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Automatically Inferring Properties of Computer ProgramsbyRobert Lawrence Givan Jr.Submitted to the Department of Electrical Engineering and Computer Scienceon May 3, 1996, in partial ful�llment of therequirements for the degree ofDoctor of Philosophy in Computer ScienceAbstractThis thesis presents two independent pieces of research.First, we consider the problem of automatically inferring properties of programs.Our approach is to explore the application of familiar type inference principles to a\type system" su�ciently expressive that the typing problem is e�ectively the check-ing of program speci�cations. We present such a type system, and use familiar syntax-directed type inference rules to give a polynomial-time procedure for inferring typetheorems in this type system. We discuss examples of simple functional programsand the speci�cation information this procedure automatically infers. The enrichednotion of type allows the de�nition of any recursively enumerable set as a type, andincludes argument-dependent output types for functions. The inference procedure iscapable for example of automatically inferring that an insertion sort program alwaysreturns a sorted permutation of its input.We present both �rst-order and higher-order versions of our sample programminglanguage and inference algorithms for both languages. We believe most of the inter-esting inferential challenges are already present in the �rst-order case.The second piece of research we present addresses the satis�ability of sets of for-mulas in a particular set constraints language. We consider set expressions built upfrom set constants by union, set complement, and taking the image of a set expressionunder a function or relation. Previous work in this area has neglected the \Tarskian"case where the functions and relations are allowed to take on arbitrary meanings,rather than only a standard Herbrand meaning. We prove that the satis�ability of a�nite set of subset formulas between these \Tarskian" set expressions is in nondeter-ministic doubly exponential time. Our proof is by reduction to a new Diophantineinequation solvability problem, which we show to be in nondeterministic exponentialtime, but conjecture to be in NP.Thesis Supervisor: David Allen McAllesterTitle: Associate Professor of Computer Science and Engineering
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Chapter 1IntroductionThis thesis presents two largely unrelated pieces of research. First, we present anatural and expressive type language along with a new polynomial-time type inferencesystem that infers types in this language. Second, we show the decidability and boundthe complexity of a previously unstudied problem in the area of set constraints. Wediscuss the �rst piece of work now, and will further introduce the set constraints worklater in the thesis.Many researchers have studied type inference systems for functional programminglanguages[34, 24, 35, 5]. The typical goal of such research is to allow the programmerto omit type declarations without losing the bene�ts they provide. The types inferredby such systems are typically similar to the primitive types of a typed programminglanguage with typings for functions added (so that � ! � is a type whenever � and� are). Many such type inference systems can be described by sets of locally-actingsyntax-directed type inference rules.More recently, e�ective type inference systems have been given for more expressivetype systems, e.g., allowing conditional types[2]. The stated motivation for suchincreased expressiveness is to be able to infer types for more programs to ensuretype safety. These systems, like most type inference systems, typically have poorworst-case complexity while retaining practical e�ectiveness.We believe that there is a continuum between checking type safety and verifyingprogram correctness. As the language of the types inferred becomes more expressive,5



the type inferences can more precisely characterize the outputs of the programs beinganalyzed. Rather than base our type system on the types present in programminglanguages, we draw inspiration from the types present in programmers' analysis oftheir own programs. Not only do programmers use a very expressive type language(natural language), but we observe that they are e�ective at quickly analyzing theirown programs to draw expressive typing conclusions. For example, a programmerwriting an insertion sort program can typically quickly and easily verify that his pro-gram returns a sorted permutation of its input|we view this as the typing conclusionthat the output of \sort(l)" has the \types" \a sorted list" and \a permutation of l".We take this human capability, along with the above-stated trend in type infer-ence systems, as evidence that there must exist fast and e�ective \type inference"algorithms for very rich type systems (these algorithms are of course incomplete).We de�ne in this thesis a generalization of the traditional notion of \type" to a muchmore expressive notion of \speci�cation", or \spec", and then give a type inferencestyle algorithm for inferring speci�cations for functional program expressions. Ouralgorithm runs in polynomial-time, and is capable of automatically inferring speci�-cations such as the fact that insertion sort returns a permutation of its input.Note that the speci�cations \a permutation of the input" and \a sorted list" di�erfrom types in traditional type systems in at least two ways. The �rst speci�cationdepends on the actual input to the function (not just the input's type). Such types areknown as dependent types[38, 14], and our system depends critically on including suchtypes in our \speci�cation" language. Second, the set of \sorted lists" is not de�nableby a simple grammar, and so is not a regular type.[37, 10, 41] Our speci�cationlanguage allows any RE set to be de�ned as a program speci�cation. Note that thisproperty allows one program, possibly very ine�cient but simple to understand, toserve as a correctness speci�cation for another program, more e�cient but harder tounderstand.We envision an interactive programming system in which programmers write pro-grams that include information about the speci�cations the programs are intendedto meet, using an expressive speci�cation language. As the program is written, the6



system checks that it is well-typed in the sense that no function is applied to argu-ments that don't provably meet the declared argument speci�cations for the function.Ideally, the system would be able to infer speci�cations for expressions quickly andwith human-level competence. Where necessary, the programmer would switch toa theorem proving mode and prove lemmas necessary to aid the veri�cation of thewell-typedness.Note that such a system would not require programmers to prove any more thanthey desired about the program. By providing more, or less, speci�cation informationto the system, the programmer can control where on the continuum from checkingrun-time type safety to verifying program speci�cations the programming processfalls. By adding more speci�cation information, the programmer can be sure thatnot only is \plus" receiving only numerical inputs, but that \merge" is in fact passedtwo sorted lists, for example. By adding even more, it may become veri�able that\merge-sort" correctly sorts its input.we believe that the simplicity of the inference rules de�ning our algorithm makesit possible for a programmer to develop the ability to predict what expressions thesystem will be able to compute speci�cations for, and where and how it will need help.This property may make an interactive environment based on this system acceptableto some programmers in spite of below human-level speci�cation inference.The remainder of this thesis is organized as follows:1. We discuss previous work on inference technology and inferring properties ofprograms.2. We present a �rst-order version of our programming language and inference al-gorithm, starting with several examples of simple �rst-order programs and theirautomatically computed speci�cations and moving to a formal presentation ofthe language and algorithm.3. We present a higher-order version of the same language, its syntax and seman-tics, and enhancements to the inference algorithm for dealing with the higherorder features. 7



4. We present a further enhancement to the algorithm we call \automatic existen-tial instantiation", separated from the rest because of its subtlety.5. We introduce a new problem in the area of set constraints, resolve its decidabil-ity, and bound its complexity.
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Chapter 2Previous Type InferenceTechnology2.0.1 Inference Engine TechnologyResearchers have tried a variety of techniques to deal with the general intractabilityof automated inference. One approach has been to limit the expressiveness of theunderlying logic to a tractable language. By limiting the expressive power availableto the user, a system can force the user to represent his inference problem so that itcan be solved quickly|of course, this may be di�cult or impossible for the user to do.This approach can be very useful for solving problems which fall within the expressivepower of the language. As an example of this approach, we consider concept languages([9], [36], [39], [15]). A concept language is a language of expressions intended todenote sets. The primitive atomic formula of a concept language is the subset, orsubsumption relation. By restricting the concept formation operators in the language,the subsumption question for the language (that is, the question of whether a givensubsumption formula follows from some others) can be made tractable. Many conceptlanguages have fast complete inference procedures for recognizing valid taxonomicconsequences.The formulas of our programming language can be viewed as a concept language,but the concept formation operators of our language are too expressive to have a9



fast complete inference mechanism. Instead, we provide fast incomplete automatedinference, and rely on user interaction with a complete proof system for completeness.Another approach to the intractability problem is to allow the inference procedureto run arbitrarily long, or even forever, for some problems, while allowing the user tointerrupt the procedure. The procedure is only of use in those cases where it termi-nates quickly enough, and in practice this is similar (though perhaps less predictable)to having a fast but incomplete decision procedure such as that we provide.One system which takes this approach is the NQTHM inference system ([8]),based on a logic of pure LISP with recursive de�nitions and recursive DEFSTRUCT(the \shell" principle). The inference engine is a term rewriting system with muchheuristic knowledge about LISP and induction built in. Inference is not guaranteedto terminate, and termination may depend on the order or the exact statement ofthe available lemmas. Because of the logic's close connection to LISP and the built-in heuristic knowledge about LISP, NQTHM is ideally suited for the veri�cation ofproperties of LISP programs. However, it has also been used very successfully to verifyabstract mathematical theorems, with some extra e�ort and awkwardness needed torepresent the mathematics in LISP. Many of NQTHM's heuristics could be added toour system for reasoning about the subset of our language which corresponds to theNQTHM logic. Also, adding a Kleene closure relational operator to our reasoningmechanisms, as described in [30] could make it possible to derive in a general-purposeforward-chaining manner many of the properties of recursive de�nitions which arecomputed heuristically by NQTHM.An entire family of inference systems are the descendants of the LCF system([19], [42], [18]). These systems provide a complete set of simple inference rules,and essentially require that the user provide a full formal proof of his theorem. Toassist him in this task, the user is provided with a \tactic" language|essentially,a language for writing programs that generate proofs. By building up a library ofuseful (and often domain-speci�c) tactics, the user can avoid the arduous detail offull formal proofs. It is possible to build a forward chaining notion of obviousnesslike that in our inference system into an LCF-based system as a primitive inference10



rule (or built-in tactic)([13]), however, most LCF systems have been less ambitiousthan our system in providing aggressive automatic inference|relying instead uponuser written tactics and proofs.Many systems give the user some procedural control over the inference processwhich can help it solve a problem faster. For example, term rewriting based inferencesystems ([8], [42]) allow the user to control which lemmas are used in which directionsas rewrite rules. By carefully choosing these rewrite rules, the user can dramaticallya�ect the e�ectiveness of the inference procedure. Similarly, the order of the clausesand the choice of resolution strategy employed can be used to control the e�ectivenessof a resolution based inference system. Because the user has this procedural control,these systems also provide a means of analyzing the inference process to understand\where it went wrong." This helps the user determine what procedural �xes needto be made. It is unfortunate that such procedural assistance to the inference en-gine appears to be a practical necessity|the most generally useful inference systemstoday are written in this style. Our inference system provides a notion of obviousconsequence which takes no procedural information from the user|our hope is todemonstrate that this can be made practical.2.0.2 Type Checking and Type Evaluation in Other Auto-mated Inference SystemsMany automated inference systems perform some form of type checking on the ex-pressions in their input. Most systems di�er from our system in that the underlyingsyntax does not collapse the term/type distinction. Therefore, many systems have acompletely separate type language, often providing a means for de�ning new typesusing predicates. Type checking in these systems can still be viewed as a meansof organizing general purpose inference, since a type obligation can be convertedinto a predicate to be veri�ed by whatever means are available. However, previoustype checking systems have tended to emphasize ensuring the well-formedness of theexpressions being checked rather than using the type checking as a framework for11



organizing powerful general purpose inference procedures like the forward-chainingprocedures we present here. Our type inference system returns a potentially rich setof types for the expression being checked, as well as ensuring its well-formedness.A number of automated inference systems have been written based on the ML typesystem [33]. This type system consists of primitive types, type variables, and functionspaces between types. Any type expression containing type variables represents theintersection of all the types that could be obtained by replacing the type variables bytype expressions without variables. The use of type variables allows the ML systemto represent polymorphic functions such as the identity function: the ML type ofthe identity function would be the function space between a particular type variableand itself. This type system is much less expressive than our type system |forexample, it cannot represent a type whose instances are sorted lists. This lack ofexpressiveness can be mitigated by allowing the user to de�ne new primitive typesusing arbitrary predicate expressions, but this method is relatively awkward and hasnot to our knowledge been used to organize general-purpose inference around typesas intended in our system.In ML-based systems, unlike our system, each syntactic expression has a singlecorrect type expression (possibly containing type variables). This type expression isautomatically computed by the ML system by using pre-existing knowledge about thetypes of the constants already de�ned, along with uni�cation, to pick the appropriateinstances of any polymorphic functions involved as well as the appropriate types forthe undeclared variables. This approach allows the ML user to have the bene�ts ofa strongly typed language without having to specify types for his variables in mostcases. Our system, by contrast, requires every variable to have a declared type|thisis necessary because in our richer type system, there is no single distinguished typefor each of the de�ned constants. Because our type system is very expressive, itis generally not di�cult to identify an appropriate, but not limiting, type for eachvariable in a program.Other automated inference systems have implemented algorithms with some simi-larity to our algorithm for analyzing recursive de�nitions. The Boyer-Moore theorem12



proving system [8] uses a very limited type system in which every semantic valuemust be a member of one of a �nite collection of types. When type-checking a newde�nition, the system computes a type set for the de�ning expression: a subset of the�nite collection of types such that under any interpretation of the variables in thede�ning expression, the expression must take on a value within a type in the subset.Given a recursive de�nition, the Boyer-Moore system computes a �xed-point typeset (one such that the de�nition can be seen to have that type set by assuming thatrecursive applications of the function have that type set) by repeatedly type-checkingthe de�nition with ever larger type sets assumed for the recursive calls. Becausethere is a maximal �nite type set which is always a �xed point, this process alwaysterminates with a �xed point, and in practice often �nds a useful �xed point type set.The recursive de�nition type inference for our language described below must dealwith the di�culty that our type system is signi�cantly richer than that of the Boyer-Moore prover. The primary means we use to deal with this richness is by relyingon the forward-chaining inference technology to produce useful and �nite answersquickly. This technology essentially limits the set of types being considered to the�nite set of types which have been mentioned in the proof, enriched in various limitedways (primarily by instantiation of known theorems), ensuring termination. So ourtype inference for recursive de�nitions di�ers from that in Boyer-Moore in that itallows a much wider variety of types in the �nite set of types being considered.Both our type inference algorithm for recursive de�nition, and that just describedfor Boyer-Moore can be viewed as instances of a general abstract interpretation al-gorithm for evaluating recursive de�nitions described in [1]. This general algorithmcaptures the idea of dealing with recursion by computing a �xed-point which can beproven by induction.
13



