approximation. It is stated there thatéhisra “hope that this leads to a
reduction in Bellman error as a side effect.”

Our technique works instead directly to reduce the Bellntaorenagnitude of the
resulting approximation by trying to identify regions ttwaintribute to large statewise
Bellman error magnitude. Because the Bellman error at argngstate is easily com-
putable in many domains of interest, unlike the error, we are able to convert the
problem of minimizing Bellman error magnitude to a supezdiglassification prob-
lem.

Patrascu et al. [4] do not mention any reduction to supedvidassification learn-
ing, nor is it clear how to construct such a reduction fromapproach they describe,
because the computation of the error for particular states requires knowledge of the
optimal value of those states. Thus, although decisiors tage suggested as a possi-
ble representation for candidate features in that workgtigeno suggestion that these
trees be acquired by a supervised classification methodCkkb and no discussion of
how to overcome the need to know the optimal value if fheerror is to be used for
supervision.

For another view of the contrast between our method and tlesiqus method,
consider that we seek a feature, via supervised classificatiat corresponds to the
region of states that have significantly positive (or alégirrely, negative) Bellman error.
There is no such declarative characterization of the d#$eature in the Patrascu et
al. work; rather, the region sought is that region that itssal the best improvement
in L, error after retraining via ALP (or less expensive-to-cotempproximations of
this “error after retraining”). This does not represent@uction to classification and is
a substantially different approach, usihg error after retraining (or a less expensive
stand-in) as a scoring function.

Both approaches are reasonable, of course. We show belbauhgechnique em-
pirically outperforms this previous work on the planningwin used in their evalua-
tion. Specifically, we require fewer new features to achteeesame Bellman error, and
can achieve a lower overall Bellman error given enough featu

There is related previous work on function approximatiowirich new features are
automatically added during supervised learning of realed functions [10]. It would
be reasonable to consider, in comparison to our work heunggatg in such a function
approximator at the learning step in approximate valuaii@n—this would result in
an overall method similar in spirit to what we design dirgdtere. We have not done
an empirical comparison along these lines at this time.

We also evaluate our technique in the computer-game donfaiietds. Starting
from a constant value function based on only the uniformig fieature, our technique
can add features automatically to produce performanceadtsignificantly better than

a randomly constructed feature set, and is at about threkstef the performance of a
carefully hand-constructed feature set.

In what follows, we first provide technical background on kar decision pro-
cesses and value-function approximation, then describ&ohinique for inducing new
features to reduce approximation error, and finally presemgirical results on two do-
mains showing improvement over the state of the art, befonelading.

2 Technical Background

2.1 Markov Decision Processes

We define here our terminology for Markov decision procesSes a more thorough
discussion of Markov decision processes, see [2] and [7].a&kdv decision process
(MDP) D is a tuple(S, A, R,T') where state spacg is a finite set of states, action
spaced is a finite set of actions : S x A x S — R is the reward function, and
T:S x A— P(S)is the transition probability function that maps (statdiag pairs
to probability distributions ove$. R(s1, a, s2) represents how much immediate reward
is obtained by taking action from states; and ending up in state,. T'(s1, a, $2)
represents the probability of ending up in stagéf the actiona is taken from state; .

A policy w for an MDP is a mapping : S — A. Given policyr, the value function
V™ (s) gives the expected discounted reward obtained startimg$tates and selecting
actionr(s) at each state encountered. Rewards after the first time stafistounted
by a factory where0 < v < 1. A Bellman equation relateE™ at any states and
successor states.

