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Abstract

This thesis presents two independent pieces of research.

First, we consider the problem of automatically inferring properties of programs.
Our approach is to explore the application of familiar type inference principles to a
“type system” sufficiently expressive that the typing problem is effectively the check-
ing of program specifications. We present such a type system, and use familiar syntax-
directed type inference rules to give a polynomial-time procedure for inferring type
theorems in this type system. We discuss examples of simple functional programs
and the specification information this procedure automatically infers. The enriched
notion of type allows the definition of any recursively enumerable set as a type, and
includes argument-dependent output types for functions. The inference procedure is
capable for example of automatically inferring that an insertion sort program always
returns a sorted permutation of its input.

We present both first-order and higher-order versions of our sample programming
language and inference algorithms for both languages. We believe most of the inter-
esting inferential challenges are already present in the first-order case.

The second piece of research we present addresses the satisfiability of sets of for-
mulas in a particular set constraints language. We consider set expressions built up
from set constants by union, set complement, and taking the image of a set expression
under a function or relation. Previous work in this area has neglected the “Tarskian”
case where the functions and relations are allowed to take on arbitrary meanings,
rather than only a standard Herbrand meaning. We prove that the satisfiability of a
finite set of subset formulas between these “Tarskian” set expressions is in nondeter-
ministic doubly exponential time. Our proof is by reduction to a new Diophantine
inequation solvability problem, which we show to be in nondeterministic exponential
time, but conjecture to be in N'P.

Thesis Supervisor: David Allen McAllester

Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Introduction

This thesis presents two largely unrelated pieces of research. First, we present a
natural and expressive type language along with a new polynomial-time type inference
system that infers types in this language. Second, we show the decidability and bound
the complexity of a previously unstudied problem in the area of set constraints. We
discuss the first piece of work now, and will further introduce the set constraints work
later in the thesis.

Many researchers have studied type inference systems for functional programming
languages[34, 24, 35, 5]. The typical goal of such research is to allow the programmer
to omit type declarations without losing the benefits they provide. The types inferred
by such systems are typically similar to the primitive types of a typed programming
language with typings for functions added (so that @ — /3 is a type whenever o and
(3 are). Many such type inference systems can be described by sets of locally-acting
syntax-directed type inference rules.

More recently, effective type inference systems have been given for more expressive
type systems, e.g., allowing conditional types[2]. The stated motivation for such
increased expressiveness is to be able to infer types for more programs to ensure
type safety. These systems, like most type inference systems, typically have poor
worst-case complexity while retaining practical effectiveness.

We believe that there is a continuum between checking type safety and verifying

program correctness. As the language of the types inferred becomes more expressive,



the type inferences can more precisely characterize the outputs of the programs being
analyzed. Rather than base our type system on the types present in programming
languages, we draw inspiration from the types present in programmers’ analysis of
their own programs. Not only do programmers use a very expressive type language
(natural language), but we observe that they are effective at quickly analyzing their
own programs to draw expressive typing conclusions. For example, a programmer
writing an insertion sort program can typically quickly and easily verify that his pro-
gram returns a sorted permutation of its input—we view this as the typing conclusion
that the output of “sort(1)” has the “types” “a sorted list” and “a permutation of 1”.

We take this human capability, along with the above-stated trend in type infer-
ence systems, as evidence that there must exist fast and effective “type inference”
algorithms for very rich type systems (these algorithms are of course incomplete).
We define in this thesis a generalization of the traditional notion of “type” to a much
more expressive notion of “specification”, or “spec”, and then give a type inference
style algorithm for inferring specifications for functional program expressions. Our
algorithm runs in polynomial-time, and is capable of automatically inferring specifi-
cations such as the fact that insertion sort returns a permutation of its input.

Note that the specifications “a permutation of the input” and “a sorted list” differ
from types in traditional type systems in at least two ways. The first specification
depends on the actual input to the function (not just the input’s type). Such types are
known as dependent types[38, 14], and our system depends critically on including such
types in our “specification” language. Second, the set of “sorted lists” is not definable
by a simple grammar, and so is not a regular type.[37, 10, 41] Our specification
language allows any RE set to be defined as a program specification. Note that this
property allows one program, possibly very inefficient but simple to understand, to
serve as a correctness specification for another program, more efficient but harder to
understand.

We envision an interactive programming system in which programmers write pro-
grams that include information about the specifications the programs are intended

to meet, using an expressive specification language. As the program is written, the



system checks that it is well-typed in the sense that no function is applied to argu-
ments that don’t provably meet the declared argument specifications for the function.
Ideally, the system would be able to infer specifications for expressions quickly and
with human-level competence. Where necessary, the programmer would switch to
a theorem proving mode and prove lemmas necessary to aid the verification of the
well-typedness.

Note that such a system would not require programmers to prove any more than
they desired about the program. By providing more, or less, specification information
to the system, the programmer can control where on the continuum from checking
run-time type safety to verifying program specifications the programming process
falls. By adding more specification information, the programmer can be sure that
not only is “plus” receiving only numerical inputs, but that “merge” is in fact passed
two sorted lists, for example. By adding even more, it may become verifiable that
“merge-sort” correctly sorts its input.

we believe that the simplicity of the inference rules defining our algorithm makes
it possible for a programmer to develop the ability to predict what expressions the
system will be able to compute specifications for, and where and how it will need help.
This property may make an interactive environment based on this system acceptable
to some programmers in spite of below human-level specification inference.

The remainder of this thesis is organized as follows:

1. We discuss previous work on inference technology and inferring properties of

programs.

2. We present a first-order version of our programming language and inference al-
gorithm, starting with several examples of simple first-order programs and their
automatically computed specifications and moving to a formal presentation of

the language and algorithm.

3. We present a higher-order version of the same language, its syntax and seman-
tics, and enhancements to the inference algorithm for dealing with the higher

order features.



. We present a further enhancement to the algorithm we call “automatic existen-

tial instantiation”, separated from the rest because of its subtlety.

. We introduce a new problem in the area of set constraints, resolve its decidabil-

ity, and bound its complexity.



Chapter 2

Previous Type Inference

Technology

2.0.1 Inference Engine Technology

Researchers have tried a variety of techniques to deal with the general intractability
of automated inference. One approach has been to limit the expressiveness of the
underlying logic to a tractable language. By limiting the expressive power available
to the user, a system can force the user to represent his inference problem so that it
can be solved quickly—of course, this may be difficult or impossible for the user to do.
This approach can be very useful for solving problems which fall within the expressive
power of the language. As an example of this approach, we consider concept languages
([9], [36], [39], [15]). A concept language is a language of expressions intended to
denote sets. The primitive atomic formula of a concept language is the subset, or
subsumption relation. By restricting the concept formation operators in the language,
the subsumption question for the language (that is, the question of whether a given
subsumption formula follows from some others) can be made tractable. Many concept
languages have fast complete inference procedures for recognizing valid taxonomic
consequences.

The formulas of our programming language can be viewed as a concept language,

but the concept formation operators of our language are too expressive to have a



fast complete inference mechanism. Instead, we provide fast incomplete automated
inference, and rely on user interaction with a complete proof system for completeness.

Another approach to the intractability problem is to allow the inference procedure
to run arbitrarily long, or even forever, for some problems, while allowing the user to
interrupt the procedure. The procedure is only of use in those cases where it termi-
nates quickly enough, and in practice this is similar (though perhaps less predictable)
to having a fast but incomplete decision procedure such as that we provide.

One system which takes this approach is the NQTHM inference system ([8]),
based on a logic of pure LISP with recursive definitions and recursive DEFSTRUCT
(the “shell” principle). The inference engine is a term rewriting system with much
heuristic knowledge about LISP and induction built in. Inference is not guaranteed
to terminate, and termination may depend on the order or the exact statement of
the available lemmas. Because of the logic’s close connection to LISP and the built-
in heuristic knowledge about LISP, NQTHM is ideally suited for the verification of
properties of LISP programs. However, it has also been used very successfully to verify
abstract mathematical theorems, with some extra effort and awkwardness needed to
represent the mathematics in LISP. Many of NQTHM’s heuristics could be added to
our system for reasoning about the subset of our language which corresponds to the
NQTHM logic. Also, adding a Kleene closure relational operator to our reasoning
mechanisms, as described in [30] could make it possible to derive in a general-purpose
forward-chaining manner many of the properties of recursive definitions which are
computed heuristically by NQTHM.

An entire family of inference systems are the descendants of the LCF system
([19], [42], [18]). These systems provide a complete set of simple inference rules,
and essentially require that the user provide a full formal proof of his theorem. To
assist him in this task, the user is provided with a “tactic” language—essentially,
a language for writing programs that generate proofs. By building up a library of
useful (and often domain-specific) tactics, the user can avoid the arduous detail of
full formal proofs. It is possible to build a forward chaining notion of obviousness

like that in our inference system into an LCF-based system as a primitive inference
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rule (or built-in tactic)([13]), however, most LCF systems have been less ambitious
than our system in providing aggressive automatic inference—relying instead upon
user written tactics and proofs.

Many systems give the user some procedural control over the inference process
which can help it solve a problem faster. For example, term rewriting based inference
systems ([8], [42]) allow the user to control which lemmas are used in which directions
as rewrite rules. By carefully choosing these rewrite rules, the user can dramatically
affect the effectiveness of the inference procedure. Similarly, the order of the clauses
and the choice of resolution strategy employed can be used to control the effectiveness
of a resolution based inference system. Because the user has this procedural control,
these systems also provide a means of analyzing the inference process to understand

 This helps the user determine what procedural fixes need

“where it went wrong.’
to be made. It is unfortunate that such procedural assistance to the inference en-
gine appears to be a practical necessity—the most generally useful inference systems
today are written in this style. Our inference system provides a notion of obvious

consequence which takes no procedural information from the user—our hope is to

demonstrate that this can be made practical.

2.0.2 Type Checking and Type Evaluation in Other Auto-

mated Inference Systems

Many automated inference systems perform some form of type checking on the ex-
pressions in their input. Most systems differ from our system in that the underlying
syntax does not collapse the term/type distinction. Therefore, many systems have a
completely separate type language, often providing a means for defining new types
using predicates. Type checking in these systems can still be viewed as a means
of organizing general purpose inference, since a type obligation can be converted
into a predicate to be verified by whatever means are available. However, previous
type checking systems have tended to emphasize ensuring the well-formedness of the

expressions being checked rather than using the type checking as a framework for
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organizing powerful general purpose inference procedures like the forward-chaining
procedures we present here. Our type inference system returns a potentially rich set
of types for the expression being checked, as well as ensuring its well-formedness.

A number of automated inference systems have been written based on the ML type
system [33]. This type system consists of primitive types, type variables, and function
spaces between types. Any type expression containing type variables represents the
intersection of all the types that could be obtained by replacing the type variables by
type expressions without variables. The use of type variables allows the ML system
to represent polymorphic functions such as the identity function: the ML type of
the identity function would be the function space between a particular type variable
and itself. This type system is much less expressive than our type system —for
example, it cannot represent a type whose instances are sorted lists. This lack of
expressiveness can be mitigated by allowing the user to define new primitive types
using arbitrary predicate expressions, but this method is relatively awkward and has
not to our knowledge been used to organize general-purpose inference around types
as intended in our system.

In ML-based systems, unlike our system, each syntactic expression has a single
correct type expression (possibly containing type variables). This type expression is
automatically computed by the ML system by using pre-existing knowledge about the
types of the constants already defined, along with unification, to pick the appropriate
instances of any polymorphic functions involved as well as the appropriate types for
the undeclared variables. This approach allows the ML user to have the benefits of
a strongly typed language without having to specify types for his variables in most
cases. Our system, by contrast, requires every variable to have a declared type—this
is necessary because in our richer type system, there is no single distinguished type
for each of the defined constants. Because our type system is very expressive, it
is generally not difficult to identify an appropriate, but not limiting, type for each
variable in a program.

Other automated inference systems have implemented algorithms with some simi-

larity to our algorithm for analyzing recursive definitions. The Boyer-Moore theorem
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proving system [8] uses a very limited type system in which every semantic value
must be a member of one of a finite collection of types. When type-checking a new
definition, the system computes a type set for the defining expression: a subset of the
finite collection of types such that under any interpretation of the variables in the
defining expression, the expression must take on a value within a type in the subset.
Given a recursive definition, the Boyer-Moore system computes a fixed-point type
set (one such that the definition can be seen to have that type set by assuming that
recursive applications of the function have that type set) by repeatedly type-checking
the definition with ever larger type sets assumed for the recursive calls. Because
there is a maximal finite type set which is always a fixed point, this process always
terminates with a fixed point, and in practice often finds a useful fixed point type set.
The recursive definition type inference for our language described below must deal
with the difficulty that our type system is significantly richer than that of the Boyer-
Moore prover. The primary means we use to deal with this richness is by relying
on the forward-chaining inference technology to produce useful and finite answers
quickly. This technology essentially limits the set of types being considered to the
finite set of types which have been mentioned in the proof, enriched in various limited
ways (primarily by instantiation of known theorems), ensuring termination. So our
type inference for recursive definitions differs from that in Boyer-Moore in that it
allows a much wider variety of types in the finite set of types being considered.
Both our type inference algorithm for recursive definition, and that just described
for Boyer-Moore can be viewed as instances of a general abstract interpretation al-
gorithm for evaluating recursive definitions described in [1]. This general algorithm
captures the idea of dealing with recursion by computing a fixed-point which can be

proven by induction.
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Chapter 3

First Order Specification Inference

3.1 Some Examples of Quickly Verifiable Specifi-
cations

We begin with an informal discussion of our programming and specification languages,
and then discuss some examples of simple programs and the specifications our algo-
rithm can automatically compute for them. Later sections will contain a formal syntax
and semantics of our programming language and the specification language, as well
as a complete description of the algorithm. Readers who have trouble understanding
these examples informally are encouraged to return to them after scanning the later

sections.

3.1.1 Example Programs

The programming language we will use is a simplified, typed first-order variant of
LISP. We call it first-order because it does not include first-class functions; rather,
user functions are introduced only through definitions (possibly recursive) and used
only by being applied to arguments.® We call it {yped because every variable is given

at its introduction a user-provided specification (sometimes abbreviated spec). These

1'We omit first-class functions only for simplicity here. We show how to extend this work naturally
to higher-order languages in Chapter 4.
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specifications function much like types in a simply typed programming language, ex-
cept that they range over our specification language, which is much more expressive
than any familiar type system. Because the specification language is so expressive,
we don’t expect providing specifications for variables to be a significant burden on
programmers, though it will still carry some of the advantages of simply typed lan-
guages.

The programming language contains constructor symbols (e.g. cons) and corre-
sponding selectors (car and cdr), and has the intended semantics that each program
expression denotes some term in the Herbrand closure over the constructor symbols
(or bottom).

Unlike LISP, our language syntax has a distinguished formula category, with for-
mulas of the form e:s meaning “e meets the spec s”. We will discuss the computation
implied by such formulas later.

Throughout the remainder of this section we exhibit computed specs for three
example programs. Our purpose here is to demonstrate some of the usefulness of our
algorithm and specification language—later in this chapter we will discuss how these
specs are computed. The user-provided definitions of the specification functions (e.g.
(a-number)) in these examples are shown and explained just below.

Our first example program recursively defines + on numbers represented in unary
as lists of the symbol ’a. This program defines + to be a function that operates on
two arguments. FEach of the arguments is declared to meet the spec (a-number).
Our system automatically determines that (+ x y) is always greater than or equal

to both x and y (i.e., meets the specs (> x) and (> y)).