Chapter 3First Order Speci�cation Inference3.1 Some Examples of Quickly Veri�able Speci�-cationsWe begin with an informal discussion of our programming and speci�cation languages,and then discuss some examples of simple programs and the speci�cations our algo-rithm can automatically compute for them. Later sections will contain a formal syntaxand semantics of our programming language and the speci�cation language, as wellas a complete description of the algorithm. Readers who have trouble understandingthese examples informally are encouraged to return to them after scanning the latersections.3.1.1 Example ProgramsThe programming language we will use is a simpli�ed, typed �rst-order variant ofLISP. We call it �rst-order because it does not include �rst-class functions; rather,user functions are introduced only through de�nitions (possibly recursive) and usedonly by being applied to arguments.1 We call it typed because every variable is givenat its introduction a user-provided speci�cation (sometimes abbreviated spec). These1We omit �rst-class functions only for simplicity here. We show how to extend this work naturallyto higher-order languages in Chapter 4. 14



speci�cations function much like types in a simply typed programming language, ex-cept that they range over our speci�cation language, which is much more expressivethan any familiar type system. Because the speci�cation language is so expressive,we don't expect providing speci�cations for variables to be a signi�cant burden onprogrammers, though it will still carry some of the advantages of simply typed lan-guages.The programming language contains constructor symbols (e.g. cons) and corre-sponding selectors (car and cdr), and has the intended semantics that each programexpression denotes some term in the Herbrand closure over the constructor symbols(or bottom).Unlike LISP, our language syntax has a distinguished formula category, with for-mulas of the form e:s meaning \e meets the spec s". We will discuss the computationimplied by such formulas later.Throughout the remainder of this section we exhibit computed specs for threeexample programs. Our purpose here is to demonstrate some of the usefulness of ouralgorithm and speci�cation language|later in this chapter we will discuss how thesespecs are computed. The user-provided de�nitions of the speci�cation functions (e.g.(a-number)) in these examples are shown and explained just below.Our �rst example program recursively de�nes + on numbers represented in unaryas lists of the symbol 'a. This program de�nes + to be a function that operates ontwo arguments. Each of the arguments is declared to meet the spec (a-number).Our system automatically determines that (+ x y) is always greater than or equalto both x and y (i.e., meets the specs (� x) and (� y)).(define (+ (x (a-number))(y (a-number)))(if x:'nily(cons 'a (+ (cdr x) y)))) 15



Our second example program de�nes insertion sort on a list of numbers, usingfunctions insert and sort. Our system automatically �nds that (insert x l)returns a permutation of (cons x l), i.e., meets the spec (a-permutation-of (consx l)) and that (sort l) always returns a permutation of the list l.2(define (insert (x (a-number))(l (a-list)))(if l:'nil(cons x l)(if x:(> (car l))(cons (car l)(insert x (cdr l)))(cons x l))))(define (sort (l (a-numlist)))(if l:'nill(insert (car l)(sort (cdr l)))))Our third and last example program is a �rst-order version of LISP's mapcar.Here, we map a �xed function f across a list of numbers. Our system automaticallyinfers the spec (samelength-as l) from reading the de�nition of map-f.(define (map-f (l (a-numlist)))(if l:'nill(cons (f (car l))(map-f (cdr l)))))2As we will exhibit below, the system has no built-in knowledge of permutations. (a-permutation-of l) is a spec de�ned by the user for arbitrary list l. Once the user (or a spec-i�cation library) provides that de�nition and proves two simple and natural theorems about it, thesystem can infer that sort has the desired spec.16



3.1.2 Example Speci�cationsThe speci�cation language is less familiar. This language is essentially our program-ming language extended by a nondeterministic either combinator.[32, 28] Expres-sions in the speci�cation language can take on more than one possible value. Thisnondeterminism may make some readers uncomfortable: we are simply using it toprovide expressions that de�ne new types. In particular, the set of possible values ofa speci�cation expression can be viewed as the type de�ned by that expression, andwe call it the set denoted by the speci�cation.The either combinator applied to two expressions yields an expression that cannondeterministically take on any of the values of either of the two arguments. Forexample, the expression (either 'a 'b) can take on either of two the values 'a or'b, and is our way of representing the type f'a; 'bg. Note that with recursion, asingle nondeterministic expression can have an in�nity of values.We add two other new combinators to the language to take the intersection or theset complement of the possible values of their arguments (both and not, respectively).Finally, we add a universal spec (a-thing) that nondeterministically returns anyvalue at all, and an empty spec ? that has no values.Note that specs, like programs, can contain variables. Moreover, a speci�cationvariable can be bound by a program, in which case it refers to the object that theprogram variable is eventually instantiated with. This means that specs can representdependent types, i.e., types that depend on an argument to the function being de�ned.This added expressiveness is an important element of our system, and dealing withit e�ciently marks an important contribution of this work. The examples describedin this section centrally involve dependent types.Below we exhibit the de�nitions for all the speci�cation functions used in theexamples above. Consider, e.g., the de�nition shown of the function a-number. Giventhis de�nition, (a-number) denotes the set of all 
at lists of 'a symbols.17



;; all lists with samelength as l(define (samelength-as (l (a-list)))(if l:'nill(cons (a-thing)(samelength-as (cdr l)))))The speci�cation (samelength-as l) is a dependent type, depending on the valueof the variable l. Given a list l, the speci�cation (samelength-as l) nondetermin-istically denotes any list of the same length as l.(define (a-list-member-of (l (a-list)))(if l:'nilbottom(either (car l)(a-list-member-of (cdr l)))))The speci�cation (a-list-member-of l) nondeterministically denotes any memberof the argument list l.(define (delete (x (a-thing))(l (a-list)))(if l:'nil 'nil(if x:(car l)(cdr l)(cons (car l)(delete x (cdr l))))))(define (a-permutation-of (l (a-list)))(if l:'nil 18



l(let ((x (a-list-member-of l)))(cons x(a-permutation-of (delete x l))))))The speci�cation (a-permuation-of l) nondeterministically denotes an arbitrarypermutation of the input list l. The speci�cation language is powerful enough toallow a concise and natural de�nition of this concept.(define (a-number)(either 'nil(cons 'a (a-number))))(define (a-list)(either 'nil(cons (a-thing)(a-list))));; any list of numbers(define (a-numlist)(either 'nil(cons (a-number)(a-numlist))));; the numbers >= x(define (>= (x (a-number)))(either x(cons 'a (>= x))));; the numbers > x(define (> (x (a-number)))(both (>= x) (not x))) 19



These remaining de�nitions are self-explanatory.Finally, we say that a program expression e satis�es a spec s, written e:s, if thevalue denoted by e is one of the possible values taken on by s. By abuse of notation,we can also say that a spec t satis�es another spec s, written t:s, if every value takenby t can be taken by s (analogous to the standard notion of subtype).As a simple example, consider the spec expression for \non-zero number", (cons'a (a-number)). Every value of this expression is a value of (a-number), so theexpression satis�es the spec (a-number).In the de�nition of insert above we used the formula x:(> (car l)) in an iftest. However, > is a speci�cation function, de�ned by a nondeterministic program.As in this case, our nondeterministic expressions often have in�nitely many values,and so cannot be executed. To use the > function in an if test we must require > tohave associated with it a means of computing membership in the resulting speci�ca-tion, given particular arguments. This implementation attachment can be written inour programming language, and proven to compute the desired result with a theoremprover. These steps are straightforward for >.We choose to write our if tests in this manner because it makes the extraction ofrelevant type information from the test as straightforward as possible for the inferencemechanism. In the next section we will discuss the general restriction we need to placeon formulas appearing in programs to ensure that they are computable. The use ofattachment can always be avoided with no loss in clarity or program e�ectiveness, allthat is lost is those speci�cation inferences that depend on the type information inthe if test in question.We return to these examples after formally de�ning our language and inferencemechanisms.3.2 A Programming Language with Speci�cationsWe give here a more formal treatment of our demonstration language.20



Program Expressions . The program expressions are a �rst-order typed LISPwith constructor and selector functions, recursive de�nitions, let, and if:e ::= x j (let x :e e1) j (f e1 � � � en)j (if e : s� e1 e2)where f can be n-ary constructor, selector or n-ary program function-symbol, and s�must be testable (see below). We often write a quoted symbol as an abbreviation forthe application of a 0-ary constructor.3Speci�cation Expressions . Speci�cation expressions are formed from the samegrammar extended with either, both, not, a-thing, and ?:s ::= x j (let x :s s1) j (f s1 � � � sn)j (if s1 :s2 s3 s4)j (either s1 s2) j (not s) j ?where f can now be any n-ary constructor or selector, or n-ary program or speci�-cation function-symbol. Note that every program expression is also a speci�cationexpression.4Programs . We consider a sequence of function-symbols de�nitions to be a pro-gram. A function-symbol de�nition assigns to a new function-symbol either (lambdax1 : s1; � � � ; xn : sn s) or (fix f x1 : s1; � � � ; xn : sn s) where the body s must bedeterministic (i.e., a program expression) if the symbol being de�ned is a programfunction-symbol. The specs sj can reference and depend on the variables x1; : : : ; xj�1.Note that we di�erentiate between de�ned program function-symbols and de�nedspeci�cation function-symbols. This distinction is important in our inference systemas it is often important to know syntactically that an expression denotes exactly onevalue, as is the case for pure program expressions.We must restrict recursive de�nitions to ensure that every fix expression accepted3A full language would also include boolean operations in the formulas in if tests. No extradi�culties are presented by this extension.4We include both and not for convenience|they can also be taken to abbreviate appropriateexpressions using let and if, recognized by the inference process.21



has a well-de�ned least �xed point. For this language it su�ces to prohibit recur-sive calls in positions that are not syntactically monotone|this excludes recursivecalls inside the test of an if, inside an odd number of not expressions, or inside thetype speci�cations of the parameters of the de�nition. In addition to this restric-tion, we require de�nitions of function symbols to be used in program expressions tobe syntactically terminating5. Checking termination syntactically is a deep problemitself[26], but here we settle for simply requiring that there be some argument to thefunction whose Herbrand size is reduced (by selector application) in all the recursivecalls (this restriction is the variant of primitive recursion[?] appropriate for recursionon the structure of Herbrand terms).We also de�ne some convenient abbreviations. We use (both s1 s2) to abbreviate(not (either (not s1) (not s2))), and (a-thing) to abbreviate (not ?). Wefrequently want to select the values of an expression which satisfy some formula, andso de�ne the abbreviation (some-such-that x s �) to stand for (let x : s (if �x ?)). We can then use this abbreviation to de�ne forall x : s � to abbreviates : (some-such-that x s �).Semantics . Our semantic domain is the Herbrand closure over the constructorfunctions, with an error (�) element adjoined (note that the closure is taken before theerror element is adjoined). When a function is applied to objects outside its domain(as indicated by the specs on its formal parameters) it returns �. Each speci�cationexpression denotes a subset of the domain. If the speci�cation expression is a programexpression the subset will contain only one element, and one can think of the programexpression as denoting that element. We call sets containing only one domain elementprogram values.Assigning meanings to the various expressions compositionally is routine; we dis-cuss the unusual cases in the meaning of speci�cations before presenting the fullsemantics formally. Because a speci�cation denotes a set of objects, the meaning offunction application may not be obvious: we apply the function pointwise; i.e., to ap-5We will remove this restriction in the higher-order version of the language.22



ply a function f to sets �1; : : : ; �n, choose objects x1; : : : ; xn from the �i respectively,and compute f(x1; : : : ; xn). The function application will denote the set of valuesthat can be obtained in this manner. Viewed as a nondeterministic computation, we�rst nondeterministically compute arguments for the function, and then apply thefunction to them, with many possible results. The s1:s2 test of an if expressionis true exactly when s1 denotes a subset of s2's denotation. ? denotes the emptyset. Either and not are computed with union and set complement relative to thedomain, respectively.Note that in both speci�cations and program expressions, fix and lambda ex-pressions have only one meaning (not nondeterministically many): in each case it isa relation over the domain, a functional relation for program expressions.The meaning M� (e) of each language expression e within the Herbrand domainM is determined relative to a variable assignment � that maps variables to membersof M and function symbols to their de�ning relations overM, always mapping con-structor functions to their standard interpretation over the Herbrand domain. Notethat although function symbols have meanings that are relations over the Herbranddomain the language is not higher order because these relations are always immedi-ately applied, never passed around as �rst-class objects). M� (e) is de�ned as follows:� M� (x) = f�(x)g for variable or function symbol x,� M� (let x:s s1) = [d2M� (s)M�[x:=d] (s1)� M� ((apply f s1: : : sn)) = 8><>:x ������� 9s1 2 M� (s1) � � � sn 2 M� (sn)hs1; � � � ; sn; xi 2 M� (f) 9>=>;� M� ((if s1 : s2 s3 s4)) = 8><>:M� (s3) when M� (s1) �M� (s2)M� (s4) otherwise, 9>=>;� M� ((either s1 s2)) =M� (s1) [M� (s2)� M� ((not s)) =M�M� (s)� M� (?) = fg 23