V(s) = Y T(s,m(s),s)[R(s,m(s), s) + 7V (5)].
s’es

There is at least one optimal poliay for which V™" (s), abbreviated *(s), is no less
thanV™(s) at every state, for any other policyr. Another Bellman equation governs
V=

V*(s) = max 3" T(s,0,8) [R(s,a, 8') + V()]
ac
s'es

From any value functiof’, we can compute a policy Gregd¥) that selects, at any
states, the greedy look-ahead actiarg max,c 4) g T'(s, a, s')[R(s, a, s")+yV (s')].
The policy Greedgl *) is an optimal policyValue iterationterates the operatidi’ (s) =
maxaqea Y, ocq1(s,a,5")[R(s,a,s") + vV (s')], computingV’’ from V, producing a
sequence of value functions convergingt, regardless of the initidl” used.

We define the statewise Bellman eri®(V, s) for a value functior’” at a states to
beV’(s) — V(s). We will be inducing new features based on the sign of thewsiae
Bellman error. The sup-norm distance of a value funcliofrom the optimal value
function V* can be bounded using the Bellman error magnitude, whichfinatbas
maxsecs |B(V, s)| (e.g., see [12]).

Linear Approximation of Value Functions. We assume that the states of the MDP have
structure. In particular, we assume a state is a vector o€ pasperties with Boolean,
integer, or real values, and that the state space is the sdt @iich vectors. We call
these basic propertiestate attributesT his factored form for states is essential to enable
compact representation of approximate value functions.

A common solution to the problem of representing value fiomst (e.g., value it-
eration) in very large, structured state spaces is to ajpair the valué/(s) with a
linear combination of features extracted fragi.e., asV (s) = P ywifi(s), where
w; is a real-valuedveightfor theith featuref;(s). Our goal is to find featuref (each
mapping states to boolean values) and weightso thatl’ closely approximatek *.

Many methods have been proposed to select weightsr linear approximations
[6, 11]. Here, we use a trajectory-based approximate vaération (AVI) approach.
Other training methods can be substituted and this choicetl®gonal to our main
purpose.

The AVI method we deploy constructs a fixed-length sequemelae functions
V1, V2 ...,V and returns the last one. Each value funcidhis defined by weight
valueswy, wY, ..., wl asV?(s) = P w! f;(s). Value functionv#+! is constructed
from V? by drawing a training set of trajectorfeander the policy Greedy”) and
updating the weights according to this training set as ¥ailo

Let sy, so,..., s, be a sequence of training states, which we generate by dyawin
set of trajectories under the current greedy policy. A fragrset for weight adjustment
is defined ag{(s;,V'(s;)) | 1 < j < n}. We adjust weights in iterations of batch
training. In thel'th batch training iteration, the weight update for #th weight in the
training set isw; ;41 = w; ; + % Zj afi(s;)(V'(s;)— f:o w1 fi(s;)). Here,wis the
learning rate parameter. We take the initial weighis to bewf . After iterations we

setwf“ = Wi g+1-

2.2 Decision Tree Classification

A detailed discussion of classification using decisiondregn be found in [3]. A de-

cision tree is a binary tree with internal nodes labelled tayesattributes (and, in our
case, learned features), and leaves labelled with claissesr(case, either zero or one).
A path through the tree from the root to a leaf with labielentifies a partial assignment
to the state attributes—each state consistent with théiepassignment is viewed as
labelled! by the tree. We learn decision trees from training sets afllad) states using

the well known C4.5 algorithm [5]. This algorithm inducesree greedily matching

the training data from the root down. We use C4.5 to induce features—the key to

our algorithm is how we construct suitable training sets@dt5 so that the induced
features are useful in reducing Bellman error.

! The source of this set is a parameter of the algorithm, anolilocfor example be drawn by
sampling initial states from some state distribution amahtsimulatingr to some horizon from
each initial state.

3 Feature Construction for MDPs

We propose a simple method for constructing new featuresngivcurrent set of fea-
tures and an MDP for which we desire an approximatiof 6f We first use AVI, as
described above, to select heuristically best weights psagmateV * with V based
on the current feature set. We then use the sign of the ste®allman error at each
state as an indication of whether the state is undervaluegewalued by the current
approximation. If we can identify a collection of undervadlstates (ideally, all such
states) as a new feature, then assigning an appropriatévpasgeight to that feature
should reduce the Bellman error magnitude. The same effextld be achieved by
identifying overvalued states with a new feature and agsiga negative weight. We
note that the domains of interest are generally too largstiiespace enumeration, so
we will need classification learning to generalize the natiof overvalued and under-
valued across the statespace from training sets of sangpés sAlso, to avoid blurring
the concepts of overvalued and undervalued with each otlediscard states with
statewise Bellman error near zero from either training set.