(define (+ (x (a-number))
(y (a-number)))
(if x:’nil
y
(cons ’a (+ (cdr x) y))))

15



Our second example program defines insertion sort on a list of numbers, using
functions insert and sort. Our system automatically finds that (insert x 1)
returns a permutation of (cons x 1), i.e., meets the spec (a-permutation-of (cons

x 1)) and that (sort 1) always returns a permutation of the list 1.2

(define (insert (x (a-number))
(1 (a-list)))
(if 1:’nil
(cons x 1)
(if x: (> (car 1))
(cons (car 1)
(insert x (cdr 1)))

(cons x 1))))

(define (sort (1 (a-numlist)))
(if 1:’nil
1
(insert (car 1)

(sort (cdr 1)))))

Our third and last example program is a first-order version of LISP’s mapcar.
Here, we map a fixed function £ across a list of numbers. Our system automatically

infers the spec (samelength-as 1) from reading the definition of map-£.

(define (map-f (1 (a-numlist)))
(if 1:’nil
1
(cons (£ (car 1))

(map-f (cdr 1)))))

2As we will exhibit below, the system has no built-in knowledge of permutations. (a-
permutation-of 1) is a spec defined by the user for arbitrary list 1. Once the user (or a spec-
ification library) provides that definition and proves two simple and natural theorems about it, the
system can infer that sort has the desired spec.

16



3.1.2 Example Specifications

The specification language is less familiar. This language is essentially our program-
ming language extended by a nondeterministic either combinator.[32, 28] Expres-
sions in the specification language can take on more than one possible value. This
nondeterminism may make some readers uncomfortable: we are simply using it to
provide expressions that define new types. In particular, the set of possible values of
a specification expression can be viewed as the type defined by that expression, and
we call it the set denoted by the specification.

The either combinator applied to two expressions yields an expression that can
nondeterministically take on any of the values of either of the two arguments. For
example, the expression (either ’a ’b) can take on either of two the values ’a or
’b, and is our way of representing the type {’a,’b}. Note that with recursion, a
single nondeterministic expression can have an infinity of values.

We add two other new combinators to the language to take the intersection or the
set complement of the possible values of their arguments (both and not, respectively).
Finally, we add a universal spec (a-thing) that nondeterministically returns any
value at all, and an empty spec L that has no values.

Note that specs, like programs, can contain variables. Moreover, a specification
variable can be bound by a program, in which case it refers to the object that the
program variable is eventually instantiated with. This means that specs can represent
dependent types, i.e., types that depend on an argument to the function being defined.
This added expressiveness is an important element of our system, and dealing with
it efficiently marks an important contribution of this work. The examples described
in this section centrally involve dependent types.

Below we exhibit the definitions for all the specification functions used in the
examples above. Consider, e.g., the definition shown of the function a-number. Given

this definition, (a-number) denotes the set of all flat lists of ’a symbols.

17



;; all lists with samelength as 1
(define (samelength-as (1 (a-list)))
(if 1:’nil
1
(cons (a-thing)

(samelength-as (cdr 1)))))

The specification (samelength-as 1) is a dependent type, depending on the value
of the variable 1. Given a list 1, the specification (samelength-as 1) nondetermin-

istically denotes any list of the same length as 1.

(define (a-list-member-of (1 (a-list)))
(if 1:’nil
bottom
(either (car 1)

(a-list-member-of (cdr 1)))))

The specification (a-list-member-of 1) nondeterministically denotes any member

of the argument list 1.

(define (delete (x (a-thing))
(1 (a-list)))
(if 1:’nil ’nil
(if x:(car 1)
(cdr 1)
(cons (car 1)

(delete x (cdr 1))))))

(define (a-permutation-of (1 (a-list)))

(if 1:’nil

18



1
(let ((x (a-list-member-of 1)))
(cons x

(a-permutation-of (delete x 1))))))

The specification (a-permuation-of 1) nondeterministically denotes an arbitrary
permutation of the input list 1. The specification language is powerful enough to

allow a concise and natural definition of this concept.

(define (a-number)
(either ’nil

(cons ’a (a-number))))

(define (a-list)
(either ’nil
(cons (a-thing)
(a-1list))))

;3 any list of numbers
(define (a-numlist)
(either ’nil
(cons (a-number)

(a-numlist))))

;; the numbers >= x
(define (>= (x (a-number)))
(either x

(cons ’a (>= x))))

;; the numbers > x
(define (> (x (a-number)))

(both (>= x) (not x)))

19



These remaining definitions are self-explanatory.

Finally, we say that a program expression e satisfies a spec s, written e:s, if the
value denoted by ¢ is one of the possible values taken on by s. By abuse of notation,
we can also say that a spec t satisfies another spec s, written t:s, if every value taken
by t can be taken by s (analogous to the standard notion of subtype).

As a simple example, consider the spec expression for “non-zero number”, (cons
’a (a-number)). Every value of this expression is a value of (a-number), so the
expression satisfies the spec (a-number).

In the definition of insert above we used the formula x: (> (car 1)) in an if
test. However, > is a specification function, defined by a nondeterministic program.
As in this case, our nondeterministic expressions often have infinitely many values,
and so cannot be executed. To use the > function in an if test we must require > to
have associated with it a means of computing membership in the resulting specifica-
tion, given particular arguments. This implementation attachment can be written in
our programming language, and proven to compute the desired result with a theorem
prover. These steps are straightforward for >.

We choose to write our if tests in this manner because it makes the extraction of
relevant type information from the test as straightforward as possible for the inference
mechanism. In the next section we will discuss the general restriction we need to place
on formulas appearing in programs to ensure that they are computable. The use of
attachment can always be avoided with no loss in clarity or program effectiveness, all
that is lost is those specification inferences that depend on the type information in
the if test in question.

We return to these examples after formally defining our language and inference

mechanisms.

3.2 A Programming Language with Specifications

We give here a more formal treatment of our demonstration language.
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Program Expressions . The program expressions are a first-order typed LISP

with constructor and selector functions, recursive definitions, let, and if:

en=ua|(letx:eer) | (fer - -en)] (3f €:8" e e3)

where f can be n-ary constructor, selector or n-ary program function-symbol, and s*
must be testable (see below). We often write a quoted symbol as an abbreviation for

the application of a 0-ary constructor.?

Specification Expressions . Specification expressions are formed from the same

grammar extended with either, both, not, a-thing, and L:

s n=a |(leta:ssy)|(fs1 - sn)| (f s1:82 S3 84)
| (either 51 $2) | (nots) | L

where f can now be any n-ary constructor or selector, or n-ary program or specifi-
cation function-symbol. Note that every program expression is also a specification
expression.?

Programs . We consider a sequence of function-symbols definitions to be a pro-
gram. A function-symbol definition assigns to a new function-symbol either (1ambda
L1181,y TniSy 8) or (fix f xq:81, -+, 2,08, $) where the body s must be
deterministic (i.e., a program expression) if the symbol being defined is a program
function-symbol. The specs s; can reference and depend on the variables x4, ..., z;_.
Note that we differentiate between defined program function-symbols and defined
specification function-symbols. This distinction is important in our inference system
as it is often important to know syntactically that an expression denotes exactly one
value, as is the case for pure program expressions.

We must restrict recursive definitions to ensure that every £ix expression accepted

3A full language would also include boolean operations in the formulas in if tests. No extra
difficulties are presented by this extension.

*We include both and not for convenience—they can also be taken to abbreviate appropriate
expressions using let and if, recognized by the inference process.
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has a well-defined least fixed point. For this language it suffices to prohibit recur-
sive calls in positions that are not syntactically monotone—this excludes recursive
calls inside the test of an if, inside an odd number of not expressions, or inside the
type specifications of the parameters of the definition. In addition to this restric-
tion, we require definitions of function symbols to be used in program expressions to
be syntactically terminating®. Checking termination syntactically is a deep problem
itself[26], but here we settle for simply requiring that there be some argument to the
function whose Herbrand size is reduced (by selector application) in all the recursive
calls (this restriction is the variant of primitive recursion[?] appropriate for recursion
on the structure of Herbrand terms).

We also define some convenient abbreviations. We use (both s; sy) to abbreviate
(not (either (not s;) (mot s2))), and (a-thing) to abbreviate (not L). We
frequently want to select the values of an expression which satisfy some formula, and
so define the abbreviation (some-such-that 2z s ®) to stand for (let z:s (if O
x 1)). We can then use this abbreviation to define forall z:s ® to abbreviate

s : (some-such-that = s P).

Semantics . Our semantic domain is the Herbrand closure over the constructor
functions, with an error (¢) element adjoined (note that the closure is taken before the
error element is adjoined). When a function is applied to objects outside its domain
(as indicated by the specs on its formal parameters) it returns e. Each specification
expression denotes a subset of the domain. If the specification expression is a program
expression the subset will contain only one element, and one can think of the program
expression as denoting that element. We call sets containing only one domain element
program values.

Assigning meanings to the various expressions compositionally is routine; we dis-
cuss the unusual cases in the meaning of specifications before presenting the full
semantics formally. Because a specification denotes a set of objects, the meaning of

function application may not be obvious: we apply the function pointwise; i.e., to ap-

®We will remove this restriction in the higher-order version of the language.
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ply a function f to sets aq,...,a,, choose objects x1,...,x, from the a; respectively,
and compute f(xq,...,2,). The function application will denote the set of values
that can be obtained in this manner. Viewed as a nondeterministic computation, we
first nondeterministically compute arguments for the function, and then apply the
function to them, with many possible results. The s1:s2 test of an if expression
is true exactly when s1 denotes a subset of s2’s denotation. 1 denotes the empty
set. Either and not are computed with union and set complement relative to the
domain, respectively.

Note that in both specifications and program expressions, fix and lambda ex-
pressions have only one meaning (not nondeterministically many): in each case it is
a relation over the domain, a functional relation for program expressions.

The meaning M, (e) of each language expression e within the Herbrand domain
M is determined relative to a variable assignment p that maps variables to members
of M and function symbols to their defining relations over M, always mapping con-
structor functions to their standard interpretation over the Herbrand domain. Note
that although function symbols have meanings that are relations over the Herbrand
domain the language is not higher order because these relations are always immedi-

ately applied, never passed around as first-class objects). M, (e) is defined as follows:

o M, (x)={p(x)} for variable or function symbol z,

o M,(let z:s s1)= |J M,pg(s1)

deM, (s)

ds1 € M, (s1)--- 5, € M, (5,)
<317"'75n7x> EMP(f)

M, ((apply f s1...8,)) =< @

M, (s3) when M, (s1) T M, (s2)
M, (s4) otherwise,

M, ((Af s1:82 83 84)) =

o M, ((either s; s3)) =M, (s1) UM, (s2)
o M,((not s))=M—M,(s)
o M,(L)={}
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o M,((lambda x1:81...2,:8, B))={{d1,...,dn, M, ([d;/x;] B))|d; € M}

note that the s; do not affect the meaning.

o M, ((fix [ w1:81...2,:8, B)):U Nexti((lambda L1181 .. Xni Sy L))

where Next (d) = M [j.—q ((lambda xq:51...2,:5, B))

o MP(C) = {<d17"'7dnvc(d17"'7dn)>|eaChdi EM_{G}}
U{(dy,--,dn,e€)|each d; € M and some d; is €}

for constructor function symbol ¢ of arity n,

o M, (s;)={(cldi,....dn),dj)|di € M —{e}}
U{({d,e)|de MAN-3dy---d,.d=c(dy,...,d,)}

where s; is the j’th selector for n-ary constructor c.

In the above definition plz := d] is the variable assignment p modified just at = to
give the value d, [s/z] e stands for the replacement of all free occurrences of = in e by

s, and Next' (d) denotes i applications of Next to d.

Implementation Attachments We require the user to attach verified program
expressions to any specification function used in a way requiring it to be computed
(in this language, in the test of an if). We also place sufficient restrictions on the
use of specifications in programs to ensure that the programs can be run.

A spec s* is testable if it is either a program expression or the application of a
computable specification function to program expressions.® A specification function
is computable if it has been given a proven program implementation.

As an example, consider the if test x: (> (car 1)) in insert. Our language
forces us to write this uncomputable test rather than the more familiar (> x (car
1)). However, to avoid this restriction we can just write the program for the predicate
form of > returning ’true or ’false, and then use ’true: (> x (car 1)). Doing
this will lose the advantages our system gains from extracting type information about

the formal parameter x from the if test.

5The application of a specification function to a non-program expression is not directly com-
putable even if all the functions involved have attachments.
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To retain these advantages, our user must take the same predicate definition (call
it >-imp), shown below and prove the attachment theorems also shown. Our system
recognizes theorems of this form and will then allow the implemented specification
function to appear in program expressions, as in insert.

The programmer can avoid attachment with no loss in effectiveness or clarity.

Only the type inferences that follow from the if test in question are lost.

(define (>-imp (x (a-number))
(y (a-number)))
(if x:’nil
’false
(if y:’nil
’true

(>-imp (cdr x) (cdr y)))))

forall y:(a-number) x:(> y)

(>-imp x y):’true

forall y:(a-number) x:(not (> y))

(>-imp x y):’false

3.3 Program Analysis: Inferring Specifications

For each new user definition our system extracts type lemmas which are then used
in the analysis of future definitions. Our algorithm thus operates in the context
of a library of previously derived knowledge. This library is just a set of known
specification formulas s : t. Most useful formulas from the library will have the
more restricted form forall wxqy:8y---x,:8, . s:t—where s, ¢, and the s; contain no
occurrences of if or let (remember that forall is an abbreviation for a specification
formula). We call such formulas type theorems.

All the facts concluded automatically by our algorithm will be type theorems. The

forward-chaining reasoning process that uses facts from the library does not reason
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about let or if expressions in theorems, so facts from the library that are not type
theorems will often be of limited value.

The general problem that the algorithm in this section attacks we call the specifi-
cation inference problem. Given a library L of type theorems (about already processed
definitions) and a new definition assigning some lambda or fix expression e to some
new function symbol ¢, analyze e to generate new type theorems about ¢ to add to
the library L.

There are three parts to our central analysis algorithm. First, a forward-chaining
inference closure intended as a notion of “obvious consequence” (t.); second, an-
other forward chaining analysis (]ID—A) which generates useful special cases of the beta-
reduction /abstraction facts for the new definition; and third, a syntax-directed, type-
inference inspired inference relation (Fo.) that manages the application of the two
forward-chaining closures. Our solution to the specification inference problem is to
add to £ those formulas ® such that £ o ®, except that we replace each occurrence
of e in ® with the newly defined symbol g. We now consider each of the three parts

of the algorithm in turn.

The Forward-Chaining Inference Relation . We now define a polynomial-
time computable inference relation ., where e is the lambda or £ix expression being
analyzed. Given a premise set ¥ of formulas (e.g. s:t), we say that ¥ k. s:¢ for
specs s and t whenever s:t is in the closure over ¥ of the inference rules given below.
Note that in addition to reasoning about specification formulas, the inference rules
draw (and use) conclusions of the form Dom (s) for specification expression s. These
domain analysis conclusions have no intended semantic meaning and are used by the
algorithm to limit the scope of the reasoning to remain within polynomial time. We
will prove that there are at most polynomially many conclusions Dom (s) inferred.
The intended intuition is that the inference process reasons only about expressions in
this polynomial-sized “domain”.

In the following rules, p and ¢ are meta-variables standing for any program ex-

pressions; r, s and ¢ are meta-variables standing for any specification expressions; f
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can be any function symbol, constructor or selector; ¢ is any constructor; the selector

rules are shown for cons, car, and cdr.

