
Feature-discovering Approximate Value Iteration
Methods

Jia-Hong Wu and Robert Givan⋆

Electrical and Computer Engineering, Purdue University, W. Lafayette, IN 47907
{jw, givan}@purdue.edu

Abstract. Sets of features in Markov decision processes can play a critical role
in approximately representing value and in abstracting thestate space. Selection
of features is crucial to the success of a system and is most often conducted
by a human. We study the problem of automatically selecting problem features,
and propose and evaluate a simple approach reducing the problem of selecting a
new feature to standard classification learning. We learn a classifier that predicts
the sign of the Bellman error over a training set of states. Byiteratively adding
new classifiers as features with this method, training between iterations with ap-
proximate value iteration, we find a Tetris feature set that outperforms randomly
constructed features significantly, and obtains a score of about three-tenths of the
highest score obtained by using a carefully hand-constructed feature set. We also
show that features learned with this method outperform those learned with the
previous method of Patrascu et al. [4] on the same SysAdmin domain used for
evaluation there.

1 Introduction

Decision-theoretic planning and reinforcement-learningmethods facing astronomically
large state spaces typically rely on approximately represented value functions (see, e.g.,
[2, 7]). Many such approximate representations rely on an appropriate set of problem
features; for example, by taking a weighted combination of the feature values as the
value function [1]. Human engineering of the problem features used has repeatedly
proven critical to the success of the resulting system. For example, in [8, 7], TD-
gammon exploits human-constructed problem-specific features to achieve a playing
strength that can compete with world-class players.

A Markov decision process (MDP) is a formal model of a single agent facing a
sequence of action choices from a pre-defined action space, and living within a pre-
defined state space. After each action choice is made, a statetransition within the state
space occurs according to a pre-defined, stochastic action-transition model. The agent
receives reward after each action choice according to the state visited (and possibly
the action chosen), and has the objective of accumulating asmuch reward as possible
(possibly favoring reward received sooner, using discounting, or averaging over time,
or requiring that the reward be received by a finite horizon).

MDP solution techniques often critically rely on finding a goodvalue function; this
is a mapping from states to real numbers with the intent that desirable states receive

⋆ Many thanks to Alan Fern for very useful discussions and input.

high values. Informally, a good value function should respect the action transitions in
that good states will either have large immediate rewards orhave actions available that
lead to other good states; this property is formalized inBellman equationsthat define
the optimal value function (see below). The degree to which agiven value function fails
to respect action transitions in this way, formalized below, is referred to as theBellman
errorof that value function.

Unfortunately, virtually every interesting MDP problem has an extremely large state
space, preventing direct table-based representation of the value function. As a result, ab-
straction, approximation, and problem reformulation playa critical role in successfully
representing and finding good value functions. A typical approach is to find usefulfea-
tures, which also map the state space to real numbers, and take the value function at
each state to be a weighted combination of the features at that state. Here, good values
for the weights can often be found using machine learning techniques involving search
and gradient descent. In this paper, we address the problem of finding good features
automatically: in most previous work the features are simply selected by the human
designer. Learning features for this purpose can be regarded as learning an abstraction
of the MDP state space: differences between states with the same feature values have
been abstracted away.

Here, we study the problem of automatically selecting problem features for use in
approximately representing value in Markov decision processes. We focus our initial
work on this problem on binary features, i.e., mappings fromstate to Boolean values.
We view each such feature as a set of states, those states where the feature is true.

We propose and evaluate a simple, greedy approach to finding new binary fea-
tures for a linear-combination value estimate. Our heuristic approach assumes an initial
“base” value estimate described by a linear approximation where the weights have al-
ready been tuned to minimize Bellman error. We attempt to reduce the Bellman error
magnitude of this value estimate further by learning a new feature that is true in states-
pace regions of positive statewise Bellman error and correspondingly false in regions
of negative statewise Bellman error, or vice versa. The learning problem generated is a
standard supervised classification problem, and for this work we address this problem
using the decision-tree learner C4.5 [5].