� M� ((lambda x1 :s1: : : xn :sn B)) = fhd1; : : : ; dn;M� ([di=xi]B)i j di 2 Mgnote that the si do not a�ect the meaning.� M� ((fix f x1 :s1: : : xn :sn B)) =[i Nexti ((lambda x1 :s1: : : xn :sn ?))where Next (d) =M�[f :=d] ((lambda x1 :s1: : : xn :sn B))� M� (c) = f hd1; � � � ; dn; c(d1; � � � ; dn)i j each di 2 M� f�g g[ f hd1; � � � ; dn; �i j each di 2 M and some di is � gfor constructor function symbol c of arity n,� M� (sj) = f hc(d1; : : : ; dn); dji j di 2 M�f�g g[ f hd; �i j d 2 M^ :9 d1 � � � dn:d = c(d1; : : : ; dn) gwhere sj is the j'th selector for n-ary constructor c.In the above de�nition �[x := d] is the variable assignment � modi�ed just at x togive the value d, [s=x] e stands for the replacement of all free occurrences of x in e bys, and Nexti (d) denotes i applications of Next to d.Implementation Attachments We require the user to attach veri�ed programexpressions to any speci�cation function used in a way requiring it to be computed(in this language, in the test of an if). We also place su�cient restrictions on theuse of speci�cations in programs to ensure that the programs can be run.A spec s� is testable if it is either a program expression or the application of acomputable speci�cation function to program expressions.6 A speci�cation functionis computable if it has been given a proven program implementation.As an example, consider the if test x:(> (car l)) in insert. Our languageforces us to write this uncomputable test rather than the more familiar (> x (carl)). However, to avoid this restriction we can just write the program for the predicateform of > returning 'true or 'false, and then use 'true: (> x (car l)). Doingthis will lose the advantages our system gains from extracting type information aboutthe formal parameter x from the if test.6The application of a speci�cation function to a non-program expression is not directly com-putable even if all the functions involved have attachments.24



To retain these advantages, our user must take the same predicate de�nition (callit >-imp), shown below and prove the attachment theorems also shown. Our systemrecognizes theorems of this form and will then allow the implemented speci�cationfunction to appear in program expressions, as in insert.The programmer can avoid attachment with no loss in e�ectiveness or clarity.Only the type inferences that follow from the if test in question are lost.(define (>-imp (x (a-number))(y (a-number)))(if x:'nil'false(if y:'nil'true(>-imp (cdr x) (cdr y)))))forall y:(a-number) x:(> y)(>-imp x y):'trueforall y:(a-number) x:(not (> y))(>-imp x y):'false3.3 Program Analysis: Inferring Speci�cationsFor each new user de�nition our system extracts type lemmas which are then usedin the analysis of future de�nitions. Our algorithm thus operates in the contextof a library of previously derived knowledge. This library is just a set of knownspeci�cation formulas s : t. Most useful formulas from the library will have themore restricted form forall x1:s1 � � �xn:sn . s : t|where s, t, and the si contain nooccurrences of if or let (remember that forall is an abbreviation for a speci�cationformula). We call such formulas type theorems.All the facts concluded automatically by our algorithm will be type theorems. Theforward-chaining reasoning process that uses facts from the library does not reason25



about let or if expressions in theorems, so facts from the library that are not typetheorems will often be of limited value.The general problem that the algorithm in this section attacks we call the speci�-cation inference problem. Given a library L of type theorems (about already processedde�nitions) and a new de�nition assigning some lambda or fix expression e to somenew function symbol g, analyze e to generate new type theorems about g to add tothe library L.There are three parts to our central analysis algorithm. First, a forward-chaininginference closure intended as a notion of \obvious consequence" (`e); second, an-other forward chaining analysis (DÀ) which generates useful special cases of the beta-reduction/abstraction facts for the new de�nition; and third, a syntax-directed, type-inference inspired inference relation ( �̀e) that manages the application of the twoforward-chaining closures. Our solution to the speci�cation inference problem is toadd to L those formulas � such that L �̀ �, except that we replace each occurrenceof e in � with the newly de�ned symbol g. We now consider each of the three partsof the algorithm in turn.The Forward-Chaining Inference Relation `e We now de�ne a polynomial-time computable inference relation `e, where e is the lambda or fix expression beinganalyzed. Given a premise set � of formulas (e.g. s : t), we say that � `e s : t forspecs s and t whenever s : t is in the closure over � of the inference rules given below.Note that in addition to reasoning about speci�cation formulas, the inference rulesdraw (and use) conclusions of the form Dom (s) for speci�cation expression s. Thesedomain analysis conclusions have no intended semantic meaning and are used by thealgorithm to limit the scope of the reasoning to remain within polynomial time. Wewill prove that there are at most polynomially many conclusions Dom (s) inferred.The intended intuition is that the inference process reasons only about expressions inthis polynomial-sized \domain".In the following rules, p and q are meta-variables standing for any program ex-pressions; r, s and t are meta-variables standing for any speci�cation expressions; f26



can be any function symbol, constructor or selector; c is any constructor; the selectorrules are shown for cons, car, and cdr.The following rules de�ne `e:Symp:qq:p Transr:ss:tr:t Either1r:(either s t)r:(not s)r:t Either2s:r, t:rDom ((either s t))(either s t):rNot-SymDom (r)r:(not s)s:(not r) Under-BothDom ((both s t))r:s, r:tr:(both s t) Basic-EitherDom ((either r s))r:(either r s)s:(either r s) Basic-BothDom ((both r s))(both r s):r(both r s):sStrictnessDom ((f s1: : : sn))Some si :?(f s1: : : sn):? AlwaysDom (r)r:r, ?:rr:(a-thing) Selectors1Dom ((cons p q))p:(car (cons p q))q:(cdr (cons p q))Selectors2Dom (r)r:(cons s t)(car r):s(cdr r):t
Monotonicitys1:t1: : : sn:tnr:(f s1 : : : sn)Dom ((f t1: : : tn))r:(f t1 : : : tn) ConstructorsDom ((c1 s1: : : sn))Dom ((c2 t1: : : tm))c1 6= c2(c1 s1: : : sn) : (not (c2 t1: : : tm))27



Dom-AlwaysDom ((a-thing))Dom (?) Dom-Starts appears in eDom (s) Univ-Domforall x:s �Dom (s)Univ-Instforall x:s �p:s, where p appears in e[p/x] �Dom ([p/x] �) Dom-SubexpDom (r)s a subexpression of rDom (s)In the rule Univ-Inst, the notation [r=x] s denotes s with each free occurrence of xreplaced by r.Let � be a premise set. Let A be the set of all expressions s such that Dom (s) isinferred by forward-chaining the above rules from �. We observe the following twocomplexity bounds:1. A has at most polynomially many members in the size of �, and2. The entire forward-chaining can be computed in polynomial-time in the eventualsize of A.The �rst bound follows from the observation (provable by induction on the lengthof derivation) that every spec in A is either ?, (a-thing), a subexpression of e, orsome subexpression of a universal formula forall x1 : s1: : : xn : sn � in � with itsvariables replaced by subexpressions of e. Only the last case poses a challenge, forcingus to limit the quanti�cation depth of the formulas in � to some constant. Speci�cally,we require that no formula in � has a depth of let nesting greater than some �xedconstant (remember that forall is an abbreviation for a let expression). Given thisrestriction there are only polynomially many instances of universal formulas in � on28



subexpressions of e.7To see the second bound, observe that by induction on the length of derivationevery spec in any new conclusion is of the form: s, (not s), (car s), or (cdr s)for some s in A. But there are only polynomially many possible conclusions oversuch specs, and for any partially closed premise set we can �nd a new consequence inpolynomial time.Theorem 3.1 For any premise set � with bounded let nesting, and function symbolde�nition e, we can compute the forward-chaining closure of � under the rulesde�ning `e in polynomial time.We wish to point out that, although there are a large number of rules givenabove, they are clearly not designed for the speci�c examples we've exhibited. Eachrule is a natural and simple local rule capturing a small piece of the meaning of onelanguage construct. The important thing about these rules is that they capture alarge polynomial time fragment of the quanti�er-free inference problem. For any newlanguage features, we can always capture some polynomial-time portion of the possiblenew inferences in similar forward-chaining rules. The examples serve to demonstratethe power this kind of simple rule set can wield.De�nitional Theorems Inferred by DÀs We de�ne here a second forward chain-ing inference relation DÀs which generates some simple de�nitional axioms from eachlambda or fix expression s encountered. DÀ is de�ned by the following inference rules.Start-DAs is (lambda x1 :s1 � � �xn :sn B)or (fix g (lambda x1 :s1 � � � xn :sn B))DÀs Forall x1 :s1 � � � xn :sn B:(s x1: : : xn)7For lemmas that were derived by the system, the bound on quanti�cation depth can derive frombounds on the arity of functions and the depth of Let nesting within analyzed de�nitions.29



Either-DADÀs Forall x1 :s1 � � � xn :sn (either B1 B2):tDÀs Forall x1 :s1 � � � xn :sn Bi:t, i = 1 or 2Let-DADÀs Forall x1 :s1 � � � xn :sn (let x :s B):tDÀs Forall x1 :s1 � � � xn :snx :s B:tIf-DADÀs Forall x1 :s1 � � � xn :sn (if yi : s B1 B2):ty1 : t1 � � � yn : tn is a suitable reordering of x1 :s1 � � �xn :snDÀs Forall y1 : t1 � � � yi :(both ti s) � � � yn : tnB1:tDÀs Forall y1 : t1 � � � yi :(both ti (not s)) � � � yn : tnB2:tIn the rule If-DA, a reordering is suitable if it gives consequent theorems with nofree variables|the rule does not �re for every suitable reordering but picks just onearbitrarily. These rules are intended to be used in a forward-chaining manner, trig-gered by Start-DA whenever a fix or lambda expression is encountered during therecursive descent described in the next subsection.The Syntax-Directed Inference Relation �̀e We now use the `e and DÀ re-lations just de�ned to de�ne a stronger �̀e relation that handles let, if, lambda,and fix by adding the sequent inference rules shown below. These rules are roughlyanalogous to typical type inference rules: they are syntax directed, so that typingof any expression can be done in a linear number of `e closures. In these rules, r,s, t, u, u1 and u2 are meta-variables matching any speci�cation expressions. Neg is30



discussed in the text below. The Analyze-Fix and Analyze-Lambda rules are shownfor one-argument expressions, but the analogous rules for arbitrary arity are intended.We use the expression THMS� (s) to abbreviate the set of all speci�cation formulas\about s" provable from � using �̀. A speci�cation formula � is \about s" if � isof the form s : t for some t, or if s is a lambda or fix expression and � is forallx1:u1: : : xn:un (s x1: : : xn):t for some speci�cations t and u1 � � �un, and variablesx1 � � �xn not appearing in s, where n is the arity of s.Analyze-If� = � [ THMS� (r) [ THMS� (s)�; r :s �̀e u1 : t�; Neg (r:s) �̀e u2 : t� �̀e (if r:s u1 u2):t Analyze-Lambda� = � [ THMS� (r)�; x :r �̀e B : tx and x1 not in �, x1 not in B� �̀e Forall x1 :r((lambda x :r B) x1):[x1=x] tAnalyze-Let� = � [ THMS� (r)�; x :r �̀e s : tx not in � or t� �̀e (let x:r s):t
Analyze-Fix� = � [ THMS� (r)�, Forall x1 :r(f x1) : [x1=x] I , x :r �̀e B : Ix and x1 not in �, x1 not in B� �̀e Forall x1:r((fix f x :r B) x1): [x1=x] IAnalyze-Apply� = � [ THMS� (r) [ THMS� (s)� `e (apply r s) : t� �̀e (apply r s) : t Analyze-DADÀs �s is a lambda or fix expression in e�̀e �The analyze-if rule does a simple case analysis on the if test. Because our `einference rules reason only about positive speci�cation formulas, we negate formulas31