The following rules define F-.:

Sym Trans Eitherl Either2

r.s r:(either s t) s:r, t:r
piq st r:(not s) Dom ((either s 1))
q:p rit rit (either s t):r
Not-Sym Under-Both Basic-Either Basic-Both
Dom () Dom ((both s 1)) Dom ((either r s)) Dom ((both 7 s))
r:(not s) ris, r:t

r:(either r s) (both r s):r
s:(not r) r:(both s t) s: (either r s) (both r s):s
Strictness Always Selectorsl

Dom ((f s1...84)) Dom () Dom ((cons p ¢))

Some s;: L

r:r, L:r
(f 81...8,): L r:(a-thing)
Selectors?2 Monotonicity

S1:11... 8,11,

p:(car (cons p ¢))
q:(cdr (cons p ¢))

Constructors

Dom ((ey $1...8,))

Dom () ro(f s1 ...8,) Dom ((e2 t1...1,))

r:(cons s t) Dom ((f t1...t.)) ¢ # ¢

(car r):s re(f ty ... ty) (e; 51...8,) : (not (g t1...1))
(cdr 7):t
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Dom-Always Dom-Start Univ-Dom

s appears in e forall x:s ®
Dom ((a-thing)) Dom () Dom ()
Dom (L)
Univ-Inst Dom-Subexp

forall z:s ® Dom ()
p:s, where p appears in e s a subexpression of r
p/2] 0 Dom ()
Dom ([p/z] ®)

In the rule Univ-Inst, the notation [r/z]s denotes s with each free occurrence of
replaced by r.

Let ¥ be a premise set. Let A be the set of all expressions s such that Dom (s) is
inferred by forward-chaining the above rules from Y. We observe the following two

complexity bounds:
1. A has at most polynomially many members in the size of ¥, and

2. The entire forward-chaining can be computed in polynomial-time in the eventual

size of A.

The first bound follows from the observation (provable by induction on the length
of derivation) that every spec in A is either L, (a-thing), a subexpression of e, or
some subexpression of a universal formula forall xy:s;...2,:8, ® in ¥ with its
variables replaced by subexpressions of e. Only the last case poses a challenge, forcing
us to limit the quantification depth of the formulasin ¥ to some constant. Specifically,
we require that no formula in ¥ has a depth of let nesting greater than some fixed
constant (remember that forall is an abbreviation for a let expression). Given this

restriction there are only polynomially many instances of universal formulas in ¥ on
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subexpressions of e.”

To see the second bound, observe that by induction on the length of derivation
every spec in any new conclusion is of the form: s, (not s), (car s), or (cdr s)
for some s in A. But there are only polynomially many possible conclusions over
such specs, and for any partially closed premise set we can find a new consequence in

polynomial time.

Theorem 3.1 For any premise set X2 with bounded let nesting, and function symbol
definition ¢, we can compute the forward-chaining closure of Y wunder the rules

defining . in polynomial time.

We wish to point out that, although there are a large number of rules given
above, they are clearly not designed for the specific examples we’ve exhibited. Each
rule is a natural and simple local rule capturing a small piece of the meaning of one
language construct. The important thing about these rules is that they capture a
large polynomial time fragment of the quantifier-free inference problem. For any new
language features, we can always capture some polynomial-time portion of the possible
new inferences in similar forward-chaining rules. The examples serve to demonstrate

the power this kind of simple rule set can wield.

DA
Definitional Theorems Inferred by F, We define here a second forward chain-
DA
ing inference relation F; which generates some simple definitional axioms from each

DA
lambda or fix expression s encountered.  is defined by the following inference rules.

Start-DA

s 1s (lambda x(:8; - Z,:5, B)
or (fix ¢ (lambda x1:87---x,:8, B))

DA
F, Forall z(:5, - Tn:5, B:(5 z1...2,)

"For lemmas that were derived by the system, the bound on quantification depth can derive from
bounds on the arity of functions and the depth of Let nesting within analyzed definitions.
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Fither-DA

F, Forall x(:8, - T,:5, (either B, B,):t

F, Forall x{:8, - Tp:58, B;:t, 1=1 or 2

Let-DA

F, Forall x(:8; - -T,:5, (let z:5 B):t

F, Forall z(:5 - T,:5,2:5 B:t

If-DA

DA

F, Forall xy:81---x,:8, (if y;,:s8 By By):t

y1:ty - -y, t, is a suitable reordering of xy:81---x,:5,

DA Forall yy:t1---y;:(both ¢; 8)---y,:t,

s
Blit
T_A Forall yy:ty---y;: (both #; (not s))---y,:t,
° Bgit

In the rule If-DA, a reordering is suitable if it gives consequent theorems with no
free variables—the rule does not fire for every suitable reordering but picks just one
arbitrarily. These rules are intended to be used in a forward-chaining manner, trig-
gered by Start-DA whenever a fix or lambda expression is encountered during the

recursive descent described in the next subsection.

DA

The Syntax-Directed Inference Relation . We now use the . and F re-
lations just defined to define a stronger F. relation that handles let, if, lambda,
and fix by adding the sequent inference rules shown below. These rules are roughly
analogous to typical type inference rules: they are syntax directed, so that typing
of any expression can be done in a linear number of F. closures. In these rules, r,

s, t, u, uy and uy are meta-variables matching any specification expressions. Neg is
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discussed in the text below. The Analyze-Fix and Analyze-Lambda rules are shown
for one-argument expressions, but the analogous rules for arbitrary arity are intended.
We use the expression THMSy, (s) to abbreviate the set of all specification formulas
“about s” provable from ¥ using . A specification formula ® is “about s” if @ is
of the form s:¢ for some ¢, or if s is a lambda or fix expression and ® is forall
XUl . Tty (8 @p...2,):t for some specifications ¢ and wuy ---u,, and variables

x1---x, not appearing in s, where n is the arity of s.

Analyze-If Analyze-Lambda
I'=%Y U THMSs (r) U THMSs (s)  ©T'=%X U THMSy, (r)
I, r:s Fo. wuy:t I, x:rte. B:t

I'; Neg(r:s) Fo, gt x and z; not in I', z; not in B

T o Forall xq:7

Ybe, (if ris uy ug):t
((Qambda x:r B) x1):[x1/z]t

Analyze-Let Analyze-Fix
I'=%Y U THMSy; (r) I'=% U THMSy, (r)
I, w:irte.s:t I, Forall w:r , xirbe, B
(f w1):fas/a]d
zmnotin ¥ ort x and x1 not in I', x; not in B
Yo, (et z:r s):t Y e, Forall ;:r
((fix f x:r B) ay):[xq/z] 1
Analyze-Apply Analyze-DA
DA

I'=Y U THMSs (r) U THMSs (s)  F, ®

I' . (apply r s):t 5 1s a lambda or fix expression in e

Y . (apply r s):t oo @

The analyze-if rule does a simple case analysis on the if test. Because our k.

inference rules reason only about positive specification formulas, we negate formulas
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with the meta-function Neg, which takes as input a formula s:t and returns s: (not
t) if s is a program expression, and s: (a-thing) otherwise. Analyze-let is implicitly
doing universal generalization when r is not a program expression. Analyze-Apply is
the only place where the forward-chaining k. relation is used. The Analyze-Lambda,
Analyze-Fix, and Analyze-DA rules are needed only at the top level of function symbol
definitions (because that is the only place lambda and fix occur—this restriction will
be relaxed in the higher-order version of the language). We describe just below how
induction hypotheses for the Analyze-Fix are selected.

We can now formally define the use of . to generate theorems about a new
definition. Say we wish new theorems about the function symbol ¢, defined as the
lambda or fix expression e. If ¢ is a lambda expression (lambda x1:81...T,:8, B),
we simply return the set of theorems provable by t. of the form Forall xy:sq...2,:
S, (e xq...x,):t. Note that ¢ can contain the formal parameter variables z;, giving
us the important ability to discover dependent types. For recursive definitions e =
(fix g x1:81...2,:8, B), we prove type specs about ¢ by induction. To facilitate
describing this process we define the operation 7 on sets of specifications ¥ as follows:

Forall y:51...2,:5,

T(X)=<t|LU e, B:t
(g x1...2,) : B(Y)

where B(Y) is the both expression representing the intersection of all the members
of ¥ (remember that £ is the library of previously derived theorems known to the
system before encountering the new definition). Intuitively, 7(X) is the set of types
that can be proven for the body B under the inductive assumption that recursive calls
satisfy all the specs in ¥ (note that some of these specs may depend on the formal
parameters ;).

In order to apply the Analyze-Fix rule, we need to find a self-supporting induction
hypothesis—that is, a set of specifications ¥ such that 7(X) = . We find this fixed-
point of 7 by computing a decreasing sequence of candidate sets g, %1, ..., until we

reach a fixed-point or an empty set, as follows:
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Yo=T({Ll})
Sipn = T(S) 05

Once we find a fixed-point Yg, of 7 this way, we return the set of theorems

Forall y:51...2,:5,
t e Eﬁx

(gay...ax,)
Intuitively, we have started by analyzing the “base case” of the definition by seeing
what types we can prove for B under the assumption that recursive calls diverge.
We then take those types together as an inductive hypothesis about recursive calls
and see what subset of them can be proven about B. We repeat this step, each time
shrinking the inductive hypothesis until it reaches a fixed point. The resulting set of
types, found in polynomial time in the size of ¢ and £, is the largest self-justifying
set of types for ¢ in 7(L). Note that this approach to recursive definitions can be

easily and naturally extended to sets of mutually recursive definitions.

3.3.1 Inferring the Specifications in Our Examples

We now return to our example programs from Sect. 3.1, and explore the steps involved
in computing the claimed specifications for the programs.

The theorems shown below are among those generated automatically when reading
the specification definitions shown in Sect. 3.1. These and others like them are used in
calculating the specifications cited for the example programs. The first six theorems

DA
are examples of theorems produced by the F inference relation

(1) forall 1:(both (a-list) (not ’nil))

(cons (a-thing) (samelength-as (cdr 1))) : (samelength-as 1)

(2) forall 1:(both (a-list) (not ’nil))

z:(not (car 1))

8n practice, the runtime should be polynomial in the size of the relevant part of the library, that
1s those lemmas whose type restrictions apply to the expressions in the definition.
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(cons (car 1) (delete z (cdr 1))) : (delete z 1)

(3) forall 1:(both (a-list) (not ’nil))
z:(a-list-member-of 1)

(cons z (a-permutation-of (delete z 1))) : (a-permutation-of 1)

(4) forall 1:(both (a-list) (mot ’nil)) (cdr 1):(delete (car 1) 1)
(5) forall 1:(both (a-list) (nmot ’nil)) (car 1):(a-list-member-of 1)
(6) forall x:(a-number) (either x (comns ’a (>=x))) : (= x)

(7) forall x:(a-number) (> x):(both (>= x) (not x))

(8) forall 1:(a-numlist) 1l:(a-list)

(9) (a-numlist):(either ’nil (cons (a-number) (a-list)))

(A) (either ’nil (cons (a-number) (a-list))):(a-numlist)

Each example also requires the presence of some additional simple and natural
theorems. We intend either that the user have proven these theorems using a theorem
prover or that he is using a specification library containing the definitions and the
theorems. Each theorem captures a basic property of the definitions, rather than a
property targeted to any of our examples.” Many of the theorems can be proven by

stating them to a simple inductive theorem prover. The theorems needed are:

forall 1:(a-list)

1: (samelength-as 1)

forall 1:(a-list)

1: (a-permutation-of 1)

forall x:(a-number)
y:(not (> x))
x:(>=y)

9An exception to this is the second lemma on the right, which mitigates a weakness in our
reasoning about nondeterminism. Stronger polynomial-time reasoning about non-determinism is
possible and is addressed in Chapter 5.
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forall n:(a-number)
(>= (>=n)):(>=n)

forall n:(a-number) (cons ’a (>=n)):(>= (cons ’a n))

forall 1:(a-list)
(a-permutation-of (a-permutation-of 1)):

(a-permutation-of 1)

To conclude our discussion of these examples, we show some of the critical in-
ference steps involved in drawing one of the tougher conclusions. To determine that
(insert x 1) has the specification (a-permutation-of (cons x 1)), the system
must first choose that specification as an inductive hypothesis. This happens because
it is a specification of the base case (cons x 1), by the theorem that states that
any list 1s a permutation of itself—and a simple inference chain demonstrates that
(cons x 1):(a-list). Once we have (a-permutation-of (cons x 1)) as an in-
ductive hypothesis, the analysis of the recursive case of the if body goes as shown
below. Similar chains of reasoning are involved in automatically drawing the other

specification conclusions cited above.

(cons x (cdr 1st))
by theorem (4) above is under (cons x (delete (car 1lst) 1st))
by selectors rule is under (cons (car (cons x 1lst))
(delete (car lst)
(cdr (cons x 1st))))

by theorem (2) is under (delete (car 1st) (coms x 1st)) (¥)

(cons (car 1st) (insert x (cdr 1lst)))
by ind hyp is under (cons (car 1lst)
(a-permutation-of (cons x (cdr 1st))))
by (*) is under (cons (car 1st)

(a-permutation-of
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(delete (car 1lst) (cons x 1st))))

by theorem (3) is (a-permutation-of (cons x 1lst)) as desired.

The main inference chain involved in analyzing insert. First, (cons x (cdr 1st))
is analyzed to get the result labelled (*). This result is used to analyze the recur-
sive branch of insert. The inductive hypothesis puts (insert x (cdr 1lst)) under

(a-permutation-of (cons x (cdr 1st))). Not every inference rule used is cited.
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Chapter 4

Higher Order Specification

Inference

We consider here extensions to the first-order language presented in Chap. 3 to a
general purpose higher-order language. We then extend the inference mechanisms
presented to handle the new language features. We believe that the most difficult
inference problems are present already in the first-order case. The techniques pre-
sented here are straightforward extensions of the first-order specification inference
techniques—this chapter is provided not only to exhibit the extension, but also as
an opportunity to present a higher-order specification language based on nondeter-
minism. The specification language given here uses nondeterminism to achieve the
expressive power of Zermelo-Fraenkel set theory and allows particularly elegant ex-

pression of a wide range of mathematical concepts.

4.1 A Higher-Order Programming Language

Program Expressions We add new constructs to our first-order programming
language to allow first-class function values. First, we allow lambda expressions of
zero or one argument as program expressions—we call lambda expressions of no ar-
guments thunk expressions, and we intend functions of more than one argument to

be represented in a Curried manner. Second, we allow first-class recursive functions
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by including as program expressions fix expressions. The new program expression

BNF is given below.

¢ u=x | (apply €) | (apply [ ) | (c er--en) | (if & €1 e2) |
| (fix ¢ €*) | (lambda () e) | (lambda x:s €)

where f can be either any program expression or any selector function symbol, ¢ is
an n-ary constructor or selector symbol, ¢ and x are variables, s is a specification
expression (defined below), and ¢ is a testable formula (defined below). We often
write a quoted symbol as an abbreviation for the application of a 0-ary constructor
symbol, and we often omit the constructor apply.

We restrict the body e* of fix expressions to be a lambda expression of £ argu-
ments with a body B[g] (when un-Curried) such that every occurrence of ¢ in B is
syntactically monotone and continuous as an operator of k£ arguments. This property

is defined below in the context of the specification language.

Specification Expressions To complement the higher-order features added to the
programming language, we add related features to the specification language. As
before, we allow all program features in specifications. A lambda specification is
always deterministic (i.e., has just one possible value), however, its body may be
nondeterministic, in which case it denotes a nondeterministic function (i.e., a rela-
tion). In addition, we add operator and thunk types corresponding to partial, non-
deterministic versions of the traditional arrow types. We also add a new construct
a-domain-member-of which nondeterministically returns a member of the domain of
its argument—this construct yields no value on non-operator arguments. Figure 4-1
gives the new BNF for specification expressions.