One view of this approach is that we are conducting approximate value iteration
with an added mechanism for extending the available featureset. Given an initial fea-
ture set, imagine a sufficient period of approximate value iteration (or any similar weight
adjustment method) to achieve convergence of the approximation to a value function
Ṽ . We can think of the approximate value iteration process as “stuck”, in that it can
represent̃V but not the Bellman update of̃V . (Of course, this assumes that the induc-
tive updates being performed would find̃V if they could represent it, which is only
heuristically true.) We are then trying to induce features to enable representation of the
Bellman update of̃V , so that the approximate value iteration process can continue to
reduce Bellman error, with the larger feature space.

If the learner succeeds in capturing features that describethe statespace regions of
positive and negative Bellman error, we can guarantee that adding these features makes
available weight assignments closer to the Bellman update of the base value estimate.

Our practical method retrains the weights including the newfeature(s), using approxi-
mate value iteration (AVI), and then repeats the process of selecting a new feature.

We have found surprisingly little previous work on selecting features automatically
in MDPs. Patrascu et al. [4] give a linear programming technique for selecting new
features. In their work, the primary technique for selecting weights is approximate linear
programming (ALP). It is observed in [4] that ALP “only minimizesL1 error”; perhaps
for this reason, that work proposes to construct features aimed to minimize theL1 error
of the resulting approximation. It is stated there that there is a “hope that this leads to a
reduction in Bellman error as a side effect.”

Our technique works instead directly to reduce the Bellman error magnitude of the
resulting approximation by trying to identify regions thatcontribute to large statewise
Bellman error magnitude. Because the Bellman error at any given state is easily com-
putable in many domains of interest, unlike theL1 error, we are able to convert the
problem of minimizing Bellman error magnitude to a supervised classification prob-
lem.

Patrascu et al. [4] do not mention any reduction to supervised-classification learn-
ing, nor is it clear how to construct such a reduction from theapproach they describe,
because the computation of theL1 error for particular states requires knowledge of the
optimal value of those states. Thus, although decision trees are suggested as a possi-
ble representation for candidate features in that work, there is no suggestion that these
trees be acquired by a supervised classification method likeC4.5 and no discussion of
how to overcome the need to know the optimal value if theL1 error is to be used for
supervision.

For another view of the contrast between our method and that previous method,
consider that we seek a feature, via supervised classification, that corresponds to the
region of states that have significantly positive (or alternatively, negative) Bellman error.
There is no such declarative characterization of the desired feature in the Patrascu et
al. work; rather, the region sought is that region that results in the best improvement
in L1 error after retraining via ALP (or less expensive-to-compute approximations of
this “error after retraining”). This does not represent a reduction to classification and is
a substantially different approach, usingL1 error after retraining (or a less expensive
stand-in) as a scoring function.

Both approaches are reasonable, of course. We show below that our technique em-
pirically outperforms this previous work on the planning domain used in their evalua-
tion. Specifically, we require fewer new features to achievethe same Bellman error, and
can achieve a lower overall Bellman error given enough features.

There is related previous work on function approximation inwhich new features are
automatically added during supervised learning of real-valued functions [10]. It would
be reasonable to consider, in comparison to our work here, plugging in such a function
approximator at the learning step in approximate value iteration—this would result in
an overall method similar in spirit to what we design directly here. We have not done
an empirical comparison along these lines at this time.

We also evaluate our technique in the computer-game domain of Tetris. Starting
from a constant value function based on only the uniformly true feature, our technique
can add features automatically to produce performance thatis significantly better than

a randomly constructed feature set, and is at about three-tenths of the performance of a
carefully hand-constructed feature set.

In what follows, we first provide technical background on Markov decision pro-
cesses and value-function approximation, then describe our technique for inducing new
features to reduce approximation error, and finally presentempirical results on two do-
mains showing improvement over the state of the art, before concluding.