with the meta-function Neg, which takes as input a formula s:t and returns s:(nott) if s is a program expression, and s:(a-thing) otherwise. Analyze-let is implicitlydoing universal generalization when r is not a program expression. Analyze-Apply isthe only place where the forward-chaining `e relation is used. The Analyze-Lambda,Analyze-Fix, and Analyze-DA rules are needed only at the top level of function symbolde�nitions (because that is the only place lambda and fix occur|this restriction willbe relaxed in the higher-order version of the language). We describe just below howinduction hypotheses for the Analyze-Fix are selected.We can now formally de�ne the use of �̀e to generate theorems about a newde�nition. Say we wish new theorems about the function symbol g, de�ned as thelambda or fix expression e. If e is a lambda expression (lambda x1 :s1: : : xn :sn B),we simply return the set of theorems provable by �̀e of the form Forall x1 :s1: : : xn :sn (e x1: : : xn):t. Note that t can contain the formal parameter variables xi, givingus the important ability to discover dependent types. For recursive de�nitions e =(fix g x1 :s1: : : xn :sn B), we prove type specs about e by induction. To facilitatedescribing this process we de�ne the operation T on sets of speci�cations � as follows:T (�) = 8><>: t �������L [8><>:Forall x1 :s1 : : : xn :sn(g x1 : : : xn) : B(�) 9>=>; �̀e B : t 9>=>;where B(�) is the both expression representing the intersection of all the membersof � (remember that L is the library of previously derived theorems known to thesystem before encountering the new de�nition). Intuitively, T (�) is the set of typesthat can be proven for the body B under the inductive assumption that recursive callssatisfy all the specs in � (note that some of these specs may depend on the formalparameters xi).In order to apply the Analyze-Fix rule, we need to �nd a self-supporting inductionhypothesis|that is, a set of speci�cations � such that T (�) = �. We �nd this �xed-point of T by computing a decreasing sequence of candidate sets �0;�1; : : : ; until wereach a �xed-point or an empty set, as follows:32



�0 = T (f?g)�i+1 = T (�i) \ �iOnce we �nd a �xed-point ��x of T this way, we return the set of theorems8><>: Forall x1 :s1 : : : xn :sn(g x1 : : : xn) : t ������� t 2 ��x9>=>;Intuitively, we have started by analyzing the \base case" of the de�nition by seeingwhat types we can prove for B under the assumption that recursive calls diverge.We then take those types together as an inductive hypothesis about recursive callsand see what subset of them can be proven about B. We repeat this step, each timeshrinking the inductive hypothesis until it reaches a �xed point. The resulting set oftypes, found in polynomial time in the size of e and L8, is the largest self-justifyingset of types for g in T (?). Note that this approach to recursive de�nitions can beeasily and naturally extended to sets of mutually recursive de�nitions.3.3.1 Inferring the Speci�cations in Our ExamplesWe now return to our example programs from Sect. 3.1, and explore the steps involvedin computing the claimed speci�cations for the programs.The theorems shown below are among those generated automatically when readingthe speci�cation de�nitions shown in Sect. 3.1. These and others like them are used incalculating the speci�cations cited for the example programs. The �rst six theoremsare examples of theorems produced by the DÀ inference relation(1) forall l:(both (a-list) (not 'nil))(cons (a-thing) (samelength-as (cdr l))) : (samelength-as l)(2) forall l:(both (a-list) (not 'nil))z:(not (car l))8In practice, the runtime should be polynomial in the size of the relevant part of the library, thatis those lemmas whose type restrictions apply to the expressions in the de�nition.33



(cons (car l) (delete z (cdr l))) : (delete z l)(3) forall l:(both (a-list) (not 'nil))z:(a-list-member-of l)(cons z (a-permutation-of (delete z l))) : (a-permutation-of l)(4) forall l:(both (a-list) (not 'nil)) (cdr l):(delete (car l) l)(5) forall l:(both (a-list) (not 'nil)) (car l):(a-list-member-of l)(6) forall x:(a-number) (either x (cons 'a (>= x))) : (>= x)(7) forall x:(a-number) (> x):(both (>= x) (not x))(8) forall l:(a-numlist) l:(a-list)(9) (a-numlist):(either 'nil (cons (a-number) (a-list)))(A) (either 'nil (cons (a-number) (a-list))):(a-numlist)Each example also requires the presence of some additional simple and naturaltheorems. We intend either that the user have proven these theorems using a theoremprover or that he is using a speci�cation library containing the de�nitions and thetheorems. Each theorem captures a basic property of the de�nitions, rather than aproperty targeted to any of our examples.9 Many of the theorems can be proven bystating them to a simple inductive theorem prover. The theorems needed are:forall l:(a-list)l:(samelength-as l)forall l:(a-list)l:(a-permutation-of l)forall x:(a-number)y:(not (> x))x:(>= y)9An exception to this is the second lemma on the right, which mitigates a weakness in ourreasoning about nondeterminism. Stronger polynomial-time reasoning about non-determinism ispossible and is addressed in Chapter 5. 34



forall n:(a-number)(>= (>= n)):(>= n)forall n:(a-number) (cons 'a (>= n)):(>= (cons 'a n))forall l:(a-list)(a-permutation-of (a-permutation-of l)):(a-permutation-of l)To conclude our discussion of these examples, we show some of the critical in-ference steps involved in drawing one of the tougher conclusions. To determine that(insert x l) has the speci�cation (a-permutation-of (cons x l)), the systemmust �rst choose that speci�cation as an inductive hypothesis. This happens becauseit is a speci�cation of the base case (cons x l), by the theorem that states thatany list is a permutation of itself|and a simple inference chain demonstrates that(cons x l):(a-list). Once we have (a-permutation-of (cons x l)) as an in-ductive hypothesis, the analysis of the recursive case of the if body goes as shownbelow. Similar chains of reasoning are involved in automatically drawing the otherspeci�cation conclusions cited above.(cons x (cdr lst))by theorem (4) above is under (cons x (delete (car lst) lst))by selectors rule is under (cons (car (cons x lst))(delete (car lst)(cdr (cons x lst))))by theorem (2) is under (delete (car lst) (cons x lst)) (*)(cons (car lst) (insert x (cdr lst)))by ind hyp is under (cons (car lst)(a-permutation-of (cons x (cdr lst))))by (*) is under (cons (car lst)(a-permutation-of35



(delete (car lst) (cons x lst))))by theorem (3) is (a-permutation-of (cons x lst)) as desired.The main inference chain involved in analyzing insert. First, (cons x (cdr lst))is analyzed to get the result labelled (*). This result is used to analyze the recur-sive branch of insert. The inductive hypothesis puts (insert x (cdr lst)) under(a-permutation-of (cons x (cdr lst))). Not every inference rule used is cited.
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Chapter 4Higher Order Speci�cationInferenceWe consider here extensions to the �rst-order language presented in Chap. 3 to ageneral purpose higher-order language. We then extend the inference mechanismspresented to handle the new language features. We believe that the most di�cultinference problems are present already in the �rst-order case. The techniques pre-sented here are straightforward extensions of the �rst-order speci�cation inferencetechniques|this chapter is provided not only to exhibit the extension, but also asan opportunity to present a higher-order speci�cation language based on nondeter-minism. The speci�cation language given here uses nondeterminism to achieve theexpressive power of Zermelo-Fraenkel set theory and allows particularly elegant ex-pression of a wide range of mathematical concepts.4.1 A Higher-Order Programming LanguageProgram Expressions We add new constructs to our �rst-order programminglanguage to allow �rst-class function values. First, we allow lambda expressions ofzero or one argument as program expressions|we call lambda expressions of no ar-guments thunk expressions, and we intend functions of more than one argument tobe represented in a Curried manner. Second, we allow �rst-class recursive functions37



by including as program expressions fix expressions. The new program expressionBNF is given below.e ::= x j (apply e) j (apply f e) j (c e1 � � � en) j (if � e1 e2) jj (fix g e�) j (lambda () e) j (lambda x :s e)where f can be either any program expression or any selector function symbol, c isan n-ary constructor or selector symbol, g and x are variables, s is a speci�cationexpression (de�ned below), and � is a testable formula (de�ned below). We oftenwrite a quoted symbol as an abbreviation for the application of a 0-ary constructorsymbol, and we often omit the constructor apply.We restrict the body e� of fix expressions to be a lambda expression of k argu-ments with a body B[g] (when un-Curried) such that every occurrence of g in B issyntactically monotone and continuous as an operator of k arguments. This propertyis de�ned below in the context of the speci�cation language.Speci�cation Expressions To complement the higher-order features added to theprogramming language, we add related features to the speci�cation language. Asbefore, we allow all program features in speci�cations. A lambda speci�cation isalways deterministic (i.e., has just one possible value), however, its body may benondeterministic, in which case it denotes a nondeterministic function (i.e., a rela-tion). In addition, we add operator and thunk types corresponding to partial, non-deterministic versions of the traditional arrow types. We also add a new constructa-domain-member-of which nondeterministically returns a member of the domain ofits argument|this construct yields no value on non-operator arguments. Figure 4-1gives the new BNF for speci�cation expressions.We must restrict recursive de�nitions to ensure that every fix expression acceptedhas a well-de�ned least �xed point. It su�ces to prohibit recursive calls in positionsthat are not syntactically monotone and continuous. We explain the semantic motiva-tion behind this restriction below in the section on the semantics for our higher-orderlanguage. Here, we just state the syntactic restriction. First, we require the body38



s ::= x j (apply s) j (apply f s) j (c e1 � � � en) j (if � s3 s4)j (fix g s�) j (lambda () s) j (lambda x :s1 s)j (either s1 s2) j (both s1 s2) j (not s) j (a-thing) j ?j (an-operator-from-to s1 s2) j (a-thunk-to s1)j (a-domain-member-of s)Figure 4-1: Speci�cations BNF. � is a formula (de�ned below), x and g arevariables, s� is syntactically monotone and continuous, and f can be any speci�cationexpression or selector function symbol, and c is any n-ary constructor.of every fix expression to be a lambda expression. An expression (fix g (lambdax1:e1: : : xn:en C[g])) is syntactically monotone and continuous if g does not occurin any ei, and every occurrence of g in C satis�es the following restrictions:� g occurs only in applications to n argument expressions,� g does not occur inside any of the following constructs:{ any fix expression,{ any lambda expression, or{ any formula.Formulas We also extend the simple �rst-order language by adding formula con-structs to increase the e�ectiveness of the inference rules we give later (there-existsand at-most-one) [28]. We also add boolean combinations of speci�cation formulasfor convenience (if expressions can already be used to express any desired com-bination). The formula constructs there-exists and at-most-one assert that aspeci�cation is non-empty, or deterministic, respectively. The addition of small isnecessitated by the richer semantics necessitated by the addition of operators andthunks as well as our intent to capture the expressiveness of ZF. The intended se-mantics of small is discussed in section 4.2. The new BNF for formulas is given39



below: � ::= s1 :s2 j (boolean-not �1) j (and �1 �2) j (small s)j (there-exists s) j (at-most-one s)An atomic formula is a formula with no occurrences of and or not. A literal is anatomic formula or its negation.As in our �rst-order language, we must ensure that formulas appearing in programexpressions (as opposed to speci�cation expressions) can be evaluated deterministi-cally. In Sect. 3 we de�ned what it meant for a �rst-order speci�cation to be testable.Here we extend that de�nition to the formulas of our higher-order language. Thefollowing formulas are testable:� the formula s:t where both s and t are program expressions, or� the formula e : (f e1 � � � en) for program expressions e; e1 � � � en, and implementedfunction symbol f| A function symbol is implemented if it has been given aproven implementation attachment as described in section 3.2, or� the formula is e:(some-such-that x (a-thing) �) where � is testable, or� Any boolean combination of testable formulas.Abbreviations There are several useful abbreviations that we de�ne to extend theabove language. Actual implementations may pro�tably choose to directly imple-ment and reason about these constructs rather than translate them into the aboveprimitives.We observe that there is a natural isomorphism between nondeterministic thunksand sets (mapping each thunk to the set containing exactly its values when applied).We can thus use thunks to represent sets, which we do by using (the-set-of-alls) to abbreviate the expression (lambda () s) and (a-member-of s) to abbreviate(apply s). Likewise, we will write the formula (a-subset-of s) for (a-thunk-tos). 40