We must restrict recursive definitions to ensure that every £ix expression accepted
has a well-defined least fixed point. It suffices to prohibit recursive calls in positions
that are not syntactically monotone and continuous. We explain the semantic motiva-
tion behind this restriction below in the section on the semantics for our higher-order

language. Here, we just state the syntactic restriction. First, we require the body
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s u=x | (apply s) | (apply f s) | (c ex---en) | (if ¢ 53 s4)

|
(fix ¢ s*) | (lambda () s) | (lambda x:s; s)

|
|
| (either s; s3) | (both s $2) | (not s) | (a-thing) | L
| (an-operator-from-to s; s3) | (a-thunk-to s;)

|

(a-domain-member-of s)

Figure 4-1: Specifications BNF. ¢ is a formula (defined below), @ and ¢ are
variables, s* is syntactically monotone and continuous, and f can be any specification
expression or selector function symbol, and ¢ is any n-ary constructor.

of every fix expression to be a lambda expression. An expression (fix g (lambda
xl:ey...xn:e, C'[gl)) is syntactically monotone and continuous if g does not occur

in any e;, and every occurrence of g in (' satisfies the following restrictions:
e g occurs only in applications to n argument expressions,
e g does not occur inside any of the following constructs:

— any fix expression,
— any lambda expression, or

— any formula.

Formulas We also extend the simple first-order language by adding formula con-
structs to increase the effectiveness of the inference rules we give later (there-exists
and at-most-one) [28]. We also add boolean combinations of specification formulas
for convenience (if expressions can already be used to express any desired com-
bination). The formula constructs there-exists and at-most-one assert that a
specification is non-empty, or deterministic, respectively. The addition of small is
necessitated by the richer semantics necessitated by the addition of operators and
thunks as well as our intent to capture the expressiveness of ZF. The intended se-

mantics of small is discussed in section 4.2. The new BNF for formulas is given

39



below:

¢ = $1:82 | (boolean-not ¢1) | (and ¢1 ¢2) | (small s)

| (there-exists s) | (at-most-one s)

An atomic formula is a formula with no occurrences of and or not. A literalis an
atomic formula or its negation.

Asin our first-order language, we must ensure that formulas appearing in program
expressions (as opposed to specification expressions) can be evaluated deterministi-
cally. In Sect. 3 we defined what it meant for a first-order specification to be testable.
Here we extend that definition to the formulas of our higher-order language. The

following formulas are testable:
o the formula s:t where both s and ¢ are program expressions, or

o the formula e:(f e; - -- ey, for program expressions e, ey - - - €,,, and implemented
function symbol f— A function symbol is implemented if it has been given a

proven implementation attachment as described in section 3.2, or
o the formula is e: (some-such-that = (a-thing) ®) where ® is testable, or

e Any boolean combination of testable formulas.

Abbreviations There are several useful abbreviations that we define to extend the
above language. Actual implementations may profitably choose to directly imple-
ment and reason about these constructs rather than translate them into the above
primitives.

We observe that there is a natural isomorphism between nondeterministic thunks
and sets (mapping each thunk to the set containing exactly its values when applied).
We can thus use thunks to represent sets, which we do by using (the-set-of-all
s) to abbreviate the expression (lambda () s) and (a-member-of s) to abbreviate

(apply s). Likewise, we will write the formula (a-subset-of s) for (a-thunk-to

S).
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Now that we have added lambda to the language, we can define let as an abbre-
viation by taking (let z:s s;) to be mean (apply (lambda x:s $1) S1).

We also find it convenient to abbreviate (and (there-exists s) (at-most-one
s)) as (singleton s), and (and s:f t:s) as (= s 1).

We will also use boolean combinations other than and and boolean-not, assuming
the natural translations into and and boolean-not.

When applying an implementation attachment function, e.g. <, it will be con-
venient to abbreviate the testable formula e: (some-such-that = (a-thing) (< z
p):’true) as (apply-imp < e p).

Finally, we keep the abbreviations some-such-that and forall that were de-

fined in the first-order chapter, expanding the occurrences of let into lambda as just

described.

Examples As examples of the use of the higher order features of the language,
we show higher-order versions of the definitions of three functions analyzed earlier:
insert, sort, and mapcar. These definitions rely on some basic definitions that we

also show:

(define (a-set)
(both (a-subset-of (the-set-of-all (a-thing)))
(a-thing)))

(define (an-operator) (an-operator-from-to (a-set) (a-set)))

(define (mapcar f:(an-operator) 1l:(a-list))
(if 1:’nil
1

(cons (f (car 1)) (mapcar f (cdr 1)))))

(define (a-transitive-operator)
(some-such-that r (an-operator)

(forall x:(a-domain-member-of r)
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(r (r x)):(r x))))

(define (a-total-operator)
P
(some-such-that r (an-operator)
P
(forall x:(a-domain-member-of r)
y: (a-domain-member-of r)

(or x:(r y) y:(r x)))))

(define (an-irreflexive-operator)
(some-such-that r (an-operator)

(forall x:(a-domain-member-of r)

x:(not (r x)))))

(define (an-ordering)
(both (a-transitive-operator)
(a-total-operator)

(an-irreflexive-operator)))

(define (the-domain-of (r (an-operator)))

(the-set-of-all (a-domain-member-of r)))

(define (the-range-of (r (an-operator)))

(the-set-of-all (r (a-domain-member-of r))))

(define (an-implementation-of (r (an-operator)))
(some-such-that r’ (an-operator-from-to (the-domain-of r)
(an-operator-from-to (the-range-of r)
(the-set-of-all (either ’true ’false))))
(forall x:(the-domain-of r)
(= (r x)
(some-such-that y (the-range-of r)
(r’ x y):’true)))))
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(define (insert (> (an-implementation-of (an-ordering)))
(x (a-domain-member-of >))
(1st (a-list)))
(if 1st:’nil
(cons x lst)
(if (apply-imp > (car 1lst) x)
(cons x lst)

(cong (car lst) (insert > x (cdr 1lst))))))

(define (sort >:(an-implementation-of (an-ordering))
1st:(a-list-of (a-domain-member-of >)))
(if 1st:’nil
1st

(insert > (car 1lst) (sort > (cdr 1lst)))))

4.2 Semantics

The addition of higher-order constructs to the language considerably complicates our
semantic treatment. It will no longer do to use a simple Herbrand universe, as our
domain must also contain functions. As noted above, zero-argument functions can
be thought of as representing sets—this means our domain must contain an object
which is the denotation of (the-set-of-all (a-thing)), which should surely not
be a possible value of (a-thing) itself. This problem is exactly analogous to the need
for a set/class distinction in set theory. The semantics we give here is similar to that
given by McAllester for the Ontic representation language[31]. Our treatment varies
from the more standard complete partial order semantics—we call our semantics set
theoretic.

To avoid a contradiction then, we must allow (a-thing) to denote only some part

of our domain. We wish this part of the domain to contain the universe of everything
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we normally talk about, and thus it must be itselt a model of ZF set theory. We
call this part of the domain the predicative universe. If we were satisfied to omit
the constructor a-thing from our language, the predicative universe would suffice
as a model for our language (cons cells and functions can be encoded as sets in the
model domain). Unfortunately, impredicative expressions (those using a-thing or
earlier impredicative definitions) are very useful and convenient, as in the following
definition of a-list-of, a function which constructs a list of members drawn from a

particular set s:

(define (a-list-of s:(a-set))
(either ()

(cons (a-member-of s) (a-list-of s))))

The impredicative construct here is a-set. Our predicative universe will not
contain any value for (the-set-of-all (a-set)). Defining (a-set) to be “every

set” (i.e., every predicative set) requires the use of a-thing:

(define (the-universe)

(the-set-of-all (a-thing)))

(define (a-set)
(both (a-subset-of (the-universe))

(a-thing)))

Without the impredicatively defined (a-set) it is unclear how we could state that
a-list-of can be applied to “any set.” !

In order to provide a semantics for the impredicative a-thing, we take a model
of our language to be a model of set theory which contains the predicative universe
(another model of set theory) as a domain element. The larger model will be able to
give meaning to all the impredicative expressions in our language without creating

any paradox.

lnote: a-list-of is itself impredicative because it relies on a-thing in its definition. However,
applications of a-1ist-of to predicative arguments can be syntactically recognized as predicative,
since the impredicative part of a-list-of is limited to it’s input domain.
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More formally, we define a standard model of ZF set theory to be a family of sets
M which satisfies the following properties:

o M is closed under powerset—the powerset of any member is a member.
e M is closed under member-of—any member of a member is a member.

e The union of any small subset of M is a member of M—a subset is small if it

is countable, or if it’s cardinality is no larger than some member of M.

From Godel’s Incompleteness result we know that the existence of standard models
of ZF cannot be established using methods within ZF. Nevertheless, this existence
is effectively assumed by the working mathematician and is a valid theorem in our
inference system (implicitly, because the inference rules can derive (there-exists
(the-set-of-all (a-thing))), and that (the-set-of-all (a-thing)) models all
the axioms of ZF).

We can now take a model M of our language to be any standard model of ZF
which contains as a distinguished member Mp,.q another standard model of ZF. Since
M is a universe of sets, whereas our language constructs denote thunks, operators,
and constructor values, we will need a way to encode thunks, etc. as sets. We can
use any encoding that uses each set at most once—i.e. we can recover the thunk
or operator or constructor application from the set representing it unambiguously.
We assume we have such an encoding (perhaps built from tagged tuples using the

standard means of representing numbers and tuples as sets), and refer to it as follows:

o Given a set t € M, (encoded-thunk ?) is the set encoding the thunk that can

return any value in t. We sometimes write encoded-set for encoded-thunk.

e Given an relation r C M x M and domain set d € M, (encoded-relation r

d) is the set encoding r restricted to domain d.

e Given a constructor function symbol ¢ of n arguments, along with sets a; - - - a,
(representing arguments for ¢), (encoded-c-app aj...a,) represents the output

of conay---a,.
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Using this encoding, we now give the formal semantics of each of our language

constructs. A program expression will denote a singleton set in M (containing the

value returned by the program). A specification expression will denote an arbitrary

set in M (the set of possible values of the specification)—if the specification is a

program expression, the denotation will be a singleton or empty set. A formula will

denote either true or false. For any variable interpretation p mapping language

variables to elements of a model M, we define the meaning M ,(e) of any language

expression e recursively on the structure of e as follows?:

true when M, (s1) C M, (s2),
Mp(81:82)): p(l)— 0(2)

false otherwise

true when M, (¢) = false,
M, ((boolean-not ¢)) =
false otherwise

M, ((and ¢ ¢2)) = true when M, (¢1) = true and M, (¢2) = true,

false otherwise

¢ hen M, (s) € Mpyea,
M, ((small s)) = rue when M, (s) Pred

false otherwise

true when M ,(s) is non-empty,
M, ((there-exists s)) =

false otherwise

ZNote that we are overloading M, as it is both a set (the domain of the model) and a function
(the valuation function giving meaning to syntax). Which meaning is intended is always clear from
the context.
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true when M ,(s) is empty or singleton,
Mp((a‘t-most-one S)) = { p( ) ply g

false otherwise

M, (x) = {p(x)}, for any variable z,

3 e M, (1). 3s € M }

M, ((apply 1)) =14 @
t' = (encoded-thunk s) A =z € s

Affe M, (f) . IreMxM.Ide M
M, ((apply f s)) =< = /' = (encoded-relation r d) A
dsfe M, (s)Nd. (s x) Er

sl € M, (s1)---s € M, (sn) }

r = (encoded-c-app $...s))

M, ((c 81...8,)) = {:1;

for any constructor function symbol ¢,

dsfeM...sl e M
sieM,(s) N x= (encoded-c-app sj...s))

M, ((¢ 8)) = {:1;

where ¢; is the 7’th selector for constructor ¢,

M, (32 6 s 5)) = {WS” when M, (6) true}

M, (s3) otherwise,

M, ((fix g s[g])) = Next (o)
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where ¢, = U Nexti({})

Next (d) = M q) (s [(apply g)])
p'(d) = p[g := (encoded-thunk d)]

Intuitively, Next (d) contains the value of s with g replaced by choice from d.
M, ((lambda () s)) = {(encoded-thunk M, (s))}

M, ((lambda z:s; s)) = {(encoded-operator r d)}
where d =M, (s1)
r={{2) |yed N 2€Mypy(s)}

M, ((either s; s3)) = M, (s1) UM, (s2)
M, ((both 31 s9)) =M, (s1) N M, (s2)
M, ((not s)) = M, ((a-thing)) — M, (s)

Mp ((a—thing)) = {S € Mpred

5 1s an encoded-thunk, encoded-oper- }

ator, or encoded-c-app for some ¢

Mp (J—) = {}

M, ((an-operator-from-to s; s3)) =
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ddy e M 3Id, e M

r g dl X d2 A
(encoded-relation r d)

(encoded-set di) € M, (s1) A

(encoded-set dy) € M, (s3)

e M, ((a-thunk-to s)) =

dd e M
(encoded-thunk t) tCd A

(encoded-set d) € M, (s)

e M, ((a-domain-member-of s)) =

JreMxM Idde M
x€d AN (encoded-relation r d) € M,(s)

Given a particular model M and variable interpretation p, we can view the body
Clg] of a £ix expression as a context mapping meanings of ¢ to subsets of M. In order
to discuss the semantic motivation for our syntactic restrictions on fix expressions,
we introduce the notation Cyy,, for this function, so that Ca,(f) = M =7(Clg])
for any suitable domain element f.

In order to ensure that our recursive expressions have well-defined least fixed
points, we make the restriction that the the corresponding context function Cuy, is
monotone and continuous. Considering relations as sets of ordered pairs, we say that
Cm,p is monotone if whenever f C g we have Car,(f) € Cap(g). Ca,p is continuous
if for any infinite sequence of relations f; C fy C f5---, we have that Crq,(U;f;)
is the same as U;Caq,(fi). The syntactic restrictions placed above in Sect. 4.1 are
sufficient to ensure that the body of any accepted fix expression satisfies both of
these semantic restrictions.

Monotonicity and continuity of Ca , together ensure that a least fixed point for C'
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can be constructed by iterating Ca , on the empty relation f; countably many times.
We write Cjwp(f) for the application of Crq, to [ iterated ¢ times. Monotonicity
ensures that for any ¢, Cjwp(fL) - Cj{,'l'}p(fL). This then ensures that we can use
continuity to show that UZ'CjM’p(fL) is a fixed-point of €', as follows. Call the desired
fixed-point expression C,. Continuity implies that Cpq,(Co) = UiCM7p(Cj\,l7p(fL))
but the right hand side is just C., again, as desired.

4.3 Higher-Order Specification Inference

The specification inference mechanisms for our first-order language, defined earlier in
Sect. 3.3, generalize naturally to the higher order language just presented. Rather
than present the inference system again here, we present only the extensions needed

to the above system.