2 Technical Background

2.1 Markov Decision Processes

We define here our terminology for Markov decision processes. For a more thorough
discussion of Markov decision processes, see [2] and [7]. A Markov decision process
(MDP) D is a tuple(S, A, R, T) where state spaceS is a finite set of states, action
spaceA is a finite set of actions,R : S × A × S → R is the reward function, and
T : S × A → P(S) is the transition probability function that maps (state, action) pairs
to probability distributions overS. R(s1, a, s2) represents how much immediate reward
is obtained by taking actiona from states1 and ending up in states2. T (s1, a, s2)
represents the probability of ending up in states2 if the actiona is taken from states1.

A policy π for an MDP is a mappingπ : S → A. Given policyπ, the value function
V π(s) gives the expected discounted reward obtained starting from states and selecting
actionπ(s) at each state encountered. Rewards after the first time step are discounted
by a factorγ where0 ≤ γ < 1. A Bellman equation relatesV π at any states and
successor statess′:

V π(s) =
∑

s′∈S

T (s, π(s), s′)[R(s, π(s), s′) + γV π(s′)].

There is at least one optimal policyπ∗ for whichV π∗

(s), abbreviatedV ∗(s), is no less
thanV π(s) at every states, for any other policyπ. Another Bellman equation governs
V ∗:

V ∗(s) = max
a∈A

∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)].

From any value functionV , we can compute a policy Greedy(V) that selects, at any
states, the greedy look-ahead actionargmaxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′)+γV (s′)].

The policy Greedy(V ∗) is an optimal policy.Value iterationiterates the operationV ′(s) =
maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′) + γV (s′)], computingV ′ from V , producing a

sequence of value functions converging toV ∗, regardless of the initialV used.
We define the statewise Bellman errorB(V, s) for a value functionV at a states to

beV ′(s) − V (s). We will be inducing new features based on the sign of the statewise
Bellman error. The sup-norm distance of a value functionV from the optimal value
functionV ∗ can be bounded using the Bellman error magnitude, which is defined as
maxs∈S |B(V, s)| (e.g., see [12]).

Linear Approximation of Value Functions. We assume that the states of the MDP have
structure. In particular, we assume a state is a vector of basic properties with Boolean,
integer, or real values, and that the state space is the set ofall such vectors. We call
these basic propertiesstate attributes. This factored form for states is essential to enable
compact representation of approximate value functions.

A common solution to the problem of representing value functions (e.g., value it-
eration) in very large, structured state spaces is to approximate the valueV (s) with a
linear combination of features extracted froms, i.e., asṼ (s) =

∑p
i=0

wifi(s), where
wi is a real-valuedweightfor theith featurefi(s). Our goal is to find featuresfi (each
mapping states to boolean values) and weightswi so thatṼ closely approximatesV ∗.

Many methods have been proposed to select weightswi for linear approximations
[6, 11]. Here, we use a trajectory-based approximate value iteration (AVI) approach.
Other training methods can be substituted and this choice isorthogonal to our main
purpose.

The AVI method we deploy constructs a fixed-length sequence of value functions
V 1, V 2, . . . ,V T , and returns the last one. Each value functionV β is defined by weight
valueswβ

0 , wβ
1 , . . . ,wβ

p asV β(s) =
∑p

i=0
w

β
i fi(s). Value functionV β+1 is constructed

from V β by drawing a training set of trajectories1 under the policy Greedy(V β) and
updating the weights according to this training set as follows.

Let s1, s2,. . . ,sn be a sequence of training states, which we generate by drawing a
set of trajectories under the current greedy policy. A training set for weight adjustment
is defined as{(sj , V

′(sj)) | 1 ≤ j ≤ n}. We adjust weights in iterations of batch
training. In thel’th batch training iteration, the weight update for thei’th weight in the
training set iswi,l+1 = wi,l +

1

n

∑
j αfi(sj)(V

′(sj)−
∑p

i=0
wi,lfi(sj)). Here,α is the

learning rate parameter. We take the initial weightswi,1 to bew
β
i . After κ iterations we

setwβ+1

i = wi,κ+1.