Now that we have added lambda to the language, we can de�ne let as an abbre-viation by taking (let x :s s1) to be mean (apply (lambda x :s s1) s1).We also �nd it convenient to abbreviate (and (there-exists s) (at-most-ones)) as (singleton s), and (and s : t t :s) as (= s t).We will also use boolean combinations other than and and boolean-not, assumingthe natural translations into and and boolean-not.When applying an implementation attachment function, e.g. <, it will be con-venient to abbreviate the testable formula e:(some-such-that x (a-thing) (< xp):'true) as (apply-imp < e p).Finally, we keep the abbreviations some-such-that and forall that were de-�ned in the �rst-order chapter, expanding the occurrences of let into lambda as justdescribed.Examples As examples of the use of the higher order features of the language,we show higher-order versions of the de�nitions of three functions analyzed earlier:insert, sort, and mapcar. These de�nitions rely on some basic de�nitions that wealso show:(define (a-set)(both (a-subset-of (the-set-of-all (a-thing)))(a-thing)))(define (an-operator) (an-operator-from-to (a-set) (a-set)))(define (mapcar f:(an-operator) l:(a-list))(if l:'nill(cons (f (car l)) (mapcar f (cdr l)))))(define (a-transitive-operator)(some-such-that r (an-operator)(forall x:(a-domain-member-of r)41



(r (r x)):(r x))))(define (a-total-operator)(some-such-that r (an-operator)(forall x:(a-domain-member-of r)y:(a-domain-member-of r)(or x:(r y) y:(r x)))))(define (an-irreflexive-operator)(some-such-that r (an-operator)(forall x:(a-domain-member-of r)x:(not (r x)))))(define (an-ordering)(both (a-transitive-operator)(a-total-operator)(an-irreflexive-operator)))(define (the-domain-of (r (an-operator)))(the-set-of-all (a-domain-member-of r)))(define (the-range-of (r (an-operator)))(the-set-of-all (r (a-domain-member-of r))))(define (an-implementation-of (r (an-operator)))(some-such-that r' (an-operator-from-to (the-domain-of r)(an-operator-from-to (the-range-of r)(the-set-of-all (either 'true 'false))))(forall x:(the-domain-of r)(= (r x)(some-such-that y (the-range-of r)(r' x y):'true))))) 42



(define (insert (> (an-implementation-of (an-ordering)))(x (a-domain-member-of >))(lst (a-list)))(if lst:'nil(cons x lst)(if (apply-imp > (car lst) x)(cons x lst)(cons (car lst) (insert > x (cdr lst))))))(define (sort >:(an-implementation-of (an-ordering))lst:(a-list-of (a-domain-member-of >)))(if lst:'nillst(insert > (car lst) (sort > (cdr lst)))))4.2 SemanticsThe addition of higher-order constructs to the language considerably complicates oursemantic treatment. It will no longer do to use a simple Herbrand universe, as ourdomain must also contain functions. As noted above, zero-argument functions canbe thought of as representing sets|this means our domain must contain an objectwhich is the denotation of (the-set-of-all (a-thing)), which should surely notbe a possible value of (a-thing) itself. This problem is exactly analogous to the needfor a set/class distinction in set theory. The semantics we give here is similar to thatgiven by McAllester for the Ontic representation language[31]. Our treatment variesfrom the more standard complete partial order semantics|we call our semantics settheoretic.To avoid a contradiction then, we must allow (a-thing) to denote only some partof our domain. We wish this part of the domain to contain the universe of everything43



we normally talk about, and thus it must be itself a model of ZF set theory. Wecall this part of the domain the predicative universe. If we were satis�ed to omitthe constructor a-thing from our language, the predicative universe would su�ceas a model for our language (cons cells and functions can be encoded as sets in themodel domain). Unfortunately, impredicative expressions (those using a-thing orearlier impredicative de�nitions) are very useful and convenient, as in the followingde�nition of a-list-of, a function which constructs a list of members drawn from aparticular set s:(define (a-list-of s:(a-set))(either '()(cons (a-member-of s) (a-list-of s))))The impredicative construct here is a-set. Our predicative universe will notcontain any value for (the-set-of-all (a-set)). De�ning (a-set) to be \everyset" (i.e., every predicative set) requires the use of a-thing:(define (the-universe)(the-set-of-all (a-thing)))(define (a-set)(both (a-subset-of (the-universe))(a-thing)))Without the impredicatively de�ned (a-set) it is unclear how we could state thata-list-of can be applied to \any set." 1In order to provide a semantics for the impredicative a-thing, we take a modelof our language to be a model of set theory which contains the predicative universe(another model of set theory) as a domain element. The larger model will be able togive meaning to all the impredicative expressions in our language without creatingany paradox.1note: a-list-of is itself impredicative because it relies on a-thing in its de�nition. However,applications of a-list-of to predicative arguments can be syntactically recognized as predicative,since the impredicative part of a-list-of is limited to it's input domain.44



More formally, we de�ne a standard model of ZF set theory to be a family of setsM which satis�es the following properties:� M is closed under powerset|the powerset of any member is a member.� M is closed under member-of|any member of a member is a member.� The union of any small subset of M is a member of M|a subset is small if itis countable, or if it's cardinality is no larger than some member of M.FromG�odel's Incompleteness result we know that the existence of standard modelsof ZF cannot be established using methods within ZF. Nevertheless, this existenceis e�ectively assumed by the working mathematician and is a valid theorem in ourinference system (implicitly, because the inference rules can derive (there-exists(the-set-of-all (a-thing))), and that (the-set-of-all (a-thing)) models allthe axioms of ZF).We can now take a model M of our language to be any standard model of ZFwhich contains as a distinguished memberMPred another standard model of ZF. SinceM is a universe of sets, whereas our language constructs denote thunks, operators,and constructor values, we will need a way to encode thunks, etc. as sets. We canuse any encoding that uses each set at most once|i.e. we can recover the thunkor operator or constructor application from the set representing it unambiguously.We assume we have such an encoding (perhaps built from tagged tuples using thestandard means of representing numbers and tuples as sets), and refer to it as follows:� Given a set t 2 M, (encoded-thunk t) is the set encoding the thunk that canreturn any value in t. We sometimes write encoded-set for encoded-thunk.� Given an relation r �M�M and domain set d 2 M, (encoded-relation rd) is the set encoding r restricted to domain d.� Given a constructor function symbol c of n arguments, along with sets a1 � � � an(representing arguments for c), (encoded-c-app a1: : : an) represents the outputof c on a1 � � � an. 45



Using this encoding, we now give the formal semantics of each of our languageconstructs. A program expression will denote a singleton set in M (containing thevalue returned by the program). A speci�cation expression will denote an arbitraryset in M (the set of possible values of the speci�cation)|if the speci�cation is aprogram expression, the denotation will be a singleton or empty set. A formula willdenote either true or false. For any variable interpretation � mapping languagevariables to elements of a model M, we de�ne the meaning M�(e) of any languageexpression e recursively on the structure of e as follows2:� M� (s1 : s2)) = 8><>: true when M� (s1) �M� (s2),false otherwise� M� ((boolean-not �)) = 8><>: true when M� (�) = false,false otherwise� M� ((and �1 �2)) = 8><>: true when M� (�1) = true and M� (�2) = true,false otherwise� M� ((small s)) = 8><>: true when M�(s) 2 MPred,false otherwise� M� ((there-exists s)) = 8><>: true when M�(s) is non-empty,false otherwise2Note that we are overloadingM, as it is both a set (the domain of the model) and a function(the valuation function giving meaning to syntax). Which meaning is intended is always clear fromthe context. 46



� M� ((at-most-one s)) = 8><>: true when M�(s) is empty or singleton,false otherwise� M� (x) = f�(x)g, for any variable x,� M� ((apply t)) = 8><>: x ������� 9t0 2 M� (t) : 9s 2 Mt0 = (encoded-thunk s) ^ x 2 s 9>=>;� M� ((apply f s)) = 8>>>>><>>>>>:x ����������� 9f 0 2 M� (f) : 9r 2 M�M : 9d 2 Mf 0 = (encoded-relation r d) ^9s0 2 M� (s) \ d : hs0; xi 2 r 9>>>>>=>>>>>;� M� ((c s1: : : sn)) = 8><>: x ������� 9s01 2 M� (s1) � � � s0n 2 M� (sn)x = (encoded-c-app s01: : : s0n) 9>=>;for any constructor function symbol c,� M� ((ci s)) = 8><>:x ������� 9s01 2 M� � � s0n 2 Ms0i 2 M� (s) ^ x = (encoded-c-app s01: : : s0n) 9>=>;where ci is the i'th selector for constructor c,� M� ((if � s1 s2)) = 8><>:M� (s1) when M� (�) = trueM� (s2) otherwise, 9>=>;� M� ((fix g s [ g])) = Next (g1) 47



where g1 = [i Nexti(fg)Next (d) =M�0(d) (s [(apply g)])�0(d) = � [ g := (encoded-thunk d)]Intuitively, Next (d) contains the value of s with g replaced by choice from d.� M� ((lambda () s)) = f(encoded-thunk M� (s))g� M� ((lambda x :s1 s)) = f(encoded-operator r d)gwhere d =M� (s1)r = f hy; zi j y 2 d ^ z 2 M�[x:=y] (s) g� M� ((either s1 s2)) =M� (s1) [M� (s2)� M� ((both s1 s2)) =M� (s1) \M� (s2)� M� ((not s)) =M� ((a-thing))�M� (s)� M� ((a-thing)) = ( s 2 MPred ����� s is an encoded-thunk, encoded-oper-ator, or encoded-c-app for some c )� M� (?) = fg� M� ((an-operator-from-to s1 s2)) =48



8>>>>>>>><>>>>>>>>: (encoded-relation r d) �������������� 9d1 2 M 9d2 2 Mr � d1 � d2 ^(encoded-set d1) 2 M� (s1) ^(encoded-set d2) 2 M� (s2) 9>>>>>>>>=>>>>>>>>;� M� ((a-thunk-to s)) =8>>>>><>>>>>: (encoded-thunk t) ����������� 9d 2 Mt � d ^(encoded-set d) 2 M� (s)9>>>>>=>>>>>;� M� ((a-domain-member-of s)) =8><>:x ������� 9r 2 M�M 9d 2 Mx 2 d ^ (encoded-relation r d) 2 M� (s)9>=>;Given a particular modelM and variable interpretation �, we can view the bodyC[g] of a fix expression as a context mapping meanings of g to subsets ofM. In orderto discuss the semantic motivation for our syntactic restrictions on fix expressions,we introduce the notation CM;� for this function, so that CM;�(f) = M�[g:=f ](C[g])for any suitable domain element f .In order to ensure that our recursive expressions have well-de�ned least �xedpoints, we make the restriction that the the corresponding context function CM;� ismonotone and continuous. Considering relations as sets of ordered pairs, we say thatCM;� is monotone if whenever f � g we have CM;�(f) � CM;�(g). CM;� is continuousif for any in�nite sequence of relations f1 � f2 � f3 � � �, we have that CM;�([ifi)is the same as [iCM;�(fi). The syntactic restrictions placed above in Sect. 4.1 aresu�cient to ensure that the body of any accepted fix expression satis�es both ofthese semantic restrictions.Monotonicity and continuity of CM;� together ensure that a least �xed point for C49



can be constructed by iterating CM;� on the empty relation f? countably many times.We write C iM;�(f) for the application of CM;� to f iterated i times. Monotonicityensures that for any i, C iM;�(f?) � C i+1M;�(f?). This then ensures that we can usecontinuity to show that [iC iM;�(f?) is a �xed-point of C, as follows. Call the desired�xed-point expression C1. Continuity implies that CM;�(C1) = [iCM;�(C iM;�(f?))but the right hand side is just C1 again, as desired.4.3 Higher-Order Speci�cation InferenceThe speci�cation inference mechanisms for our �rst-order language, de�ned earlier inSect. 3.3, generalize naturally to the higher order language just presented. Ratherthan present the inference system again here, we present only the extensions neededto the above system.Elimination of Compound Formulas The �rst-order analysis presented earlierin Sect. 3.3 handled only atomic formulas in the test of an if expression. Atomicformulas expose the type information involved in the test more readily than compoundformulas. While a practical system might choose to use a general mechanism suchas Boolean constraint propagation [?] to extract type information from a compoundformula, here we simply eliminate compound formulas entirely. Each if expressionwith a top-level : expression in its test can be rewritten as an equivalent if expressionwith a smaller test without the : by switching the branches. Similarly, each ifexpression with and top-level and expression in its test can be rewritten to nestedsmaller if expressions with smaller tests without the and by testing each combinationof the truth values of the subexpressions of the and. This second rewrite does increasethe length of the overall expression|in order to keep a linear bound on this process wemust bound the complexity of the tests in if expressions. We assume that a rewritelike the one described here is performed before any de�nition is considered by thesystem, so we reason here only about expressions containing only atomic formulas.50