Elimination of Compound Formulas The first-order analysis presented earlier
in Sect. 3.3 handled only atomic formulas in the test of an if expression. Atomic
formulas expose the type information involved in the test more readily than compound
formulas. While a practical system might choose to use a general mechanism such
as Boolean constraint propagation [?] to extract type information from a compound
formula, here we simply eliminate compound formulas entirely. Each if expression
with a top-level = expression in its test can be rewritten as an equivalent if expression
with a smaller test without the — by switching the branches. Similarly, each if
expression with and top-level and expression in its test can be rewritten to nested
smaller if expressions with smaller tests without the and by testing each combination
of the truth values of the subexpressions of the and. This second rewrite does increase
the length of the overall expression—in order to keep a linear bound on this process we
must bound the complexity of the tests in if expressions. We assume that a rewrite
like the one described here is performed before any definition is considered by the

system, so we reason here only about expressions containing only atomic formulas.
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Definition Analysis Revisited In analyzing our first-order language, the only
place where lambda and fix constructs were encountered was at the top level of a
definition. The first-order analysis algorithm provides a means for generating a set of
theorems about top-level lambda or fix expressions—this same method can be ap-
plied to any internal lambda or £ix expression encountered during recursive descent.
Therefore, the first-order algorithm can be applied directly to higher order expres-
sions just as it is. When a lambda or fix construct is encountered during recursive
descent, a process identical to the top-level first-order definition analysis is performed,
resulting in a set of new type theorems about the lambda or fix expression—these
type theorems may be used later in the recursive descent analysis of the surrounding
expressions.

However, due to the richer semantic domain we have chosen for our higher-order
language, there are several ways we can strengthen the first-order algorithm. We
will add some new sequent rules to the syntax-directed = inference relation that was
defined in the first-order chapter. Also, we will add many new inference rules to the
forward-chaining . inference relation, replacing some of the rules that were already

present.

Extensions to = We first observe that the Analyze-Fix and Analyze-Lambda rules
can be used internally during recursive descent just as they were at the top level for
first-order definitions. We intend these rules to be used in the same manner that
lambda and fix expressions were analyzed by the  relation in the first-order case—
in particular, the selection of induction hypotheses for the Analyze-Fix rule is done in
exactly that same manner. We present now some extensions to I for the higher-order
language.

First, we give a higher-order version of the first-order let rule, since let is no
longer explicitly in the language as it can be naturally represented by a lambda

application.
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Analyze-Let

I'=%Y U THMSy, (s)
I', z:5s b B:t

znot in " or ¢

Y b, ((lambda z:s B) s):t

We also need rules that reason about whether a given lambda or fix expression is
predicative. These rules essentially determine syntactically whether an expression
relies on (a-thing) or not. Whenever a lambda or fix expression is encountered

during recursive descent we attempt to prove that it is small using one of these rules.

Lambda-Smallness Fix-Smallness

I'=%Y U THMSy, (1)
I' F (small ¢) I', (small ¢g) + (small B)
I', (small z) F (small B) g not free in I’

z not free in I’

¥ F (small (fix ¢ B))
Y F (small (lambda z:t B))

Many useful expressions are not themselves small, but return small types (that is, a
small set of possible values) whenever they are applied to small types (e.g. a-list-of
as defined above). Recognizing this property greatly enlarges the set of expressions
that are quickly recognized as predicative. To this end, we introduce a new expression
(small-after s n) where s is a specification expression and n is a natural number.
These expressions are not in the external language, but are used by the inference
process to record the corresponding properties—that s applied to n small classes yields

a small class. We will see below how the forward-chaining inference rules draw the
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appropriate small conclusions using small-after facts. Here we give sequent rules

for deriving small-after facts whenever lambda or fix expressions are encountered.

Lambda-Small-After

I'=%Y U THMSy, (1)
I', (small z) F (small-after B n)

z not free in I’

Y F (small-after (lambda z:t B) n+1)

Fix-Small-After

Y, (small-after ¢ n) F (small-after B n)

g not free in ¥

¥ F (small-after (fix ¢ B) n)

We also add similar new constructs and sequent rules (along with forward-chaining
inference rules later) for determining when a lambda or fix construct will return
a value (there-exists-after) or return at most one value (at-most-one-after).
These rules are important in strengthening the reasoning about when higher order

expressions are total or functional, respectively.

Lambda-At-Most-One-After

I'=%Y U THMSy, (1)
I', (at-most-one z) F (at-most-one-after B n)

z not free in I’

Y F (at-most-one-after (lambda z:f B) n+1)
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Fix-At-Most-One-After

Y, (at-most-one-after ¢ n) F (at-most-one-after B n)

g not free in ¥

¥ F (at-most-one-after (fix ¢ B) n)

Lambda-There-Exists- After

I'=%Y U THMSy, (1)
I', (there-exists x) F (there-exists-after B n)

z not free in I’

Y F (there-exists-after (lambda z:t B) n+1)

Fix-There-Exists- After

Y, F (there-exists-after B n)

g not free in ¥

¥ F (there-exists-after (fix ¢ B) n)

Obvious Consequences Revisited The only remaining changes needed to the
specification inference algorithm lie in the underlying forward chaining horn-clause
inference rules. These rules, as before, perform simple, locally-acting inferences—
each rule is based on the semantics of one language construct or occasionally of the
interaction of two language constructs. We need a number of new rules to deal with
the new language constructs in the higher order language.

All the rules in use for the first-order inference system are also used for the higher-

order system, with the following exceptions:

o The rule that places every expression under (a-thing) is not used.

o4



e The rules with variables (p,q) restricted to program expressions are superseded

by rules below. These were Symmetry, Selectorsl, and Univ-Inst.

We introduce the new rules added in groups organized by the construct being
reasoned about. First, we present the new rules which reason about lambda expres-
sions. Note that our central reasoning about lambda expressions is accomplished by

the recursive descent rules above. In addition we have the following simple rules:

Lambda-Term App-Existence

(there-exists (apply f s))
Dom ((lambda z:s B)) (singleton s)

(singleton (lambda z:s B)) s: (a-domain-member-of f)

Lambda-Domain

Dom ((lambda z:s B))

(= (a-domain-member-of (lambda z:s B)) s)

We also add the following inference rules for reasoning about thunk (lambda ())

expressions:
Singleton-Thunk Apply-Thunk
Dom ((lambda () 1)) Dom ((lambda () 1))
(singleton (lambda () %)) (= (apply (lambda () t)) t)
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Equate-Thunks

(= (apply (lambda () s;1)) (apply (lambda () s3)))

(= (lambda () s;) (lambda () s3))

Next we add the following rules for thunk and operator spaces:

Op-Domain

f : (an-operator-from-to s ¢), Dom (f)

(a-domain-member-of f) : (a-member-of s)

Op-Range

f : (an-operator-from-to s ¢), Dom (f)

(apply f (a-domain-member-of f)):(a-member-of t)

Thunk-Range

f: (a-thunk-to s)

(apply f) : (a-member-of s)

Infer-Thunkspace

(singleton s)
(apply (lambda () t)) : (a-member-of s)

Dom ((a-thunk-to s)), Dom (?)

(lambda () t) :(a-thunk-to s)
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We also add the following rules which reason about (a-thing) and smallness:

Things-are-Small Small-Is-Thing
s : (a-thing), (singleton s) (small s)
(small s) s:(a-thing)
Monadic-Smallness Small-If
(small s), Dom ((c s)) (small sy), (small s3)
¢ any monadic term constructor except not Dom ((if @ s1 s2))
(small (¢ s)) (if @ sy s9)

Binary-Smallness

(small s), (small ?)
Dom ((c s 1))

¢ any binary term constructor exc. lambda, fix

(small (¢ s 1))

Small-After-Zerol Small-After-Zero2
(small-after f 0) (small f)
(small f) (small-after f 0)
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Small-After-Dec

(small-after f n+1)
(small #)
Dom ((f 1))

(small-after (f t) n)

The following rules deal with pure formulas—i.e., the only terms involved are rule

meta-variables.

Infer-And Andl And2
o, U
Dom ((and ¢ V)) (and ® ¥) (and ® ¥)
(and ® V) P L

Exists-Up At-Most-One-Down Small-Down
(there-exists s) (at-most-one 1) (small ¢)
s:t s:t s:t
(there-exists 1) (at-most-one s) (small s)

At-Most-One-After-Zerol At-Most-One-After-Zero2

(at-most-one-after f 0) (at-most-one f)
(at-most-one f) (at-most-one-after f 0)
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At-Most-One-After-Dec

(at-most-one-after f n+1)
(at-most-one 1)

Dom ((f 1))

There-Exists-After-Dec

(there-exists-after f n+1)
(there-exists ¢), Dom ((f 1))

t: (a-domain-member-of f)

(at-most-one-after (f t) n)

There-Exists-After-Zerol

(there-exists-after f 0)

(there-exists-after (f t) n)

There-Exists- After-Zero2

(there-exists f)

(there-exists f)

Symmetry

(there-exists s)
(at-most-one 1)

s:t

(there-exists-after f 0)

Variables

z 1s a variable

(singleton x)

In each of the next two rules, ¢ can be any selector or constructor function symbol,
or any of a-domain-member-of, apply, an-operator-from-to, or a-thunk-to. n is

taken to be the arity of c.

Monotonicity Arg-FExistence

(is uy vy)...(is u, v,) (there-exists (c uy...u,))

(is (c uy...uy) (c vi...v,)) (there-exists u;)

The following rules deal with expressions constructed with a constructor. We show
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these rules for the constructor cons and its selectors car and cdr, but we intend them

to act on any constructor function present in the target language.

Cons-Is-A-Fun Sel-Frun
(singleton s 1) (singleton (cons s t))
(singleton (comns s t)) (singleton s)

(singleton 1)

Selectorsla Selectorslb
(there-exists 1) (there-exists s)
Dom ((cons s 1)) Dom ((cons s 1))
s:(car (cons s 1)) t:(cdr (cons s 1))

We also add the following rules for if expressions:

If-True If-False
Dom ((if & s 1)) Dom ((if @ s 1))
P (boolean-not ®)
(= (if & s 1) s) (= (if ® s 1) 1)

Finally, we add the following rules for instantiation of universal formulas and con-

struction of the inference domain:

Range-Exp

(lambda x:s B) appears in ¢

Dom (((lambda x:s B) (a-domain-member-of (lambda xz:s B))))
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Univ-Inst

forall z:t ¢
s:t, where s appears in e

(singleton s)

[s/z] ®
Dom ([s/x] ®)

We now argue that the higher order version of - can still be computed in polyno-
mial time. The argument is very similar to the first-order case. Let ¥ be a premise set.
Let A be the set of all expressions s such that Dom (s) is inferred by forward-chaining

the above rules from Y. We observe the following to complexity bounds:
1. A has at most polynomially many members in the size of ¥, and

2. The entire forward-chaining can be computed in polynomial-time in the eventual

size of A.

The first bound follows from the observation (provable by induction on the length
of derivation) that every spec in A is either L, (a-thing), a subexpression of e,
(f (a-domain-member-of f)) for some f appearing in e, or some subexpression of
a universal formula forall xq:$y...2,:8, ® in ¥ with its variables replaced by
subexpressions of e. Only the last case poses a challenge, forcing us to limit the
quantification depth of the formulas in ¥ to some constant. Specifically, we require
that no formula in ¥ has a depth of 1ambda nesting greater than some fixed constant.
Given this restriction there are only polynomially many instances of universal formulas
in ¥ on subexpressions of e.?

To see the second bound, observe that by induction on the length of derivation
every spec in any new conclusion is of the form: s, (not s), (car s), (cdr s), (s

(a-domain-member-of s)), (lambda () s), or (a-member-of s) for some s in A.

3For lemmas that were derived by the system, the bound on quantification depth can derive from
bounds on the arity of functions and the depth of lambda nesting within analyzed definitions.
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But there are only polynomially many possible conclusions over such specs, and for

any partially closed premise set we can find a new consequence in polynomial time.

Theorem 4.1 For any premise set X with bounded lambda nesting, and function
symbol definition e, we can compute the forward-chaining closure of X under inference

rules defining the higher-order . in polynomial time.

Example Inferences The inference algorithm presented here, together with the
enhancements discussed in the next chapter for reasoning about specification defini-
tions, infers specifications for the sort and mapcar examples given above that are
directly analogous to those inferred for the first order version. In particular, we auto-
matically infer that (sort > [) returns (a-permutation-of [), and that (mapcar
f ) returns (samelength-as /).

We will discuss the lemmas and inference steps involved in these inferences after

presenting the enhancements in the next chapter.
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Chapter 5

Reasoning About Nondeterminism

The algorithm presented so far is designed primarily for analyzing deterministic pro-
gram expressions, although as we’ve seen it also applies usefully to nondeterministic
specification expressions. In this chapter we consider an extension to the algorithm
specifically designed for reasoning about nondeterministic expressions. This extension
increases the power of the algorithm in reasoning about specification expressions—this
increase in power can even help in the analysis of deterministic program expressions
because specification expressions can occur as argument types and within the for-
mulas of deterministic expressions. We present in this chapter an enhancement to
our inference algorithms which automatically creates deterministic witnesses that en-
hance the analysis of nondeterministic expressions. We first present an extension to
our forward-chaining notion of “obvious consequence” (I-.), and then show how to in-
tegrate that extension most usefully into our syntax directed relation .. Throughout
this section we assume that we are analyzing expressions in the higher order version

of our language.

5.1 Adding Existential Instantiation to I,

The expression to be analyzed (and its subexpressions) may have zero, one, or many
values. Many useful inference principles, particularly universal instantiation, can

operate only on terms with exactly one value (they are not sound otherwise). Because
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we want the power of these inference principles to be used in our evaluation, we need
to ensure that we are reasoning about expressions with exactly one possible value
whenever possible. In particular, whenever we know that a certain type of object
exists, we would like to have a witness object of that type to reason about.

The desired witness creation is a form of existential instantiation. In our lan-
guage, we can represent existential facts without explicit quantifiers. We discuss here
means of providing automatic existential instantiation for two forms of quantifier free
existential information. First, if the formula (there-exists s) is known for some
specification expression s, it is implied that there exists some value for new variable
xg such that z,:s. Second, if the formula x: (R s) is known, it is implied that there
exist some values for new variables y; , and yg , such that y,,:s, yr,: R, and 2: (yp
Ys)-

By using these two forms of existential instantiation as new inference principles
we can expand the number of singleton expressions available to the reasoning process.
Ideally, these principles would be applied whenever the prerequisite existential infor-
mation was present, possibly by the addition of new inference rules like the following

to the forward-chaining F. closure:

Ex-Inst-1

(there-exists s), with s not a program exp.

T, 1s a new variable

rs:8, Dom (x)
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App-Ex-Inst-1

x:(apply R s), with (apply R s) not a program exp.
Ys» 18 a new variable

YR 18 a new variable

Ysw:Ss YRy R ax: (apply YR ys,x)
Dom ((apply YR, ys,x))

Univ-Gen

Te:1

s does not occur in ¢

There are several points to explain about these rules:

e An expression s is “not a program exp.” if it is a specification expression that is
not a program expression. This restriction is made because program expressions
can never have more than one value and so do not need to be instantiated in this
manner. Without this restriction the rules will try to create witnesses under

the witnesses it creates, and so on.
o Also, the variable subscripts in these rules play two significant roles.

1. Only those variables introduced by the rule Ex-Inst can be generalized by
Univ-Gen—these variables are indicated in the rules by having only one

subscript.

2. The soundness of the universal generalization rule Univ-Gen is ensured by
the antecedent requiring that x; does not occur in t—it is essential that
the spec t not depend on the choice of x;. The relevant dependencies are
kept track of by the appearance of x; in the subscripts of those variable
that depend on x; (all of which are created by the rule App-Ex-Inst).
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e Finally, each rule that requires a “new variable” can be fired infinitely many
ways that differ only in the choice of the new variable. We do not allow any rule
to fire twice where the only difference is in the choice of the new variable(s).
This restriction has no effect on the inference relation on expressions that do

not involve the new variables introduced during the inference process.!