2.2 Decision Tree Classification

A detailed discussion of classification using decision trees can be found in [3]. A de-
cision tree is a binary tree with internal nodes labelled by state attributes (and, in our
case, learned features), and leaves labelled with classes (in our case, either zero or one).
A path through the tree from the root to a leaf with labell identifies a partial assignment
to the state attributes—each state consistent with that partial assignment is viewed as
labelledl by the tree. We learn decision trees from training sets of labelled states using
the well known C4.5 algorithm [5]. This algorithm induces a tree greedily matching
the training data from the root down. We use C4.5 to induce newfeatures—the key to
our algorithm is how we construct suitable training sets forC4.5 so that the induced
features are useful in reducing Bellman error.

1 The source of this set is a parameter of the algorithm, and it could for example be drawn by
sampling initial states from some state distribution and then simulatingπ to some horizon from
each initial state.

3 Feature Construction for MDPs

We propose a simple method for constructing new features given a current set of fea-
tures and an MDP for which we desire an approximation ofV ∗. We first use AVI, as
described above, to select heuristically best weights to approximateV ∗ with Ṽ based
on the current feature set. We then use the sign of the statewise Bellman error at each
state as an indication of whether the state is undervalued orovervalued by the current
approximation. If we can identify a collection of undervalued states (ideally, all such
states) as a new feature, then assigning an appropriate positive weight to that feature
should reduce the Bellman error magnitude. The same effect should be achieved by
identifying overvalued states with a new feature and assigning a negative weight. We
note that the domains of interest are generally too large forstatespace enumeration, so
we will need classification learning to generalize the notions of overvalued and under-
valued across the statespace from training sets of sample states. Also, to avoid blurring
the concepts of overvalued and undervalued with each other,we discard states with
statewise Bellman error near zero from either training set.

More formally, we draw a training set of statesΣ from which we will select training
subsetsΣ+ andΣ− for learning new features. The training setΣ can either be drawn
uniformly at random from the state space, or drawn by collecting all states in sample
trajectories starting at uniformly random start states under a policy of interest (typically
Greedy(Ṽ)). If using trajectories, each trajectory must be terminated at some horizon.
The horizon and the size ofΣ are parameters of our algorithm.

For each states in Σ, we compute the statewise Bellman errorB(Ṽ , s). We then
discard fromΣ those statess with statewise Bellman error near zero, i.e., those states
for which |B(Ṽ , s)| < δ for a non-negative real-valued parameterδ, and then divide
the remaining states into setsΣ+ andΣ− according to the sign ofB(Ṽ , s). So,Σ+ is
the set{s|B(Ṽ , s) ≥ δ} andΣ− is the set{s|B(Ṽ , s) ≤ −δ}.

We note that computing statewise Bellman error exactly can involve a summation
over the entire state space, whereas our fundamental motivations require avoiding such
summations. In many MDP problems of interest, the transition matrixT is sparse in a
way that set of states reachable in one step with non-zero probability is small, for any
current state. In such problems, statewise Bellman error can be computed effectively
using an appropriate representation ofT . More generally, whenT is not sparse in this
manner, the expectation can be effectively approximately evaluated by sampling next
states according to the distribution represented byT .

We then useΣ+ as the positive examples andΣ− as the negative examples for a
supervised classification algorithm; in our case, C4.5 is used. The hypothesis space for
classification is built from the primitive attributes defining the state space; in our case,
we use decision trees over these attributes. We can also interchange the roles ofΣ+ and
Σ−, using the latter as positive examples. In our experiments,we do this interchanging
for every other feature constructed.

The concept resulting from supervised learning is then treated as a new feature for
our linear approximation architecture, with an initial weight of zero. The process can
then be repeated, of course, resulting in larger and larger feature sets, and, hopefully,
smaller and smaller Bellman error magnitude.