De�nition Analysis Revisited In analyzing our �rst-order language, the onlyplace where lambda and fix constructs were encountered was at the top level of ade�nition. The �rst-order analysis algorithm provides a means for generating a set oftheorems about top-level lambda or fix expressions|this same method can be ap-plied to any internal lambda or fix expression encountered during recursive descent.Therefore, the �rst-order algorithm can be applied directly to higher order expres-sions just as it is. When a lambda or fix construct is encountered during recursivedescent, a process identical to the top-level �rst-order de�nition analysis is performed,resulting in a set of new type theorems about the lambda or fix expression|thesetype theorems may be used later in the recursive descent analysis of the surroundingexpressions.However, due to the richer semantic domain we have chosen for our higher-orderlanguage, there are several ways we can strengthen the �rst-order algorithm. Wewill add some new sequent rules to the syntax-directed �̀ inference relation that wasde�ned in the �rst-order chapter. Also, we will add many new inference rules to theforward-chaining `e inference relation, replacing some of the rules that were alreadypresent.Extensions to �̀ We �rst observe that the Analyze-Fix and Analyze-Lambda rulescan be used internally during recursive descent just as they were at the top level for�rst-order de�nitions. We intend these rules to be used in the same manner thatlambda and fix expressions were analyzed by the �̀ relation in the �rst-order case|in particular, the selection of induction hypotheses for the Analyze-Fix rule is done inexactly that same manner. We present now some extensions to �̀ for the higher-orderlanguage.First, we give a higher-order version of the �rst-order let rule, since let is nolonger explicitly in the language as it can be naturally represented by a lambdaapplication. 51



Analyze-Let� = � [ THMS� (s)�, x:s ` B:tx not in � or t� �̀e ((lambda x :s B) s) : tWe also need rules that reason about whether a given lambda or fix expression ispredicative. These rules essentially determine syntactically whether an expressionrelies on (a-thing) or not. Whenever a lambda or fix expression is encounteredduring recursive descent we attempt to prove that it is small using one of these rules.Lambda-Smallness� = � [ THMS� (t)� ` (small t)�; (small x) ` (small B)x not free in �� ` (small (lambda x : t B))
Fix-Smallness�; (small g) ` (small B)g not free in �� ` (small (fix g B))Many useful expressions are not themselves small, but return small types (that is, asmall set of possible values) whenever they are applied to small types (e.g. a-list-ofas de�ned above). Recognizing this property greatly enlarges the set of expressionsthat are quickly recognized as predicative. To this end, we introduce a new expression(small-after s n) where s is a speci�cation expression and n is a natural number.These expressions are not in the external language, but are used by the inferenceprocess to record the corresponding properties|that s applied to n small classes yieldsa small class. We will see below how the forward-chaining inference rules draw the52



appropriate small conclusions using small-after facts. Here we give sequent rulesfor deriving small-after facts whenever lambda or fix expressions are encountered.Lambda-Small-After� = � [ THMS� (t)�; (small x) ` (small-after B n)x not free in �� ` (small-after (lambda x : t B) n+ 1)Fix-Small-After�; (small-after g n) ` (small-after B n)g not free in �� ` (small-after (fix g B) n)We also add similar new constructs and sequent rules (along with forward-chaininginference rules later) for determining when a lambda or fix construct will returna value (there-exists-after) or return at most one value (at-most-one-after).These rules are important in strengthening the reasoning about when higher orderexpressions are total or functional, respectively.Lambda-At-Most-One-After� = � [ THMS� (t)�; (at-most-one x) ` (at-most-one-after B n)x not free in �� ` (at-most-one-after (lambda x : t B) n+ 1)53



Fix-At-Most-One-After�; (at-most-one-after g n) ` (at-most-one-after B n)g not free in �� ` (at-most-one-after (fix g B) n)Lambda-There-Exists-After� = � [ THMS� (t)�; (there-exists x) ` (there-exists-after B n)x not free in �� ` (there-exists-after (lambda x : t B) n + 1)Fix-There-Exists-After�; ` (there-exists-after B n)g not free in �� ` (there-exists-after (fix g B) n)Obvious Consequences Revisited The only remaining changes needed to thespeci�cation inference algorithm lie in the underlying forward chaining horn-clauseinference rules. These rules, as before, perform simple, locally-acting inferences|each rule is based on the semantics of one language construct or occasionally of theinteraction of two language constructs. We need a number of new rules to deal withthe new language constructs in the higher order language.All the rules in use for the �rst-order inference system are also used for the higher-order system, with the following exceptions:� The rule that places every expression under (a-thing) is not used.54



� The rules with variables (p,q) restricted to program expressions are supersededby rules below. These were Symmetry, Selectors1, and Univ-Inst.We introduce the new rules added in groups organized by the construct beingreasoned about. First, we present the new rules which reason about lambda expres-sions. Note that our central reasoning about lambda expressions is accomplished bythe recursive descent rules above. In addition we have the following simple rules:Lambda-TermDom ((lambda x :s B))(singleton (lambda x :s B)) App-Existence(there-exists (apply f s))(singleton s)s:(a-domain-member-of f)Lambda-DomainDom ((lambda x :s B))(= (a-domain-member-of (lambda x :s B)) s)We also add the following inference rules for reasoning about thunk (lambda ())expressions: Singleton-ThunkDom ((lambda () t))(singleton (lambda () t)) Apply-ThunkDom ((lambda () t))(= (apply (lambda () t)) t)
55



Equate-Thunks(= (apply (lambda () s1)) (apply (lambda () s2)))(= (lambda () s1) (lambda () s2))Next we add the following rules for thunk and operator spaces:Op-Domainf : (an-operator-from-to s t), Dom (f)(a-domain-member-of f) : (a-member-of s)Op-Rangef : (an-operator-from-to s t), Dom (f)(apply f (a-domain-member-of f)):(a-member-of t)Thunk-Rangef : (a-thunk-to s)(apply f) : (a-member-of s)Infer-Thunkspace(singleton s)(apply (lambda () t)): (a-member-of s)Dom ((a-thunk-to s)), Dom (t)(lambda () t) :(a-thunk-to s) 56



We also add the following rules which reason about (a-thing) and smallness:Things-are-Smalls : (a-thing), (singleton s)(small s) Small-Is-Thing(small s)s:(a-thing)Monadic-Smallness(small s), Dom ((c s))c any monadic term constructor except not(small (c s)) Small-If(small s1), (small s2)Dom ((if � s1 s2))(if � s1 s2)Binary-Smallness(small s), (small t)Dom ((c s t))c any binary term constructor exc. lambda, fix(small (c s t))Small-After-Zero1(small-after f 0)(small f) Small-After-Zero2(small f)(small-after f 0)
57



Small-After-Dec(small-after f n + 1)(small t)Dom ((f t))(small-after (f t) n)The following rules deal with pure formulas|i.e., the only terms involved are rulemeta-variables.Infer-And�, 	Dom ((and � 	))(and � 	) And1(and � 	)� And2(and � 	)	Exists-Up(there-exists s)s : t(there-exists t) At-Most-One-Down(at-most-one t)s : t(at-most-one s) Small-Down(small t)s : t(small s)At-Most-One-After-Zero1(at-most-one-after f 0)(at-most-one f) At-Most-One-After-Zero2(at-most-one f)(at-most-one-after f 0)58



At-Most-One-After-Dec(at-most-one-after f n+ 1)(at-most-one t)Dom ((f t))(at-most-one-after (f t) n) There-Exists-After-Dec(there-exists-after f n + 1)(there-exists t), Dom ((f t))t:(a-domain-member-of f)(there-exists-after (f t) n)There-Exists-After-Zero1(there-exists-after f 0)(there-exists f) There-Exists-After-Zero2(there-exists f)(there-exists-after f 0)Symmetry(there-exists s)(at-most-one t)s : tt :s Variablesx is a variable(singleton x)In each of the next two rules, c can be any selector or constructor function symbol,or any of a-domain-member-of, apply, an-operator-from-to, or a-thunk-to. n istaken to be the arity of c.Monotonicity(is u1 v1): : :(is un vn)(is (c u1: : : un) (c v1: : : vn)) Arg-Existence(there-exists (c u1: : : un))(there-exists ui)The following rules deal with expressions constructed with a constructor. We show59



these rules for the constructor cons and its selectors car and cdr, but we intend themto act on any constructor function present in the target language.Cons-Is-A-Fun(singleton s t)(singleton (cons s t)) Sel-Fun(singleton (cons s t))(singleton s)(singleton t)Selectors1a(there-exists t)Dom ((cons s t))s:(car (cons s t)) Selectors1b(there-exists s)Dom ((cons s t))t:(cdr (cons s t))We also add the following rules for if expressions:If-TrueDom ((if � s t))�(= (if � s t) s) If-FalseDom ((if � s t))(boolean-not �)(= (if � s t) t)Finally, we add the following rules for instantiation of universal formulas and con-struction of the inference domain:Range-Exp(lambda x:s B) appears in eDom (((lambda x:s B) (a-domain-member-of (lambda x:s B))))60



Univ-Instforall x:t �s:t, where s appears in e(singleton s)[s/x]�Dom ([s/x]�)We now argue that the higher order version of ` can still be computed in polyno-mial time. The argument is very similar to the �rst-order case. Let � be a premise set.Let A be the set of all expressions s such that Dom (s) is inferred by forward-chainingthe above rules from �. We observe the following to complexity bounds:1. A has at most polynomially many members in the size of �, and2. The entire forward-chaining can be computed in polynomial-time in the eventualsize of A.The �rst bound follows from the observation (provable by induction on the lengthof derivation) that every spec in A is either ?, (a-thing), a subexpression of e,(f (a-domain-member-of f)) for some f appearing in e, or some subexpression ofa universal formula forall x1 : s1: : : xn : sn � in � with its variables replaced bysubexpressions of e. Only the last case poses a challenge, forcing us to limit thequanti�cation depth of the formulas in � to some constant. Speci�cally, we requirethat no formula in � has a depth of lambda nesting greater than some �xed constant.Given this restriction there are only polynomiallymany instances of universal formulasin � on subexpressions of e.3To see the second bound, observe that by induction on the length of derivationevery spec in any new conclusion is of the form: s, (not s), (car s), (cdr s), (s(a-domain-member-of s)), (lambda () s), or (a-member-of s) for some s in A.3For lemmas that were derived by the system, the bound on quanti�cation depth can derive frombounds on the arity of functions and the depth of lambda nesting within analyzed de�nitions.61



But there are only polynomially many possible conclusions over such specs, and forany partially closed premise set we can �nd a new consequence in polynomial time.Theorem 4.1 For any premise set � with bounded lambda nesting, and functionsymbol de�nition e, we can compute the forward-chaining closure of � under inferencerules de�ning the higher-order `e in polynomial time.Example Inferences The inference algorithm presented here, together with theenhancements discussed in the next chapter for reasoning about speci�cation de�ni-tions, infers speci�cations for the sort and mapcar examples given above that aredirectly analogous to those inferred for the �rst order version. In particular, we auto-matically infer that (sort > l) returns (a-permutation-of l), and that (mapcarf l) returns (samelength-as l).We will discuss the lemmas and inference steps involved in these inferences afterpresenting the enhancements in the next chapter.
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Chapter 5Reasoning About NondeterminismThe algorithm presented so far is designed primarily for analyzing deterministic pro-gram expressions, although as we've seen it also applies usefully to nondeterministicspeci�cation expressions. In this chapter we consider an extension to the algorithmspeci�cally designed for reasoning about nondeterministic expressions. This extensionincreases the power of the algorithm in reasoning about speci�cation expressions|thisincrease in power can even help in the analysis of deterministic program expressionsbecause speci�cation expressions can occur as argument types and within the for-mulas of deterministic expressions. We present in this chapter an enhancement toour inference algorithms which automatically creates deterministic witnesses that en-hance the analysis of nondeterministic expressions. We �rst present an extension toour forward-chaining notion of \obvious consequence" (`e), and then show how to in-tegrate that extension most usefully into our syntax directed relation �̀e. Throughoutthis section we assume that we are analyzing expressions in the higher order versionof our language.5.1 Adding Existential Instantiation to `eThe expression to be analyzed (and its subexpressions) may have zero, one, or manyvalues. Many useful inference principles, particularly universal instantiation, canoperate only on terms with exactly one value (they are not sound otherwise). Because63



we want the power of these inference principles to be used in our evaluation, we needto ensure that we are reasoning about expressions with exactly one possible valuewhenever possible. In particular, whenever we know that a certain type of objectexists, we would like to have a witness object of that type to reason about.The desired witness creation is a form of existential instantiation. In our lan-guage, we can represent existential facts without explicit quanti�ers. We discuss heremeans of providing automatic existential instantiation for two forms of quanti�er freeexistential information. First, if the formula (there-exists s) is known for somespeci�cation expression s, it is implied that there exists some value for new variablexs such that xs:s. Second, if the formula x:(R s) is known, it is implied that thereexist some values for new variables ys;x and yR;x such that ys;x:s, yR;x:R, and x:(yR;xys;x).By using these two forms of existential instantiation as new inference principleswe can expand the number of singleton expressions available to the reasoning process.Ideally, these principles would be applied whenever the prerequisite existential infor-mation was present, possibly by the addition of new inference rules like the followingto the forward-chaining `e closure:Ex-Inst-1(there-exists s), with s not a program exp.xs is a new variablexs:s, Dom (xs)
64