Unfortunately, the addition of these rules to the forward-chaining inference re-
lation produces a procedure not guaranteed to terminate because no limit is placed
on the possible domain growth. For instance, if it is known that s: (R s) for some
non-variable specification s such that (there-exists s) is also known, then each
new variable = created under s will cause the creation of yet another new constant
T, again under s, ad infinitum.

This difficulty can be solved by restricting the above inference rules as follows.
We introduce a new expression Inst (s, ) for specification s and variable x which,
like Dom (s) earlier, has no intended semantics and is used by the inference process
to limit the extent of the forward chaining. Intuitively, we can think of Inst (s, x)
as standing for “existentially instantiate s for instance z.” We then modity the first

two rules above and add one new rule, as follows:

Ex-Inst

(there-exists s), with s not a program exp.

T, 1s a new variable

Dom (x5), Imnst (s, xy)

!This can be proven by considering a transformation on proofs which converts an unrestricted
proof into a proof satisfying the restriction by renaming all the “extra” new variables to the original
new variable.
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App-Ex-Inst

x:(apply R s), with (apply R s) not a program exp.
Inst ((apply R s), x)
Ys» 18 a new variable

YR 18 a new variable

Inst (R, yrs), Inst (s, Yss), «:(apply Yrs Ysaz)
Dom ((apply YR, ys,x))

Inst

Inst (s, x)

The intended intuition is that these rules do a recursive descent into each expression
in the inference domain, doing existential instantiation. This descent can be done in
linear time in the size of the domain. The analysis is complicated by the fact that the
inference domain is grown by the instantiation process. This problem can be handled
by noticing that the expressions added to the domain are all pure (deterministic)
program expressions, and so cause no further existential instantiation.

We can now show easily that the resulting inferential closure is polynomial in the
input size (we are closing under the higher-order F. inference relation from chapter 4
with the above three inference rules added). The key observation is again that the
set A of specifications s such that Dom (s) is inferred is polynomial in the problem
size. In the following observations we use Ay, to denote the set of specifications s
such that Dom (s) is concluded by one of the old inference rules (any rule other than

the three just added). To see that A is polynomial in size, we observe:

o Ay, is polynomial in size, using the same argument given to show the inference

domain in chapter 4 is polynomial in size.

67



e Rule Ex-Inst can only fire with s bound to a member of A, because every

member of 4 — Ay, is a deterministic program expression.
e Polynomially many Inst facts are derived:

— For each fact derived of the form Inst (¢, ), the subscripts in @ identify a
unique path from a member s of Ay, to a subexpression of s which is . By
“path” here we mean a sequence s; - - - s, such that s; = s, s, = ¢, and each
S;41 1s an immediate subexpression of s;. No two Inst facts correspond to

the same path (this can be proven by a simple induction on path length).

— There are only polynomially many such paths.
e There are linearly many new domain members for each new Inst fact.

Given then the conclusion that A is polynomial in the size of the input problem, the
same arguments given in Chapter 4 allow us to conclude that the inferential closure
can be computed in polynomial time.

We now observe that we can add rules similar to App-Ex-Inst for language con-
structors other than Apply, where there is similar existential information available.
We add the following rules, and claim that the polynomial time bound still holds by

essentially the same argument as before.

Op-Ex-Inst

x: (an-operator-from-to s t)
(an-operator-from-to R s) not a program exp.
Inst ((an-operator-from-to s t), x)

Ys» 18 a new variable

Yt 18 a new variable

Inst (S, Ys), Inst (¢, y:,), «:(an-operator-from-to ys, ytu)

Dom ((an-operator-from-to ys, Yi.))
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Unary-Ex-Inst

x:(u s), with (u R) not a program exp.
u is one of: a-thunk-to, apply, or a-domain-member-of
Inst ((u ), x)

Ys» 18 a new variable

Inst (s, Ysz), (U Ysu)
Dom ((u ys.))

Cons-Ex-Inst

x:(cons s t), with (cons R s) not a program exp.
Inst ((cons s 1), x)
Ys» 18 a new variable

Yt 18 a new variable

Inst (S, Ysx), Inst (¢, yrp), «:(cons ysu Yiu)

Dom ((cons ¥so ¥io))

We still need one last embellishment to our forward-chaining rule set in order to
achieve our original purpose in creating explicit existential witnesses, which was to
provide inference principles such as universal instantiation the appropriate targets to
act upon. Our universal instantiation rule from Chapter 4 was restricted to acting
on subexpressions of the input expression e. We must relax this restriction to allow
the rule to instantiate upon our existential witness variables.

This relaxation must be done carefully to avoid reverting to a nonterminating pro-
cedure. In particular, we will ensure that only existential witness variables derived
from the original input expression are used in instantiation—mnot witness variables
derived from theorem instances created by previous instantiation. We do this by
keeping track of which existential instantiations stem directly from the original in-

put expression and only allowing universal instantiation on these instance variables.
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In fact, our subscripts already keep track of this information: we will say that an
instance variable derives from an expression if that expression is at the root of the
subexpression path represented in its subscript. So the variable z;,, derives from
t—note that s must be a subexpression of ¢ for this variable to have been created
as an instance variable. We now replace the Univ-Inst rule from Chapter 4 with the

following rule:

Univ-Inst

forall x:1 @
st
s derives from or is a subexp. of e

(singleton s)

[s/z] ®
Dom ([s/x] ®)

As argued above, there can be at most polynomially many instance variables which
derive from e. Given a bound on the depth of quantification (as before) we can
then once again infer that the number of domain members added by this rule is
polynomial in the problem size. Given this bound, the other parts of our polynomial-

time argument go through as before.

Theorem 5.1 For any premise set X with bounded lambda nesting, and function
symbol definition e, we can compute the forward-chaining closure of X under inference
rules defining the higher-order . along with those added in this section in polynomial

time.

5.2 Integrating Existential Instantiation With

The enhanced version of I, just described strengthens the overall inference algorithm
without requiring any changes to the sequent based definition of the top level inference

relation Fe.. However, there are a couple opportunities to integrate the existential
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instantiation with the recursive descent analysis to further strengthen the inference
procedure. In particular, the rules for lambda are implicitly doing an existential
instantiation when they choose a particular x to represent the formal parameter in
analyzing the body.

Consider a lambda expression (lambda x:s B). Our central sequent rule for
analyzing this expression reduces the analysis to finding types for B under the as-
sumption that z:s. But this assumption is implicitly assuming that there exist values
of s—and this assumption may justify other existential instantiations. Intuitively, we
can let the forward-chaining inference algorithm do these other instantiations by in-
forming it that indeed x is an existential witness for s. We do this by replacing the

rule Analyze-Lambda with the following rule:

Analyze-Lambda
I'=%Y U THMSy; (r)
I, Inst (r, ) e B:t

x and x1 not in I, x; not in B

T o Forall xq:7
((lambda z:r B) z):t

The only change is the replacement of the sequent antecedent x:r by the antecedent
Inst (r, «) in the first rule antecedent. We make the same modification to the
rules Lambda-Small, Lambda-Small-After, and Lambda-At-Most-One-After. These
changes do not affect the complexity of the syntax directed application of the inference
relation.

There is one more change we can make to the syntax directed inference relation
which will enhance the value of our automatic existential instantiation. We note that
most goal sequents in our backward chaining application of the inference relation have
consequents of the form s:t for specification expressions s and {. When attempting
to draw such a conclusion, we can assume without loss of generality that there exist

values of s. If no such values exist, then every specification ¢ holds of s anyway. This
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argument justifies the addition of the following sequent rule:

Assume-Existence

Y, (there-exists s) . s:t

Yobe, 51t

We must state how this rule will be applied within the syntax-directed directed
inference relation, since it itself is not syntax directed. We assume that this rule is
applied immediately whenever an appropriate goal sequent is encountered which does
not already have the explicit existence assumption in its antecedent. This does not

change the complexity of the inference procedure.

Example Inferences We now discuss the analyses of the example higher-order
programs for mapcar and sort shown in chapter 4. As mentioned in chapter 4,
the enhanced higher-order algorithm can infer the specification (samelength-as /)
for (mapcar f [) and the specification (a-permutation-of [) for (sort > [). We
discuss here some of the key inference steps involved and point out what extra lemmas
are needed from the user in support of the inference process. The inference chains
involved are very similar to the first-order case.

In the mapcar example, the key difference from the first-order case comes in re-
alizing that the expression (f (car 1st)) is in fact (a-thing). This inference was
trivial in the first-order case, but requires a bit of inference now. The first key infer-
ence involved comes in the analysis of the definition of (an-operator). We restate
that definition here for reference:

(define (an-operator) (an-operator-from-to (a-set) (a-set)))

The inference needed is that (an-operator) meets the specification (a-thing). In-
tuitively, this property rests upon the fact that each value of (an-operator) is an
operator from a particular value of (a-set) to another such value. But (a-thing) is
closed under powerset, and any particular value of (a-set) is in (a-thing), so any

such operator is in fact in (a-thing), as our forward chaining smallness rules will
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infer.

Notice that this reasoning relied upon picking a specific value of (an-operator),
and then corresponding specific values of (a-set) for its domain and range. These
are exactly the existential instantiations that occur as a result of the inference rules
added in this chapter, and as a result our inference system does in fact conclude that
(an-operator) meets the specification (a-thing).

Once (an-operator) is known to be (a-thing), the analysis of mapcar is not
problematic. Our forward-chaining inference will determine that the function variable
f 1s therefore also (a-thing), and that as a result the expression (f (car 1st)) is
(a-thing) as well (using the various smallness inference rules). The rest of the
analysis of mapcar goes as it did in the first-order case.

The issues involved in the analysis of sort and insert are much the same as those
just explained. The only complications come from the fact that we have abstracted
over the specification function < in writing the higher-order versions. Abstracting over
a specification function is tricky because when we call sort we need to be passing
it a program (not a specification) or the call itself will not be a program expression.
This means we need to pass in the implementation attachment function for <.

The following two lemmas need to be present in order to deal with this extra
complexity. We can assume the first lemma is provided by the system (along with
the definition of (an-operator)) as a way of easing exactly this problem (which
comes up anytime you abstract over a specification). The second lemma will have
to be proven by the writer of the “orderings” library which is being used (e.g. the

definition of an-ordering, etc.).

forall >’:an-operator
> :an-implementation-of >’
x :(a-thing)
y :(a-thing)
(and (implies (apply-imp > x y) x:(>’ y))
(implies boolean-not((apply-imp > x y))
x:(not (>’ y))))
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forall >:an-ordering x:(a-domain-member-of >) (> x):(not x)

The first lemma will be applied for instance in the analysis of insert. Automatic
existential instantiation triggered by the newest version of the Analyze-Lambda rule
will instantiate the argument type (an-implementation-of (an-ordering)) to give
a particular ordering >’ such that > is (an-implementation of >’). Our universal
instantiation mechanism will then be able to instantiate the first lemma so that the ap-
propriate information will be concluded when the if test (apply-imp > (car 1st) x)

is assumed true or false.
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Chapter 6

Tarskian Set Constraints

6.1 Introduction

The reasoning required to infer properties of expressions in computer programs can
often be cast as reasoning about containment relationships between simple set ex-
pressions. In a set expression, we have set constants representing unknown sets, and
various operations for combining set expressions into compound set expressions (e.g.
union). Which combining operations we allow will of course critically affect the com-
plexity of the reasoning needed to understand the expressions. We will discuss here
only set expression languages containing at least the combinators union and set com-
plement (relative to the model universe). We call a finite set of containment (subset)
assertions between set expressions a set constraint. We will be concerned with de-
ciding the consistency of set constraints—that is, whether or not there is any way
of interpreting the set constants and function symbols appearing in the constraint so
that all the containment assertions are simultaneously satisfied.

Recent interest in set constraints has focused almost exclusively on set constraints
which allow Herbrand function applications. These set expressions are intended to
be interpreted over the Herbrand universe built from the function symbols of the
language. Relative to this universe, each function symbol has a fixed standard Her-
brand interpretation, mirroring the construction of the universe. Given set expressions

S1--- S, (each of which denotes a subset of the Herbrand universe), the application
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expression f(S1,...,5,) denotes the set of all Herbrand domain elements which are
f(s1,...,8,) for some domain elements s; - - - 5, in the denotations of Sy ---5,. As an
example, the expression cons(X,Y’) would denote the set of all the domain elements
that are formed by applying cons to elements chosen from the meanings of X and Y.

Herbrand set constraints problems arise naturally in the analysis of functional
programs involving constructors.[2, 21, 20, 16] Several researchers have found com-
plexity bounds for various Herbrand set constraint languages. Basic Herbrand set
constraints (union, set complement, and Herbrand application) have been shown to
be nondeterministic exponential time complete.[3, 6] Later research has shown that
adding projection functions (constructor function inverses, such as car) along with
negative set constraints (e.g. Fy € F) does not change this complexity. [4, 11, 12]

Amidst all the attention to the complexity of Herbrand set constraints satisfiability
questions, surprisingly little notice has been taken of similar questions for an older
form of set expressions which we will call Tarskian set expressions. Function symbols
in these set expressions have no standard interpretation. Instead, we allow each model
to choose its own interpretation for the function symbols as functions over the model
domain. Meanings of applications are computed as before, once the function symbol
meaning is assigned. So, for example, Append(X,Y) will denote the set of all values
obtained by applying the meaning of Append (which will vary with the model) to
elements chosen from X and Y.

Tarskian set expressions were investigated as early as 1951 in work by Tarski, who
did not consider computational complexity issues.[23, 22] In the set expressions Tarski
analyzed, function symbols could denote arbitrary relations, not just functional re-
lations. Such function symbols can be viewed as nondeterministic functions—when
applied to a single tuple of domain elements they can generate many outputs. Appli-
cations of such function symbols are still defined in much the same way as before: the
expression R(F1,...,FE,) denotes the set of all values that can be output by applying
the meaning of R “nondeterministically” to a tuple chosen from the meanings of the
E;.

In this work we discuss the complexity of checking consistency of set constraints
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built up from set constants, union, complement, and Tarskian application of func-
tion symbols which may or may not be syntactically deterministic (i.e., we have two
classes of function symbols, one of which is syntactically deterministic). Note that we
allow function symbols to have arity zero, in which case they are essentially constant
symbols denoting single domain elements. The presence of such constants greatly
complicates the analysis. We know of few related complexity results on Tarskian con-
straints. In earlier work we have shown that satisfiability of such Tarskian constraints
with no occurrences of union or complement was decidable in cubic time under the
assumption that hash table operations take constant time.[28] In subsequent work
(published earlier), we showed that union and intersection could be added to the
language while keeping satisfiability in cubic time.[17]

In the work presented here, we show the Tarskian set constraints problem with
union, complement, and both deterministic and nondeterministic application (includ-
ing zero arity) to be in nondeterministic doubly exponential time. The proof is by
reduction to the solvability of a new special form of Diophantine inequation set,
which we show to be in nondeterministic exponential time, but conjecture to be in
N'P. Proving this conjecture would shave an exponential off of our doubly exponen-
tial complexity bound. Also, in joint work with McAllester, Kozen, and Witty, we
show several related complexity results for other variations of Tarskian set constraints

languages.[29]

6.2 Tarskian Set Constraints

A Tarskian set constraint language is defined by giving 3 sets: a set of set constants, a
set of function symbols, and a set of relation symbols, with each function and relation
symbol associated with a specific finite arity, possibly zero. We define a set expression
over such a language recursively to be either a set constant, the complement of a set
expression, the union of two set expressions, or an n-ary function or relation symbol

applied to n set expressions (where n may be 0).