To conclude our description of our algorithm, we discuss setting the parameterδ
dynamically, once in each iteration of feature construction. Rather than directly specify
δ, we specifyδ in terms of the standard deviationσ of the statewise Bellman error over
the same distribution used in selecting states for the training setΣ. The value ofσ is
easily estimated by sampling the training distribution andcomputing the Bellman error.
We then setδ, at each iteration, to be a fixed multipleη of σ. This approach removesδ as
a parameter of the algorithm, replacing it with the parameter η. This dynamic selection
of δ allows adaptation to the decrease in Bellman error magnitude over the run of the
algorithm.

4 Experiments

In this section, we present some experimental results for our feature construction algo-
rithm. We use two domains in the experiments. The first domainis an8 × 8 game of
Tetris (Tetris). The second domain is a computer network optimization problem called
SysAdmin, which we use primarily in order to compare to the closest previous related
work; that work [4] used SysAdmin as a testing domain. Both the state attributes and
the learned features in the experiments are binary features.

Tetris. For the Tetris domain, we start with 71 state attributes; 64 attributes which
represent if the 64 squares are occupied or not, and 7 attributes which represent which of
the 7 pieces is currently being dropped. We select training sets for feature construction
by drawing trajectories from an initial state with an empty board and collecting 600,000
states on these trajectories asΣ. The training sets for AVI are selected by drawing 100
trajectories from an initial state with an empty board and allowing each trajectory to
extend to the end of the game. We draw the trajectories using the Greedy(Ṽ) policy.
The discount factorγ is 0.9 for this experiment, and the parameterη is set to0.3. In
addition,κ is fixed at100 andα at0.01. AVI is stopped (appearing to have converged)
after 1,200 training sets are drawn; at that point, a new feature is learned.

The results are shown in Figure 1. The score is determined by the average number
of lines erased during a sequence of games. The performance of the learned features are
evaluated by the 2,000-game average score for Greedy(Ṽ) using the weights learned
by AVI. Figure 1 displays the average of such evaluations over 4 separate trials of fea-
ture learning. In addition, we also show in Figure 1 the result of using sets of randomly
generated features; such features are generated followingthe same procedure described
in the previous section, but label examples in the training set Σ randomly instead of
deciding the labeling by statewise Bellman error. Value functions constructed from ran-
domly generated features perform poorly, and do not show improvement as the number
of features used increases. Thus, our use of statewise Bellman error to label the train-
ing examples plays an important role in the performance of our feature construction
algorithm.

We also tested AVI on human-constructed features in this domain. The features we
used in this case were provided by Bertsekas in [2]. These features are useful features as
considered by a human, and according to [2] they were selected after some testing. We
tested the performance of the weights learned after each AVIiteration by running 2,000

games and taking the average score. The maximum 2,000-game average performance
was 92.9, which was achieved after 22,634 iterations of AVI.This performance was
substantially better than the best performance our learnedfeature set exhibited, which
was 27.6 (using 34 learned binary features).

We note that the human-selected features are all integer-valued, apparently giving
the human set a clear advantage over our binary features (especially per feature). Clearly
one approach for further improvement in feature learning isto design a feature-learning
approach that can produce integer-valued features.

We also study the the runtime behavior for our algorithm in this domain. We show
in Figure 2 the execution time for generating the features and adjusting the weights.
How long it takes a feature to be learned depends on how many training examples are
collected and how many features exist. Since the number of training examples does
not grow as we learn additional features, the time required to learn a new feature is
eventually dwarfed by growing time required to train the weights for the growing feature
set.

Fig. 1. Score (average number of lines erased in 2,000 games) plot for the learned features and
randomly generated features in the8 × 8 Tetris domain. For reference, the maximum score for
the human-selected feature set from [2] was 92.9.

SysAdmin. For the SysAdmin domain, two different kinds of topologies are tested: 3-
legs and cycle. There are 10 nodes in each topology. We followthe settings used in [4]
for testing this domain. The target of learning in this domain is to keep as many ma-
chines operational as possible, since the number of operating machines directly affects
the reward for each step. Since there are only 10 nodes, the on/off status of each node
is used as a basic feature, which means there are a total of 1024 states. We simply use

Fig. 2.Number of minutes required to generate then’th feature, and to train the weights after the
n’th feature is added to the feature set.

all states as the training set for feature construction. To enable direct comparison to the
previous work in [4], we use Bellman error magnitude to measure the performance of
the feature construction algorithm here.