More formally, we draw a training set of stat&§rom which we will select training
subsetsy’, andX'_ for learning new features. The training S€tcan either be drawn
uniformly at random from the state space, or drawn by caligcall states in sample
trajectories starting at uniformly random start statesauadoolicy of interest (typically
GreedyV)). If using trajectories, each trajectory must be termidatesome horizon.
The horizon and the size df are parameters of our algorithm.

For each state in X, we compute the statewise Bellman er@fV, s). We then
discard fromX’ those states with statewise Bellman error near zero, i.e., those states
for which |B(V, s)| < & for a non-negative real-valued parameieand then divide
the remaining states into sefs. and X_ according to the sign aB(V, s). So, X is
the set{s|B(V, s) > 0} andX_ is the set{s| B(V,s) < —d}.

We note that computing statewise Bellman error exactly oaalve a summation
over the entire state space, whereas our fundamental rtiotisaequire avoiding such
summations. In many MDP problems of interest, the transitiatrix 7" is sparse in a
way that set of states reachable in one step with non-zetmapility is small, for any
current state. In such problems, statewise Bellman ernotbeacomputed effectively
using an appropriate representatiorfofMore generally, whefi’ is not sparse in this
manner, the expectation can be effectively approximatedyuated by sampling next
states according to the distribution represented’by

We then useY’, as the positive examples altd_ as the negative examples for a
supervised classification algorithm; in our case, C4.5 é&lu$he hypothesis space for
classification is built from the primitive attributes defigithe state space; in our case,
we use decision trees over these attributes. We can alsohatege the roles of', and
X, using the latter as positive examples. In our experim&rgsjo this interchanging
for every other feature constructed.

The concept resulting from supervised learning is thertécbas a new feature for
our linear approximation architecture, with an initial giei of zero. The process can
then be repeated, of course, resulting in larger and laggufe sets, and, hopefully,
smaller and smaller Bellman error magnitude.

To conclude our description of our algorithm, we discussirsgthe parametes
dynamically, once in each iteration of feature constructi®ather than directly specify
0, we specifyd in terms of the standard deviatienof the statewise Bellman error over
the same distribution used in selecting states for theitgisety. The value ofs is
easily estimated by sampling the training distribution eahputing the Bellman error.
We then set, at each iteration, to be a fixed multipjef o. This approach removésas
a parameter of the algorithm, replacing it with the paramtd@his dynamic selection
of § allows adaptation to the decrease in Bellman error magaicwer the run of the
algorithm.

4 Experiments

In this section, we present some experimental results fofeaiure construction algo-
rithm. We use two domains in the experiments. The first donsam8 x 8 game of
Tetris (Tetris). The second domain is a computer networkropation problem called
SysAdmin, which we use primarily in order to compare to thasekt previous related
work; that work [4] used SysAdmin as a testing domain. Bothdtate attributes and
the learned features in the experiments are binary features

Tetris. For the Tetris domain, we start with 71 state attributes; #dbates which
representif the 64 squares are occupied or not, and 7 aésilathich represent which of
the 7 pieces is currently being dropped. We select traingtg for feature construction
by drawing trajectories from an initial state with an emptyabd and collecting 600,000
states on these trajectoriesEsThe training sets for AVI are selected by drawing 100
trajectories from an initial state with an empty board arldveihg each trajectory to
extend to the end of the game. We draw the trajectories usm@teedyl’) policy.
The discount factoty is 0.9 for this experiment, and the parametgis set t00.3. In
addition,x is fixed at100 and« at0.01. AVI is stopped (appearing to have converged)
after 1,200 training sets are drawn; at that point, a newfeas learned.