App-Ex-Inst-1x:(apply R s), with (apply R s) not a program exp.ys;x is a new variableyR;x is a new variableys;x:s, yR;x:R x:(apply yR;x ys;x)Dom ((apply yR;x ys;x)) Univ-Genxs:txs does not occur in ts:tThere are several points to explain about these rules:� An expression s is \not a program exp." if it is a speci�cation expression that isnot a program expression. This restriction is made because program expressionscan never have more than one value and so do not need to be instantiated in thismanner. Without this restriction the rules will try to create witnesses underthe witnesses it creates, and so on.� Also, the variable subscripts in these rules play two signi�cant roles.1. Only those variables introduced by the rule Ex-Inst can be generalized byUniv-Gen|these variables are indicated in the rules by having only onesubscript.2. The soundness of the universal generalization rule Univ-Gen is ensured bythe antecedent requiring that xs does not occur in t|it is essential thatthe spec t not depend on the choice of xs. The relevant dependencies arekept track of by the appearance of xs in the subscripts of those variablethat depend on xs (all of which are created by the rule App-Ex-Inst).65



� Finally, each rule that requires a \new variable" can be �red in�nitely manyways that di�er only in the choice of the new variable. We do not allow any ruleto �re twice where the only di�erence is in the choice of the new variable(s).This restriction has no e�ect on the inference relation on expressions that donot involve the new variables introduced during the inference process.1Unfortunately, the addition of these rules to the forward-chaining inference re-lation produces a procedure not guaranteed to terminate because no limit is placedon the possible domain growth. For instance, if it is known that s:(R s) for somenon-variable speci�cation s such that (there-exists s) is also known, then eachnew variable x created under s will cause the creation of yet another new constantxs;x again under s, ad in�nitum.This di�culty can be solved by restricting the above inference rules as follows.We introduce a new expression Inst (s; x) for speci�cation s and variable x which,like Dom (s) earlier, has no intended semantics and is used by the inference processto limit the extent of the forward chaining. Intuitively, we can think of Inst (s; x)as standing for \existentially instantiate s for instance x." We then modify the �rsttwo rules above and add one new rule, as follows:Ex-Inst(there-exists s), with s not a program exp.xs is a new variableDom (xs), Inst (s; xs)1This can be proven by considering a transformation on proofs which converts an unrestrictedproof into a proof satisfying the restriction by renaming all the \extra" new variables to the originalnew variable. 66



App-Ex-Instx:(apply R s), with (apply R s) not a program exp.Inst ((apply R s); x)ys;x is a new variableyR;x is a new variableInst (R; yR;x), Inst (s; ys;x), x:(apply yR;x ys;x)Dom ((apply yR;x ys;x))InstInst (s; x)x:sThe intended intuition is that these rules do a recursive descent into each expressionin the inference domain, doing existential instantiation. This descent can be done inlinear time in the size of the domain. The analysis is complicated by the fact that theinference domain is grown by the instantiation process. This problem can be handledby noticing that the expressions added to the domain are all pure (deterministic)program expressions, and so cause no further existential instantiation.We can now show easily that the resulting inferential closure is polynomial in theinput size (we are closing under the higher-order `e inference relation from chapter 4with the above three inference rules added). The key observation is again that theset A of speci�cations s such that Dom (s) is inferred is polynomial in the problemsize. In the following observations we use Aho to denote the set of speci�cations ssuch that Dom (s) is concluded by one of the old inference rules (any rule other thanthe three just added). To see that A is polynomial in size, we observe:� Aho is polynomial in size, using the same argument given to show the inferencedomain in chapter 4 is polynomial in size.67



� Rule Ex-Inst can only �re with s bound to a member of A, because everymember of A�Aho is a deterministic program expression.� Polynomially many Inst facts are derived:{ For each fact derived of the form Inst (t; x), the subscripts in x identify aunique path from a member s of Aho to a subexpression of s which is t. By\path" here we mean a sequence s1 � � � sn such that s1 = s, sn = t, and eachsi+1 is an immediate subexpression of si. No two Inst facts correspond tothe same path (this can be proven by a simple induction on path length).{ There are only polynomially many such paths.� There are linearly many new domain members for each new Inst fact.Given then the conclusion that A is polynomial in the size of the input problem, thesame arguments given in Chapter 4 allow us to conclude that the inferential closurecan be computed in polynomial time.We now observe that we can add rules similar to App-Ex-Inst for language con-structors other than Apply, where there is similar existential information available.We add the following rules, and claim that the polynomial time bound still holds byessentially the same argument as before.Op-Ex-Instx:(an-operator-from-to s t)(an-operator-from-to R s) not a program exp.Inst ((an-operator-from-to s t); x)ys;x is a new variableyt;x is a new variableInst (s; ys;x), Inst (t; yt;x), x:(an-operator-from-to ys;x yt;x)Dom ((an-operator-from-to ys;x yt;x))68



Unary-Ex-Instx:(u s), with (u R) not a program exp.u is one of: a-thunk-to, apply, or a-domain-member-ofInst ((u s); x)ys;x is a new variableInst (s; ys;x), x:(u ys;x)Dom ((u ys;x)) Cons-Ex-Instx:(cons s t), with (cons R s) not a program exp.Inst ((cons s t); x)ys;x is a new variableyt;x is a new variableInst (s; ys;x), Inst (t; yt;x), x:(cons ys;x yt;x)Dom ((cons ys;x yt;x))We still need one last embellishment to our forward-chaining rule set in order toachieve our original purpose in creating explicit existential witnesses, which was toprovide inference principles such as universal instantiation the appropriate targets toact upon. Our universal instantiation rule from Chapter 4 was restricted to actingon subexpressions of the input expression e. We must relax this restriction to allowthe rule to instantiate upon our existential witness variables.This relaxation must be done carefully to avoid reverting to a nonterminating pro-cedure. In particular, we will ensure that only existential witness variables derivedfrom the original input expression are used in instantiation|not witness variablesderived from theorem instances created by previous instantiation. We do this bykeeping track of which existential instantiations stem directly from the original in-put expression and only allowing universal instantiation on these instance variables.69



In fact, our subscripts already keep track of this information: we will say that aninstance variable derives from an expression if that expression is at the root of thesubexpression path represented in its subscript. So the variable xs;yt derives fromt|note that s must be a subexpression of t for this variable to have been createdas an instance variable. We now replace the Univ-Inst rule from Chapter 4 with thefollowing rule: Univ-Instforall x:t �s:ts derives from or is a subexp. of e(singleton s)[s/x]�Dom ([s/x]�)As argued above, there can be at most polynomially many instance variables whichderive from e. Given a bound on the depth of quanti�cation (as before) we canthen once again infer that the number of domain members added by this rule ispolynomial in the problem size. Given this bound, the other parts of our polynomial-time argument go through as before.Theorem 5.1 For any premise set � with bounded lambda nesting, and functionsymbol de�nition e, we can compute the forward-chaining closure of � under inferencerules de�ning the higher-order `e along with those added in this section in polynomialtime.5.2 Integrating Existential Instantiation With �̀eThe enhanced version of `e just described strengthens the overall inference algorithmwithout requiring any changes to the sequent based de�nition of the top level inferencerelation �̀e. However, there are a couple opportunities to integrate the existential70



instantiation with the recursive descent analysis to further strengthen the inferenceprocedure. In particular, the rules for lambda are implicitly doing an existentialinstantiation when they choose a particular x to represent the formal parameter inanalyzing the body.Consider a lambda expression (lambda x:s B). Our central sequent rule foranalyzing this expression reduces the analysis to �nding types for B under the as-sumption that x:s. But this assumption is implicitly assuming that there exist valuesof s|and this assumption may justify other existential instantiations. Intuitively, wecan let the forward-chaining inference algorithm do these other instantiations by in-forming it that indeed x is an existential witness for s. We do this by replacing therule Analyze-Lambda with the following rule:Analyze-Lambda� = � [ THMS� (r)�; Inst (r; x) �̀e B : tx and x1 not in �, x1 not in B� �̀e Forall x1 :r((lambda x :r B) x1):tThe only change is the replacement of the sequent antecedent x:r by the antecedentInst (r; x) in the �rst rule antecedent. We make the same modi�cation to therules Lambda-Small, Lambda-Small-After, and Lambda-At-Most-One-After. Thesechanges do not a�ect the complexity of the syntax directed application of the inferencerelation.There is one more change we can make to the syntax directed inference relationwhich will enhance the value of our automatic existential instantiation. We note thatmost goal sequents in our backward chaining application of the inference relation haveconsequents of the form s:t for speci�cation expressions s and t. When attemptingto draw such a conclusion, we can assume without loss of generality that there existvalues of s. If no such values exist, then every speci�cation t holds of s anyway. This71



argument justi�es the addition of the following sequent rule:Assume-Existence�; (there-exists s) �̀e s:t� �̀e s:tWe must state how this rule will be applied within the syntax-directed directedinference relation, since it itself is not syntax directed. We assume that this rule isapplied immediately whenever an appropriate goal sequent is encountered which doesnot already have the explicit existence assumption in its antecedent. This does notchange the complexity of the inference procedure.Example Inferences We now discuss the analyses of the example higher-orderprograms for mapcar and sort shown in chapter 4. As mentioned in chapter 4,the enhanced higher-order algorithm can infer the speci�cation (samelength-as l)for (mapcar f l) and the speci�cation (a-permutation-of l) for (sort > l). Wediscuss here some of the key inference steps involved and point out what extra lemmasare needed from the user in support of the inference process. The inference chainsinvolved are very similar to the �rst-order case.In the mapcar example, the key di�erence from the �rst-order case comes in re-alizing that the expression (f (car lst)) is in fact (a-thing). This inference wastrivial in the �rst-order case, but requires a bit of inference now. The �rst key infer-ence involved comes in the analysis of the de�nition of (an-operator). We restatethat de�nition here for reference:(define (an-operator) (an-operator-from-to (a-set) (a-set)))The inference needed is that (an-operator) meets the speci�cation (a-thing). In-tuitively, this property rests upon the fact that each value of (an-operator) is anoperator from a particular value of (a-set) to another such value. But (a-thing) isclosed under powerset, and any particular value of (a-set) is in (a-thing), so anysuch operator is in fact in (a-thing), as our forward chaining smallness rules will72



infer.Notice that this reasoning relied upon picking a speci�c value of (an-operator),and then corresponding speci�c values of (a-set) for its domain and range. Theseare exactly the existential instantiations that occur as a result of the inference rulesadded in this chapter, and as a result our inference system does in fact conclude that(an-operator)meets the speci�cation (a-thing).Once (an-operator) is known to be (a-thing), the analysis of mapcar is notproblematic. Our forward-chaining inference will determine that the function variablef is therefore also (a-thing), and that as a result the expression (f (car lst)) is(a-thing) as well (using the various smallness inference rules). The rest of theanalysis of mapcar goes as it did in the �rst-order case.The issues involved in the analysis of sort and insert are much the same as thosejust explained. The only complications come from the fact that we have abstractedover the speci�cation function < in writing the higher-order versions. Abstracting overa speci�cation function is tricky because when we call sort we need to be passingit a program (not a speci�cation) or the call itself will not be a program expression.This means we need to pass in the implementation attachment function for <.The following two lemmas need to be present in order to deal with this extracomplexity. We can assume the �rst lemma is provided by the system (along withthe de�nition of (an-operator)) as a way of easing exactly this problem (whichcomes up anytime you abstract over a speci�cation). The second lemma will haveto be proven by the writer of the \orderings" library which is being used (e.g. thede�nition of an-ordering, etc.).forall >':an-operator> :an-implementation-of >'x :(a-thing)y :(a-thing)(and (implies (apply-imp > x y) x:(>' y))(implies boolean-not((apply-imp > x y))x:(not (>' y)))) 73