Definition: A set expression is either
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a set constant,

the set complement —=C' of a set expression C,

e a union (Cy U Cy) of two set expressions Cy and Cs,

or an application R(Cy,---,C,) of an n-ary function or relation sym-

bol R to n set expressions Cy,---,C,.

A set constraint is a finite set of subset formulas Cy C (5 between set expressions
(4 and C5.' We write C; = (' as an abbreviation for the two formulas C; C 5 and
Cy C (1. A model M of aset constraint language £ gives a countable domain set D
and an interpretation for each of the symbols of £: each set constant is interpreted
as a subset of D, each n-ary function symbol as a function from D" to D, and each
n-ary relation symbol as subset of D"*t!. Models interpret set expressions as subsets

of their domains in the obvious manner, formalized as follows:

Definition: Let M be a model with semantic domain D. For any set
expression (' we define the semantic interpretation of C', written M [C],

to be a subset of D determined by the following conditions.

e If C is a set constant a then M [o] is the subset of D assigned to «
by M .

e If C; and Oy are class expressions, then M [(Cy U Cy)] is the union
of M [C1] and M [C4].

o If R is an n-ary function or relation symbol, and Cy,---,C,, are class
expressions, then M [R(Cy,---,C,)] is the set of all y such that
there exist elements zy...,2, in M [C4],---, M [C,] respectively
such that (aq,---,2,,y) is an element of the function or relation
that M assigns to R. Essentially, this is the image of M [C4]
X - x M [C,] under M [R].

!Negative subset formulas C7 € C can be expressed by writing f() C (Cy N —=C3) where f is a
new O-ary function symbol.
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For any subset formula C'; C (5 we define the semantic interpretation of
C1 C (y, denoted M [Cy C (5], to be T if M [C1] is a subset of M [C4]

, and F otherwise.

We say that a set constraint is consistent if there is a model which interprets each

subset formula in the constraint as true.

6.3 Decidability

In this section, we prove that the problem of determining the consistency of a set
constraint is decidable in non-deterministic doubly exponential time. We do this by
reducing the problem to the problem of finding a solution to an (exponentially larger)

set of Diophantine inequalities of the special form defined below.

Definition: A set of Diophantine inequalities

{pi(l'l,---,l'n)qu'(l'h---,l'n) |1§Z§m}

between polynomials p; and ¢; over non-negative integer variables z; is
semi-linear if every p; is linear, and every ¢; is either linear or is the

product of variables.

We conjecture that the satisfiability problem for semi-linear Diophantine inequal-

ities is in A/P; however, we have only been able to prove the following result.

Theorem 6.1 (Semi-Linear Decidability Theorem) The problem of determin-
ing the satisfiability of a semi-linear set of Diophantine inequalities is solvable in

non-deterministic exponential time.

Proof: Consider a semi-linear set of m Diophantine inequalities over n variables
where the largest constant which appears has b bits. Fach inequality is either linear
or non-linear—we divide the problem into linear and non-linear sub-problems. The

linear sub-problem can be converted into an equisatisfiable set of linear Diophantine
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equations Ax = B by introducing new “slack” variables. Call a variable z; bounded
in Az = B if there is a non-negative integer k£ such that no rational solution to
Az = B has a value for z; greater than k. An analysis of the maximum possible
upper bound that can be placed by a system of linear constraints shows that any
bounded variable can take on integer values describable with at most O(bnlogn)
bits[7]. Using linear programming (over the rationals) we can determine in polynomial
time which variables occur in nonzero solutions of Ax=0 and hence which variables
are bounded.?[25] Our non-deterministic procedure can now guess the values of the
bounded variables. We can then replace each bounded variable by the guessed value,
simplifying the linear and non-linear subproblems. While substituting in the guesses,
some of the non-linear constraints become linear and must be added to the resulting
linear sub-problem, yielding new linear and non-linear subproblems in fewer variables.

We can repeat this process until all the variables in the resulting linear problem
are unbounded. Let A’z = B’ be the resulting linear problem. We check using
integer programming whether A’z = B’ is satisfiable—i.e., whether A’x = B’ has
a non-negative integral solution. If it does not, we fail and try different guesses.
Otherwise, we show below that the original system was satisfiable, so the algorithm
can terminate saying so.

The above procedure terminates in nondeterministic exponential time. We have
guessed values for at most n variables, in at most n stages, where the values at stage &
are represented with at most b(cn log n)*+! for some constant c. We have thus guessed
O(2") many bits, and every number appearing in the sequence of linear subproblems
explored is represented in at most O(2") many bits. We have used a polynomial-
time linear programming algorithm k at each stage to check for boundedness, and a
nondeterministic polynomial time integer programming algorithm at the end to check
consistency, all of which keeps us within nondeterministic exponential time.

Finally, we show that the algorithm’s answer is correct. It is clear that if there

is no sequence of guesses that give a consistent linear subproblem with all remaining

?Note that a variable z; is bounded if and only if there is no solution to Az = 0 over the
non-negative rationals such that z; # 0.
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variables unbounded, then there can be no solution to the original problem—so when
the algorithm fails there is in fact no solution. We now suppose that there is such
a sequence of guesses, and show that there is a solution to the original problem. It
is a fact of linear programming that since all the variables left are unbounded, there
must be a non-negative rational solution « to A’z = 0 such that all components of «
are non-zero.[40] We can assume without loss of generality that « is integral because
any non-integral o can be made integral by multiplying by an appropriate constant.
Take any non-negative integral solution § to A’z = B’ (we just showed that there is
one) and the vector # + ca is a solution to the final linear problem for any ¢. For
sufficiently large ¢ this vector also solves the final non-linear problem, because the
non-linear expressions must eventually grow faster than the linear expressions. But
then 3+ ca, augmented by the guessed values for the bounded variables, is a solution
to the original semi-linear problem. Q. E. D. (Semi-Linear Decidability)

We use this result to complete the decidability proof for Tarskian set constraints
as follows. Let ¥ be a set constraint. When we refer to the size of ¥, written |X,
we will mean the number of distinct subexpressions appearing in ¥. We will assume
for complexity analysis some fixed finite bound on the arity of function and relation
symbols—higher arity functions and relations can be represented by using pairing
functions. We non-deterministically reduce the problem of determining whether there
is a model of ¥ to the satisfiability of a semi-linear set of Diophantine inequations
over a exponentially many variables relative to the size of ¥. Our reduction takes
non-deterministic exponential time, and there will be a model of X just in case there
is some execution of the reduction that yields a satisfiable semi-linear inequation
set of exponential size. Since we have shown that satisfiability for such inequation
sets is in non-deterministic exponential time, this places set constraint consistency in
non-deterministic doubly exponential time.

The variables in our inequation set will represent the cardinalities of various sub-
sets of the domain of a potential model of 3. We will show that there is a solution
to the inequation set if and only if there is a model of ¥ whose domain gives the

various described subsets the cardinalities assigned by the solution. We need Dio-
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phantine variables for enough different subsets of the domain to capture every aspect
of a model that bears on the truth of ¥. In what follows we will describe the Dio-
phantine variables as though we had a particular model in mind that the variables are
describing. As we introduce the variables, we will allow them to take on either any
non-negative integral value or the value * to represent the fact that the corresponding
set is infinite. To complete the reduction we will at the end guess which variables
actually take on the value * and eliminate the inequations involving those variables
to get an inequation set involving only non-negative integer variables.

First, we partition the domain of the model using the meanings of the subexpres-
sions appearing in . We call any subset o of these subexpressions a -type, and
will say that a domain element of a model has ¥-type ¢ in that model if o is exactly
those subexpressions of ¥ which contain the domain element in that model. It should
be clear that every domain element has exactly one Y-type. We will call a ¥-type
o inhabited in a model if there is a domain element d of type o, and will say that d
inhabits o.

To facilitate the descriptions below we define the following abbreviation. We say
that a relation or function symbol R can map the Y-types oy,...,0, to the X-type
7 whenever o contains every subexpression R(FE],..., E!) of ¥ such that each E!in
the corresponding ;. This condition ensures that the members of 7 do not trivially
prohibit R from mapping domain elements of types oy --- 0, to a domain element of
type 7. R(o1,...,0,) ~ T.

The first step in our reduction is to guess which Y-types are inhabited—but in
order for there to be a model of ¥ consistent with our guesses, they must satisfy the

following conditions. We say that a set [ of X-types is locally consistent if:

1. (Upward Closure Constraint) Each ¥-type in [ is upward closed under
the subset statements in ¥; that is, if a X-type is in / and contains a set
expression £ then it also contains every set expression F' such that £ C F

s in X.
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2. (Completeness Constraint) For each negation subexpression = in ¥,

each type in [ contains exactly one of the expressions £ and —F.

3. (Disjunction Resolution) Every type in [ contains a disjunctive set

expression (Fy U Fy) if and only if it contains at least one of £y and FEs.

4. (Predecessor Existence Constraint) For each Y-type 7 in [ containing
a relation or function application R(Fy,...,FE,), there must be Y-types
01,...,0, also in [ containing Fy,..., E,, respectively, which R can map

to 7.

5. (Function Totality Constraint). For any function symbol f of arity
n, any expression f(Ei,...,F,) in ¥, and any Y-types oy,...,0, in [
containing Fy,..., E, respectively, there must be a Y-type o in [ that f

can map o1,...,0, to.

By guessing a locally consistent set [ of inhabited types, we have made a number
of guesses exponential in the size of ¥—for each subset of ¥ we have guessed whether
or not it is inhabited. The existence of a locally consistent set of inhabited Y-types
is enough to ensure that ¥ is satisfiable and thus has a model, whenever ¥ does not
contain any function symbols of arity zero (a model construction very similar to that in
the proof below easily establishes this fact—the resulting model will have countably
many domain objects of each inhabited type). However, the presence of constant
functions in the language forces us to consider the cardinalities of various subsets of
the domain. Consider for example the set constraint {¢; C —es, (1 Ucz) € f(es) }
where ¢1, ¢z, and ¢z are zero arity function applications. This constraint has a locally
consistent set of inhabited types (the three types {cs, =ca}, {c1, me2(e1 U ), f(es)},
and {cq, (¢1 Uez), f(es)}) but is not satisfiable because f(e3) can contain only one
element but must contain the distinct meanings of ¢; and ¢;.

To recognize such inconsistencies we must reason about the cardinalities of the
subsets of the domain inhabiting each ¥-type. We introduce a nonnegative integer
variable z, for each inhabited Y-type o, representing the cardinality of the set of

inhabitants of o. We must also reason about the cardinalities of the images of the
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functions applied to the Y-types—the cardinality of the n-ary function f applied to
types oy,...,0, cannot be larger than the product of the cardinalities z,, thru z,,.

To this end, we define the range expressions for f, for each n-ary function symbol
f, to be the expressions of the form f(o4,...,0,), where oy, ..., 0, are any n inhabited
Y-types. We will say that a domain element d of a model is in a range expression
f(o1,...,0,) in that model if there are some domain elements dy, ..., d, of X-types
O1,...,0, respectively such that d isin f(dy,...,d,). We will say that f(oy,...,0,)
is covered by an application expression f(F4,..., E,) whenever each F; is contained
in the corresponding o;. We will say that a range expression is inhabited in a model
when there is some domain element in the range expression in that model—note that
a range expression is inhabited exactly if all of its argument types are inhabited.
Finally, we say that a range expression f(o1,...,0,) can map to a type o if f can
map oy,...,0, to o.

We introduce an additional nonnegative integer variable “floy ) for each
b

ce ey Op
inhabited range expression f(o4,...,0,) representing the cardinality of the set of
domain elements inhabiting the range expression.

Simply guessing cardinalities for the variables z, and “floy will still not

ce, O
enable us to check the consistency of Y. To see the remaining prob)lem, consider
the constraint {e¢; C —ea, f((e3Ueq)) = (e1 Ucy)} for zero arity function applica-
tions ¢ - - - ¢4. This constraint is trivially consistent, as f can map c3 to ¢; and ¢4 to
o, for instance. However, if we enlarge the constraint by adding to it the two simi-
lar formulas f((cs U cs)) = (e1 Uez) and f((e3Ues)) = (e1 U e2), we no longer have a
consistent constraint, even though the local cardinality conditions appear acceptable.
The problem is that no mapping for f is consistent with all three constraints on f—f
must map two of the three constants ¢, ¢4, and ¢5 to either ¢; or ¢y by the pigeonhole
principle.

In order to detect this type of inconsistency, we must reason explicitly about the
types of the predecessors implied by our cardinality guesses. In particular, consider a

Y-type o which contains an application expression f(F). For each domain element d

inhabiting o, there must be some predecessor domain element d' in M [E] such that
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f(d") = d. But what is the ¥-type of d? There may be many X-types containing £
that f can map to o—we must guess which one d’ will inhabit. In general, for each
domain member inhabiting ¢ and each application expression in o, we must guess a
range expression which is covered by the application expression and can map to o. In
the inconsistent constraint just given, it is not possible to make such predecessor type
guesses for both ¢; and ¢, in such a way that the natural local cardinality constraints
(elucidated below) are satisfied (some one of ¢s, ¢4, or ¢5 will end up being asked to
be a f-predecessor to both ¢; and ¢3).

To formalize this reasoning, we introduce the notion of a “predecessor account-
ing. A predecessor accounting A for a Y-type o is a mapping from the application
expressions in o to range expressions covered by them that can map to o. We say
that A charges a range expression if that range expression is actually in the range of
A. For any domain element d of type o, we say that a given accounting A accounts
for d if d inhabits all of the range expressions in the range of A. In a given model,
many predecessor accountings can account for given domain element, but there must
always be at least one that does. Intuitively, we will choose one primary accounting
for each domain element and then introduce cardinality variables to count the domain
elements each accounting is primary for. We can then write constraints to ensure that
the range expressions charged in the accounting can be large enough to contain all
the domain elements whose primary predecessor accountings charge them.

To this end we introduce a new nonnegative integer variable z, o for each X-type
o and predecessor accounting A for o, to represent the number of domain elements
of the model of type o whose primary accounting is A.

We are now ready to state Diophantine constraints on the new integer variables
in an attempt to ensure the existence of a satisfying model. We define the Tarskian
consistency constraints for a set constraint ¥ and a locally consistent set of ¥-types
I (those chosen as inhabited) to be the following constraints on the variables z, and
oy, o) and x,a for o,0q,...,0, allin I, and A a predecessor accounting for

o
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1. (Habitation Constraints) For every type o in [, z, must be greater than or

equal to one.

2. (Account Limit Constraints) For each inhabited range expression f(oy,...,0,),

the value of Zf(o_l . must be as large as the sum of all 2, o for which A

. On)
charges f(o1,...,0,).
3. (Account Cover Constraints) For every type o in [, the sum over all pre-

decessor accountings A for o of the variables z, o must be equal to z,.

4. (Predecessor Constraint). For any n-ary function symbol f and types
T T Zf(py ) must not exceed the product of the cardinalities of
PR B £

the 7;, or 1 if n = 0.

We note now that the Tarskian consistency constraints for a constraint ¥ and
locally consistent set of X-types [ involve a number of variables at most exponential
in the number of subexpressions of ¥. This can be seen by observing the following

facts:

1. There are at most exponentially many subsets o (and thus variables z,) of the

set of all subexpressions of X..

2. For any particular Y-type o there clearly are at most linearly many members

of o.

3. Given our fixed bound on the arity of function symbols there are at most expo-

nentially many range expressions (and thus variables “floy o ))
ey Op

4. There are exponentially many functions from a linear sized domain to an expo-

nential sized range (and thus exponentially many variables z, A ).