The results are shown in Figure 1. The score is determinetdgterage number
of lines erased during a sequence of games. The performétieelearned features are
evaluated by the 2,000-game average score for Gt&edysing the weights learned
by AVI. Figure 1 displays the average of such evaluations dveeparate trials of fea-
ture learning. In addition, we also show in Figure 1 the resiulising sets of randomly
generated features; such features are generated follohergpme procedure described
in the previous section, but label examples in the trainetg’s randomly instead of
deciding the labeling by statewise Bellman error. Valuecfions constructed from ran-
domly generated features perform poorly, and do not showdagment as the number
of features used increases. Thus, our use of statewise &elmor to label the train-
ing examples plays an important role in the performance offeature construction
algorithm.

We also tested AVI on human-constructed features in thisadonThe features we
used in this case were provided by Bertsekas in [2]. Theserfemare useful features as
considered by a human, and according to [2] they were selefter some testing. We
tested the performance of the weights learned after eaclitédation by running 2,000

games and taking the average score. The maximum 2,000-gaaraga performance
was 92.9, which was achieved after 22,634 iterations of AWis performance was
substantially better than the best performance our ledesdre set exhibited, which
was 27.6 (using 34 learned binary features).

We note that the human-selected features are all intedeedaapparently giving
the human set a clear advantage over our binary featuresfasip per feature). Clearly
one approach for further improvementin feature learning design a feature-learning
approach that can produce integer-valued features.

We also study the the runtime behavior for our algorithm is ttomain. We show
in Figure 2 the execution time for generating the featurasb ajusting the weights.
How long it takes a feature to be learned depends on how maimjyrtg examples are
collected and how many features exist. Since the numberaafitlg examples does
not grow as we learn additional features, the time requioelédrn a new feature is
eventually dwarfed by growing time required to train thegtds for the growing feature
set.

30

—— Learned Features (4 trials) —= Random Features (4 trials) M
25

m o

Score
= s

1/
A

0 L 2 3 4 5 6 7 % 9 1011 1213 14 1516 17 18 19 20 21 22 23 M 25 26 27 28 29 30 31 32 33 34 35

Number of Features

Fig. 1. Score (average number of lines erased in 2,000 games) plttddearned features and
randomly generated features in the< 8 Tetris domain. For reference, the maximum score for
the human-selected feature set from [2] was 92.9.

SysAdmin. For the SysAdmin domain, two different kinds of topologies tested: 3-

legs and cycle. There are 10 nodes in each topology. We faHevsettings used in [4]
for testing this domain. The target of learning in this domigito keep as many ma-
chines operational as possible, since the number of opgratachines directly affects
the reward for each step. Since there are only 10 nodes, th# status of each node
is used as a basic feature, which means there are a total 4fsi@2s. We simply use

—— Leatned Features, Weigh Training (4 tals) —=— Leamed Fealures, Feature Learning @ trials) —— Random Fealures, Weigh! Training b rals) —=— Random Fealures, Feature Leaning (4 tial) |

Time (minutes
S

Time
B

N

7 2 N EEEE
Number of Fealures Number of Fealures

Fig. 2. Number of minutes required to generate th feature, and to train the weights after the
n'th feature is added to the feature set.

all states as the training set for feature construction riebke direct comparison to the
previous work in [4], we use Bellman error magnitude to measiie performance of
the feature construction algorithm here.

For the experiments that use the whole state space as ayraiei, the plot of av-
erage Bellman error for 10 separate trials over the numbfadéires learned is shown
in Figure 3. We used equal t00.95, n equal tol, o equal to0.1, andx equal to100.

In this experiment there are 50 trajectories drawn in eachtrning set, each drawn
from a random initial state, and using trajectory length 2| vkas stopped, appearing
to have converged, after 1,000 iterations.