For the experiments that use the whole state space as a training set, the plot of av-
erage Bellman error for 10 separate trials over the number offeatures learned is shown
in Figure 3. We usedγ equal to0.95, η equal to1, α equal to0.1, andκ equal to100.
In this experiment there are 50 trajectories drawn in each AVI training set, each drawn
from a random initial state, and using trajectory length 2. AVI was stopped, appearing
to have converged, after 1,000 iterations.

Also included in Figure 3 are the results from [4]. We select the best result they
show (from various algorithmic approaches) from the 3-legsand cycle domains shown
in their paper (their “d-o-s” setting for the cycle domain and their “d-x-n setting” for
the 3-legs domain).

Compared to the results in [4], also shown here, our feature construction algorithm
achieves a lower Bellman error magnitude in these domains for the same number of
features, throughout, and a lower converged Bellman error magnitude when new fea-
tures stop improving that measure. This is another encouraging result for this proposed
feature construction algorithm.

5 Conclusions and Future Work

From the experiments, the results show that our feature construction algorithm can gen-
erate features that show significantly better performance in 8 × 8 Tetris than randomly
constructed features, and can produce features that outperform the features produced by
the algorithms in [4] for the SysAdmin domain. However, our algorithm cannot learn a
feature set for8 × 8 Tetris that competes well with the human-constructed feature set
provided in [2].

Our technique depends critically on the generalization ability of the classification
learner to cope with large state spaces. The features generated by the feature-construction
algorithm are currently represented as decision trees. Although the experiments showed
that these features are useful in some problems, they are still hard to interpret. One

Fig. 3. Bellman error for SysAdmin domain (10 nodes).

goal for designing a good feature-construction algorithm is to be able to produce fea-
tures that are understandable by humans. Furthermore, decision tree learning might
not be adequate to find good generalizations in complex domains. We observed that
the human-constructed features in [2] can be represented compactly using relational
languages. Some of them, e.g. the number of ”holes” in Tetris, are quite awkward to
represent using the decision tree structure in this paper. One way we are considering for
improving our algorithm is to use a relational classification or function-approximation
algorithm combined with an expressive knowledge representation instead of using C4.5
with decision trees.

We note that the performance of machine-learned feature setappears to converge,
with little added benefit per new feature, at a point where thepolicy corresponding to
the learned value function is far short of optimal. This suggests a lack of state-space
exploration during the feature learning stage. Another direction we are considering for
improving our algorithm is to develop new exploration strategies for generating the
training sets of states for feature learning.

References

[1] R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation – a new computational
technique in dynamic programming.Math. Comp., 17(8):155–161, 1963.

[2] D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific,
1996.

[3] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[4] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier, and C. Guestrin. Greedy linear value-

approximation for factored markov decision processes. InAAAI, 2002.

[5] J. R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[6] R. S. Sutton. Learning to predict by the methods of temporal differences.MLJ, 3:9–44,

1988.
[7] R. S. Sutton and A. G. Barto.Reinforcement Learning. MIT Press, 1998.
[8] G. Tesauro. Temporal difference learning and td-gammon. Comm. ACM, 38(3):58–68,

1995.
[9] P. E. Utgoff and D. Precup. Relative value function approximation. Technical report,

University of Massachusetts, Department of Computer Science, 1997.
[10] P. E. Utgoff and D. Precup. Constuctive function approximation. In Motoda and Liu,

editors,Feature extraction, construction, and selection: A data-mining perspective, pages
219–235. Kluwer, 1998.

[11] B. Widrow and M. E. Hoff Jr. Adaptive switching circuits. IRE WESCON Convention
Record, pages 96–104, 1960.

[12] R. J. Williams and L. C. Baird. Tight performance boundson greedy policies based on
imperfect value functions. Technical report, Northeastern University, 1993.