To conclude our non-deterministic reduction we guess which of the variables we
have introduced has the infinite value * . We require that this guess be consistent with
the constraints just given—i.e., if there is an infinite variable on the small side of an

inequality there must be one on the large side. Given this restriction on the guess, we
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drop any constraints which mention infinite variables as trivially true, leaving us with
a semi-linear set of Diophantine inequalities over a number of variables exponential
in the size of ¥. Our earlier theorem shows that we can find a solution to these
inequalities if one exists in nondeterministic exponential time (relative to the number
of variables, which is itself exponential in the size of ¥).

We now show that there is a model of ¥ if and only if there is a locally consistent set

of ¥-types [ such that the Tarskian consistency constraints for ¥ and [ are solvable.

Theorem 6.2 (Model Existence) A set constraint ¥ has a model if and only if
there exist a locally consistent set of YN-types I such that the Tarskian consistency
constraints for Y and I are satisfiable over the nonnegative integers plus the infinite

value * .

Proof: We first suppose that M is a model of Y. The first step is to choose
which Y-types are inhabited. Let I be exactly those ¥-types which are inhabited in
M . Using the fact that this choice of I derives from a model, it is easy to check
that the upward closure, completeness, disjunction resolution, predecessor existence,
and function totality constraints upon our choice are satisfied, so that [ is locally
consistent.

We now give a solution to the inequation set, with the variable values ranging over
the non-negative integers and the infinite value * . This solution includes a choice
of which variables are infinite that is consistent with the constraints, and a finite
solution to the constraints not mentioning infinite variables.

First, we assign each variable z, the number of domain elements of M that have
Y-type o, or * if there are infinitely many such elements. Then, for each function
symbol f and each domain element d of M . let o be the ¥-type of d, and pick one
predecessor accounting A of o which accounts for d in M and call it the chosen
predecessor accounting of d. Assign each variable 2, o to be the number of domain
elements whose chosen predecessor accounting was A, or * if there are infinitely many

such elements.
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These valuations for the variables give a solution to the constraints listed above,
concluding this direction of the proof.

For the more difficult direction of the proof, suppose that we have guessed a
locally consistent set I of types as habitable and solved the resulting set of Tarskian
consistency constraints over the nonnegative integers plus * . We must build a model
M of ¥.

The domain of our model will be the union over all inhabited types o of sets
{o'|i < z, } where for each type o and each index 7 we assume that o' is a distinct
object, and we treat the value % of the variables that were guessed to be infinite as
the first infinite cardinal w.

We define M on each set constant P to be the set of all domain elements o' whose
base type o contains P. We define M on each relation symbol R of arity n to be
the relation that maps each n-tuple <(01)(i1), e (Un)(i")> to every domain element 77
such that R can map oy,...,0, to 7.

Finally, we define M on the function symbols. For each type inhabited o and
each function symbol f, the variables x,a for all A must sum to z,—therefore, we
can choose a partition of the domain elements of base type ¢ into subsets o[A] of size
T, A, respectively.

To define M on the n-ary function symbol f, consider an n-tuple of inhabited
Y-types (01,...,0,). We define f simultaneously on all tuples of domain elements
whose base types are oq,...,0,, respectively. First, construct an enumeration of
such tuples, which we will call the domain enumeration. Next, construct a range
enumeration of the domain elements that f is required to cover when applied to such
tuples: that is, enumerate all domain elements that are members of any set o[A] such
that f(o1,...,04) is charged by A.

If this range enumeration is empty, we need to find some element to map to: first,
if there is any tuple of expressions Ky,..., F,, members of oy,...,0, respectively,
such that f(FEq,...,F,) is in ¥, then the function totality constraint guarantees us

that there is some inhabited type 7 that f can map oq,...,0, to, so we can take the

range enumeration to consist of the single element 7! for any such 7; otherwise let
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the range enumeration consist of any single domain element.

The predecessor and account limit constraints ensure us that the domain enumer-
ation is at least as long as the range enumeration. Define f to map each tuple from
the domain enumeration to the corresponding element of the range enumeration. If
the range enumeration is shorter than the domain enumeration, simply extend it by
repeating the last element until it is the same length.

This definition of f ensures that every member of a set o[A] does in fact inhabit
every range expression in A, which will in the proof below ensure that each such
member in habits all the applications expressions in o.

In order to prove that M is a model of ¥, we prove first by induction on the
structure of the subexpressions of ¥ that every domain element o' of M has X-type
o in M . Once we have proven this, the upward closure constraint on our choice of

inhabited types ensures that every subset formula in ¥ is satisfied by M .

Lemma: Every domain element o' of M has ¥-type o in M .

Proof: We prove by induction on the structure of the subexpressions ¥
of ¥ that the meaning of £ in M is the set of domain elements of M
whose base type contains F.

The lemma is true for set constants by the definition of M .

Suppose E is the negation of an expression K for which the lemma
holds. We show that the lemma holds for £. Our induction hypothesis
tells us that M [F1] is the set of domain elements whose base Y-types
contain Fi—then of course M [E] is the complement of this set, i.e.,
the set of domain elements whose base types do not contain F;. The
completeness constraint on the set of inhabited types ensures that every
inhabited type contains exactly one of £; and —F£;—so the set of domain
elements which do not contain FE; is exactly the set of domain elements
whose base types contain —Fy, as desired.

Now suppose E is the union of two expressions F; and F3 for which
the lemma holds, and show that the lemma holds for £. Our induction
hypothesis tells us that M [F4] (and respectively, M [F2]) is just the set
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of all domain members whose base type contains £ (respectively, F3). So
M ((E1 U Ey)) is the set of all domain members whose base type contains
either Fy or F5. The upward closure and disjunction resolution constraints
ensure that this is exactly the set of all domain members whose base type
contains (£ U Esy), as desired.

Now suppose F is the application of the n-ary relation symbol R to
expressions Fy,..., E, for which the lemma holds. We first show the
forward direction—that every domain element whose base type contains
R(Ey, ..., F,) is also in M [R(FE,..., E,)]. Consider a domain element
o where o that contains R(F,, ..., E,). ¢ must be among the Y-types we
selected as inhabited. Then, by the predecessor existence constraint, we
must also have selected as inhabited Y-types some o4,..., 0, containing
the Fy, ..., E,, respectively, that R can map to o. But then by definition
M [R] maps {(o1)",...,(0,)") to d. But by our induction hypothesis,

k

each element o;' must be in the corresponding M [F;], so ¢ must be in

M [R(E, ..., E,)], as desired.

For the reverse direction, suppose that a domain element % is in
M [R(Ey,. .., E,)], and show that R(F,,..., E,) isin o. Because o* is in
M [R(E,..., E,)], there must be domain elements (01)(i1), e (Un)(i")
in M [F4],..., M [E,] respectively, such that R can map oy,...,0, to
o. But, by our induction hypothesis, since each (U]‘)(ij) is in M [E;] we
have that each o; contains F;. Then, by the meaning of “can map to o”,
we have that o contains R(Fy,..., E,), as desired.

The final case to consider is when E is the application f(FE4,..., E,)
of an n-ary function symbol f to n expressions Fy,..., F, for which the
lemma holds. Again, we first consider the forward direction—we suppose

0" is a domain element in M [f(F,..., E,)] and show that o contains

f(Ey,...,E,). Since o is in M [f(E4,..., E,)], it must be the image
(i1)

under f of some tuple of domain elements (o1)""/, ..., (Un)(i") which are

members, respectively, of M (FEy),..., M (F,). Our induction hypothesis
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then implies that for each j, E; is a member of ;. Then by our definition
of M , when f was defined for tuples from oy,...,0,, o must have been
in the range enumeration. There are two ways that this can happen. First,
o could be an element of o[A] for some A containing f(oy,...,0,). In
this case, f can map o1,...,0, to o (since A is a predecessor accounting
for o). But then, since each F; is in the corresponding oy, f(F1,..., E,)
must be in o as desired. Second, if all o[A] for A containing f(FEy, ..., F,)
are empty, o must be 7! for some 7 that f can map o1,...,0, to—this
once again implies that f(F1,..., E,) is in o (which is 7) as desired.

It remains to show the reverse direction: we take an arbitrary domain
element o* such that o contains f(F,..., F,) and show that this o* is
a member of M [f(FE4,...,E,)]. o must be among the X-types in [,
therefore z, must be non-zero by the habitation constraint. The account
cover constraint then ensures us that there is some predecessor accounting
A such that z, is non-zero, and thus that o[A] is non-empty. Since
o contains f(FEq,...,E,), A(f(E1,...,E,)) must be a range expression
flo1,...,0,) that is covered by f(Fi,...,E,) and can map to o—i.e.,
such that Fq,..., F, are members of o1,...,0, respectively, and f can
map oy, ...,0, to . But then, by our inductive hypothesis about the F;,
every tuple of domain elements of respective base types oq,..., 0, must
belong, respectively, to M [E1],..., M [E,]. This is the entire domain
enumeration for f on oy,...,0,, so the entire range enumeration for f
on oq,...,0, must be contained in M [f(FE4,..., E,)]. But this range

enumeration must include o* since it is a member of o[A] and A charges

flo1,...,00). Q. E. D. (Model Existence Lemma)

This concludes the proof of the our model existence theorem, and with it the
proof of our main result that Tarskian set constraints are in non-deterministic doubly

exponential time:
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Theorem 6.3 (Tarskian Set Constraints Decidability Theorem)
The problem of deciding the consistency of a Tarskian set constraint ¥ is in non-

deterministic doubly exponential time in the number of subexpressions of X.
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Chapter 7

Conclusion

In this thesis we have argued against the practice of limiting the expressiveness of
type systems in programming languages. We believe that complete type inference
for an inexpressive type system is less valuable than the achievable incomplete type
inference for an expressive type system. We have presented a particular expressive
type system, and a particular incomplete inference algorithm for inferring types for
programs in this expressive system. We argue the usefulness of our algorithm by
giving examples of programs that it can find interesting types for—types that cannot
even be expressed in traditional type systems of limited expressiveness.

The type language we presented is based on the use of nondeterminism to represent
sets of values. This use of nondeterminism, inspired by the work of David McAllester
on the Ontic verification system, allows the natural use of the programming language
to represent types, and makes it straightforward to collapse the syntactic distinction
between term and type. This collapse allows the same inference mechanisms to reason
both about program definitions and type definitions. Reasoning directly about types
is inherently more powerful than reasoning only about single objects themselves,
leading to more effective inference.[27, 28] In chapter 5 we discussed some techniques
for enhancing the reasoning mechanism to increase its effectiveness in reasoning about
nondeterministic expressions.

The algorithm presented is effective in the sense that it runs in polynomial time.

It is similar to traditional type inference algorithms in that it is based on a syntax-
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directed set of typing rules. These rules do a recursive descent into the expression
being analyzed. We apply a powerful forward-chaining inference engine at each level
of the recursive descent. The overall algorithm can be viewed as an abstract interpre-
tation algorithm with a particularly rich class of information being generated at each
level of the interpretation. Our algorithm discovers such type information as that a
simple insertion sort program always returns a permutation of its input.

A skeptical interpreter of this work might object that the algorithm may be tar-
geted explicitly to the handful of examples given, since no wider survey of its appli-
cability has been done yet. We believe that the simplicity of the underlying inference
rules constitutes argues against this interpretation. Each inference rule captures a
simple local property of the language syntax rather than any more complex problem
specific fact. Each of the examples given uses the vast majority of the inference rules.

The inference rules given were selected from a much larger set of candidate in-
ference rules—the selections were to some degree motivated by the target examples.
However, even adding the entire larger set of inference rules would leave the algorithm
in polynomial-time. It is likely that consideration of a very wide class of examples
would make clear that a somewhat larger set of (polynomial-time) inference rules is
needed. We believe that this enlargement upon consideration of new examples will
quiesce, converging upon a widely useful polynomial-time inference relation much like
that presented here.

Another objection from the skeptics might be that the polynomial-time complex-
ity of the inference algorithm is small comfort when the polynomial is worse than
quadratic, and the problems being considered may be quite large. In particular, we
wish to be able to consider target programs in the context of a large library of knowl-
edge, much of which has nothing to do with the target programs. In answer to this
objection, we point out that the polynomial-time bound is a worst case bound, and
that in particular that worst case assumes that all of the knowledge library is being
instantiated for every target program expression. In practice, we expect that our or-
ganization of instantiation around the types of the quantified variables will limit such

instantiation—only theorems about relevant types will be instantiated on a program
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expression. Informally, this type restriction appears to result in an “average” case
complexity that is polynomial in the logarithm of the library size.

Yet another objection that must be considered stems from the observation that
the examples appear to depend on the exact choice of representation for the specifica-
tions computed. For example, it we had defined a-permutation-of using bijections
between list-members, it is not clear that the algorithm would have computed the
same results in analyzing insert. This objection is critical—we believe that how
knowledge is represented has an immediate strong effect on what can be quickly in-
ferred from it. It is then no surprise that our algorithm reflect just such a dependence.
Users wishing to write less constructive definitions of key properties may well have
to take the time to prove them equivalent to the more useful constructive definitions.
While we do not give any algorithm for recognizing which forms of definition will
prove most useful, it is apparent that specification definitions that are constructed
as nondeterministic programs for computing values of the specification being defined.
We wrote the specification definitions used in this thesis without conscious attention
to making them useful for the algorithm.

Our inference algorithm also provides a polynomial-time automatic induction pro-
cedure. We believe that many useful inductive theorems that seem “obvious” to hu-
man programmers can be discovered by automated induction procedures that guar-
antee quick termination. While this work gives an example of such a procedure, we
believe that significant improvement can be made in the power of the automated in-
duction provided here by incorporating induction into the forward-chaining inference
procedure.[30]

Although we believe that the most significant inference complexity in type infer-
ence is present in typing first-order languages, we have also shown how to extend
our programming language and inference algorithm to a higher order language, and
argued that our techniques generalize to that case. From our vantage point, the most
interesting part of the higher order presentation lies in the set-theory based semantics
and the ability of the language to naturally capture all of representation and inference

principles of Zermello-Fraenkel set theory.
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We also presented a separate piece of research in the area of set constraints. We
focused on a previously neglected type of set constraint involving function symbols
without standard interpretations (uninterpreted function symbols, or Tarskian func-
tion symbols). We showed that consistency for a simple set constraint language
involving these function symbols is decidable in nondeterministic doubly exponential
time.! Along the way we defined a new type of Diophantine solvability problem which
we called solvability of semi-linear Diophantine inequations. We showed this problem
to be solvable in nondeterministic exponential time, but conjecture it to be in N'P.

Although we made no attempt to present an efficient practical algorithm for check-
ing the consistency of Tarskian set constraints, we believe that such an algorithm
exists. Previous related set constraints work (e.g. on Herbrand set constraints|2])
has found practical algorithms in cases where the worst case complexity was similarly
unattractive. We believe that an effective Tarskian set constraints based algorithm
could be usefully integrated into a modern type inference system.

Finally, to conclude we mention several directions for future research in this area

(including some already mentioned):

e Find and implement an effective consistency checking algorithm for Tarskian

set constraints and incorporate it into a type inference system.

e Show the solvability problem for semi-linear Diophantine inequations to be in

NP (and get a tighter complexity bound on Tarskian set constraints).

e Incorporate inductive inference principles into a polynomial-time decidable for-

ward chaining inference system like the one presented above for type inference.

e Incorporate expressive natural language features into the specification language

presented here to increase the effectiveness of the underlying inference proce-

dures.[27]

L Aiken, Wimmers, and Lakshman[2] have given a decision procedure which is useful in practice
for the related Herbrand set constraints satisfiability problem, which has a similarly bad worst case
complexity.
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