Also included in Figure 3 are the results from [4]. We seléet best result they
show (from various algorithmic approaches) from the 3-kgd cycle domains shown
in their paper (their “d-o-s” setting for the cycle domairdaheir “d-x-n setting” for
the 3-legs domain).

Compared to the results in [4], also shown here, our featmetcuction algorithm
achieves a lower Bellman error magnitude in these domainth®same number of
features, throughout, and a lower converged Bellman eragnitude when new fea-
tures stop improving that measure. This is another encogagsult for this proposed
feature construction algorithm.

5 Conclusions and Future Work

From the experiments, the results show that our featurdmeani®n algorithm can gen-
erate features that show significantly better performam@&ex 8 Tetris than randomly
constructed features, and can produce features that futpethe features produced by
the algorithms in [4] for the SysAdmin domain. However, olgaaithm cannot learn a
feature set foB x 8 Tetris that competes well with the human-constructed feagat
provided in [2].

Our technique depends critically on the generalizatiofitalnf the classification
learner to cope with large state spaces. The features dedénathe feature-construction
algorithm are currently represented as decision treekoAlih the experiments showed
that these features are useful in some problems, they #réasii to interpret. One

‘ —#— 3 legs (10 trials) —— Cwcle (10 trials) —8— Fatrascu 3legs —+— Pairascu Cycle

Bellman Error

1 2 3 4 3 6 7 8 9 10 11 1z 13 14 15 16 17

Number of Features

Fig. 3. Bellman error for SysAdmin domain (10 nodes).

goal for designing a good feature-construction algoritertoibe able to produce fea-
tures that are understandable by humans. Furthermoresiaiedree learning might

not be adequate to find good generalizations in complex dwné&ie observed that
the human-constructed features in [2] can be representagactly using relational

languages. Some of them, e.g. the number of "holes” in Tedris quite awkward to

represent using the decision tree structure in this paperv@ay we are considering for
improving our algorithm is to use a relational classificatar function-approximation

algorithm combined with an expressive knowledge repredgeminstead of using C4.5
with decision trees.

We note that the performance of machine-learned featurapgstars to converge,
with little added benefit per new feature, at a point wherepiblicy corresponding to
the learned value function is far short of optimal. This sgjg a lack of state-space
exploration during the feature learning stage. Anothezalion we are considering for
improving our algorithm is to develop new exploration stgiés for generating the
training sets of states for feature learning.

References

[1] R. Bellman, R. Kalaba, and B. Kotkin. Polynomial appmostion — a new computational
technique in dynamic programmintylath. Comp., 17(8):155-161, 1963.

[2] D. P. Bertsekas and J. N. TsitsiklifNeuro-Dynamic Programming. Athena Scientific,
1996.

[3] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[4] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutiliet,GrGuestrin. Greedy linear value-
approximation for factored markov decision processe®\AAl, 2002.

[5]
(6]

[7]
(8]

9]

(10]

(11]

(12]

J. R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

R. S. Sutton. Learning to predict by the methods of terapdifferences.MLJ, 3:9-44,
1988.

R. S. Sutton and A. G. Bartdzeinforcement Learning. MIT Press, 1998.

G. Tesauro. Temporal difference learning and td-gamm@omm. ACM, 38(3):58-68,
1995.

P. E. Utgoff and D. Precup. Relative value function apgmmation. Technical report,
University of Massachusetts, Department of Computer $eieh097.

P. E. Utgoff and D. Precup. Constuctive function apjmation. In Motoda and Liu,
editors,Feature extraction, construction, and selection: A data-mining perspective, pages
219-235. Kluwer, 1998.

B. Widrow and M. E. Hoff Jr. Adaptive switching circuitsstRE WESCON Convention
Record, pages 96-104, 1960.

R. J. Williams and L. C. Baird. Tight performance bourais greedy policies based on
imperfect value functions. Technical report, Northeasténiversity, 1993.