forall >:an-ordering x:(a-domain-member-of >) (> x):(not x)The �rst lemma will be applied for instance in the analysis of insert. Automaticexistential instantiation triggered by the newest version of the Analyze-Lambda rulewill instantiate the argument type (an-implementation-of (an-ordering)) to givea particular ordering >' such that > is (an-implementation of >'). Our universalinstantiation mechanismwill then be able to instantiate the �rst lemma so that the ap-propriate information will be concluded when the if test (apply-imp > (car lst) x)is assumed true or false.
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Chapter 6Tarskian Set Constraints6.1 IntroductionThe reasoning required to infer properties of expressions in computer programs canoften be cast as reasoning about containment relationships between simple set ex-pressions. In a set expression, we have set constants representing unknown sets, andvarious operations for combining set expressions into compound set expressions (e.g.union). Which combining operations we allow will of course critically a�ect the com-plexity of the reasoning needed to understand the expressions. We will discuss hereonly set expression languages containing at least the combinators union and set com-plement (relative to the model universe). We call a �nite set of containment (subset)assertions between set expressions a set constraint. We will be concerned with de-ciding the consistency of set constraints|that is, whether or not there is any wayof interpreting the set constants and function symbols appearing in the constraint sothat all the containment assertions are simultaneously satis�ed.Recent interest in set constraints has focused almost exclusively on set constraintswhich allow Herbrand function applications. These set expressions are intended tobe interpreted over the Herbrand universe built from the function symbols of thelanguage. Relative to this universe, each function symbol has a �xed standard Her-brand interpretation, mirroring the construction of the universe. Given set expressionsS1 � � �Sn (each of which denotes a subset of the Herbrand universe), the application75



expression f(S1; : : : ; Sn) denotes the set of all Herbrand domain elements which aref(s1; : : : ; sn) for some domain elements s1 � � � sn in the denotations of S1 � � �Sn. As anexample, the expression cons(X;Y ) would denote the set of all the domain elementsthat are formed by applying cons to elements chosen from the meanings of X and Y .Herbrand set constraints problems arise naturally in the analysis of functionalprograms involving constructors.[2, 21, 20, 16] Several researchers have found com-plexity bounds for various Herbrand set constraint languages. Basic Herbrand setconstraints (union, set complement, and Herbrand application) have been shown tobe nondeterministic exponential time complete.[3, 6] Later research has shown thatadding projection functions (constructor function inverses, such as car) along withnegative set constraints (e.g. E1 6� E2) does not change this complexity. [4, 11, 12]Amidst all the attention to the complexity of Herbrand set constraints satis�abilityquestions, surprisingly little notice has been taken of similar questions for an olderform of set expressions which we will call Tarskian set expressions. Function symbolsin these set expressions have no standard interpretation. Instead, we allow each modelto choose its own interpretation for the function symbols as functions over the modeldomain. Meanings of applications are computed as before, once the function symbolmeaning is assigned. So, for example, Append (X;Y ) will denote the set of all valuesobtained by applying the meaning of Append (which will vary with the model) toelements chosen from X and Y .Tarskian set expressions were investigated as early as 1951 in work by Tarski, whodid not consider computational complexity issues.[23, 22] In the set expressions Tarskianalyzed, function symbols could denote arbitrary relations, not just functional re-lations. Such function symbols can be viewed as nondeterministic functions|whenapplied to a single tuple of domain elements they can generate many outputs. Appli-cations of such function symbols are still de�ned in much the same way as before: theexpression R(E1; : : : ; En) denotes the set of all values that can be output by applyingthe meaning of R \nondeterministically" to a tuple chosen from the meanings of theEi. In this work we discuss the complexity of checking consistency of set constraints76



built up from set constants, union, complement, and Tarskian application of func-tion symbols which may or may not be syntactically deterministic (i.e., we have twoclasses of function symbols, one of which is syntactically deterministic). Note that weallow function symbols to have arity zero, in which case they are essentially constantsymbols denoting single domain elements. The presence of such constants greatlycomplicates the analysis. We know of few related complexity results on Tarskian con-straints. In earlier work we have shown that satis�ability of such Tarskian constraintswith no occurrences of union or complement was decidable in cubic time under theassumption that hash table operations take constant time.[28] In subsequent work(published earlier), we showed that union and intersection could be added to thelanguage while keeping satis�ability in cubic time.[17]In the work presented here, we show the Tarskian set constraints problem withunion, complement, and both deterministic and nondeterministic application (includ-ing zero arity) to be in nondeterministic doubly exponential time. The proof is byreduction to the solvability of a new special form of Diophantine inequation set,which we show to be in nondeterministic exponential time, but conjecture to be inNP. Proving this conjecture would shave an exponential o� of our doubly exponen-tial complexity bound. Also, in joint work with McAllester, Kozen, and Witty, weshow several related complexity results for other variations of Tarskian set constraintslanguages.[29]6.2 Tarskian Set ConstraintsA Tarskian set constraint language is de�ned by giving 3 sets: a set of set constants, aset of function symbols, and a set of relation symbols, with each function and relationsymbol associated with a speci�c �nite arity, possibly zero. We de�ne a set expressionover such a language recursively to be either a set constant, the complement of a setexpression, the union of two set expressions, or an n-ary function or relation symbolapplied to n set expressions (where n may be 0).De�nition: A set expression is either77



� a set constant,� the set complement :C of a set expression C,� a union (C1 [ C2) of two set expressions C1 and C2,� or an application R(C1; � � � ; Cn) of an n-ary function or relation sym-bol R to n set expressions C1; � � � ; Cn.A set constraint is a �nite set of subset formulas C1 � C2 between set expressionsC1 and C2.1 We write C1 = C2 as an abbreviation for the two formulas C1 � C2 andC2 � C1. A modelM of a set constraint language L gives a countable domain set Dand an interpretation for each of the symbols of L: each set constant is interpretedas a subset of D, each n-ary function symbol as a function from Dn to D, and eachn-ary relation symbol as subset of Dn+1. Models interpret set expressions as subsetsof their domains in the obvious manner, formalized as follows:De�nition: Let M be a model with semantic domain D. For any setexpression C we de�ne the semantic interpretation of C, writtenM [[C]],to be a subset of D determined by the following conditions.� If C is a set constant � thenM [[�]] is the subset of D assigned to �by M .� If C1 and C2 are class expressions, then M [[(C1 [ C2)]] is the unionof M [[C1]] and M [[C2]].� If R is an n-ary function or relation symbol, and C1; � � � ; Cn are classexpressions, then M [[R(C1; � � � ; Cn)]] is the set of all y such thatthere exist elements x1 : : : ; xn in M [[C1]]; � � � ;M [[Cn]] respectivelysuch that h x1; � � � ; xn; y i is an element of the function or relationthat M assigns to R. Essentially, this is the image of M [[C1]]� � � � �M [[Cn]] under M [[R]].1Negative subset formulas C1 6� C2 can be expressed by writing f() � (C1 \ :C2) where f is anew 0-ary function symbol. 78



For any subset formula C1 � C2 we de�ne the semantic interpretation ofC1 � C2, denotedM [[C1 � C2]], to be T ifM [[C1]] is a subset ofM [[C2]], and F otherwise.We say that a set constraint is consistent if there is a model which interprets eachsubset formula in the constraint as true.6.3 DecidabilityIn this section, we prove that the problem of determining the consistency of a setconstraint is decidable in non-deterministic doubly exponential time. We do this byreducing the problem to the problem of �nding a solution to an (exponentially larger)set of Diophantine inequalities of the special form de�ned below.De�nition: A set of Diophantine inequalitiesf pi(x1; : : : ; xn) � qi(x1; : : : ; xn) j 1 � i � m gbetween polynomials pi and qi over non-negative integer variables xi issemi-linear if every pi is linear, and every qi is either linear or is theproduct of variables.We conjecture that the satis�ability problem for semi-linear Diophantine inequal-ities is in NP; however, we have only been able to prove the following result.Theorem 6.1 (Semi-Linear Decidability Theorem) The problem of determin-ing the satis�ability of a semi-linear set of Diophantine inequalities is solvable innon-deterministic exponential time.Proof: Consider a semi-linear set of m Diophantine inequalities over n variableswhere the largest constant which appears has b bits. Each inequality is either linearor non-linear|we divide the problem into linear and non-linear sub-problems. Thelinear sub-problem can be converted into an equisatis�able set of linear Diophantine79



equations Ax = B by introducing new \slack" variables. Call a variable xi boundedin Ax = B if there is a non-negative integer k such that no rational solution toAx = B has a value for xi greater than k. An analysis of the maximum possibleupper bound that can be placed by a system of linear constraints shows that anybounded variable can take on integer values describable with at most O(bn log n)bits[7]. Using linear programming (over the rationals) we can determine in polynomialtime which variables occur in nonzero solutions of Ax=0 and hence which variablesare bounded.2[25] Our non-deterministic procedure can now guess the values of thebounded variables. We can then replace each bounded variable by the guessed value,simplifying the linear and non-linear subproblems. While substituting in the guesses,some of the non-linear constraints become linear and must be added to the resultinglinear sub-problem, yielding new linear and non-linear subproblems in fewer variables.We can repeat this process until all the variables in the resulting linear problemare unbounded. Let A0x = B0 be the resulting linear problem. We check usinginteger programming whether A0x = B0 is satis�able|i.e., whether A0x = B 0 hasa non-negative integral solution. If it does not, we fail and try di�erent guesses.Otherwise, we show below that the original system was satis�able, so the algorithmcan terminate saying so.The above procedure terminates in nondeterministic exponential time. We haveguessed values for at most n variables, in at most n stages, where the values at stage kare represented with at most b(cn log n)k+1 for some constant c. We have thus guessedO(2n) many bits, and every number appearing in the sequence of linear subproblemsexplored is represented in at most O(2n) many bits. We have used a polynomial-time linear programming algorithm k at each stage to check for boundedness, and anondeterministic polynomial time integer programming algorithm at the end to checkconsistency, all of which keeps us within nondeterministic exponential time.Finally, we show that the algorithm's answer is correct. It is clear that if thereis no sequence of guesses that give a consistent linear subproblem with all remaining2Note that a variable xi is bounded if and only if there is no solution to Ax = 0 over thenon-negative rationals such that xi 6= 0. 80



variables unbounded, then there can be no solution to the original problem|so whenthe algorithm fails there is in fact no solution. We now suppose that there is sucha sequence of guesses, and show that there is a solution to the original problem. Itis a fact of linear programming that since all the variables left are unbounded, theremust be a non-negative rational solution � to A0x = 0 such that all components of �are non-zero.[40] We can assume without loss of generality that � is integral becauseany non-integral � can be made integral by multiplying by an appropriate constant.Take any non-negative integral solution � to A0x = B0 (we just showed that there isone) and the vector � + c� is a solution to the �nal linear problem for any c. Forsu�ciently large c this vector also solves the �nal non-linear problem, because thenon-linear expressions must eventually grow faster than the linear expressions. Butthen �+ c�, augmented by the guessed values for the bounded variables, is a solutionto the original semi-linear problem. Q. E. D. (Semi-Linear Decidability)We use this result to complete the decidability proof for Tarskian set constraintsas follows. Let � be a set constraint. When we refer to the size of �, written j�j,we will mean the number of distinct subexpressions appearing in �. We will assumefor complexity analysis some �xed �nite bound on the arity of function and relationsymbols|higher arity functions and relations can be represented by using pairingfunctions. We non-deterministically reduce the problem of determining whether thereis a model of � to the satis�ability of a semi-linear set of Diophantine inequationsover a exponentially many variables relative to the size of �. Our reduction takesnon-deterministic exponential time, and there will be a model of � just in case thereis some execution of the reduction that yields a satis�able semi-linear inequationset of exponential size. Since we have shown that satis�ability for such inequationsets is in non-deterministic exponential time, this places set constraint consistency innon-deterministic doubly exponential time.The variables in our inequation set will represent the cardinalities of various sub-sets of the domain of a potential model of �. We will show that there is a solutionto the inequation set if and only if there is a model of � whose domain gives thevarious described subsets the cardinalities assigned by the solution. We need Dio-81



phantine variables for enough di�erent subsets of the domain to capture every aspectof a model that bears on the truth of �. In what follows we will describe the Dio-phantine variables as though we had a particular model in mind that the variables aredescribing. As we introduce the variables, we will allow them to take on either anynon-negative integral value or the value � to represent the fact that the correspondingset is in�nite. To complete the reduction we will at the end guess which variablesactually take on the value � and eliminate the inequations involving those variablesto get an inequation set involving only non-negative integer variables.First, we partition the domain of the model using the meanings of the subexpres-sions appearing in �. We call any subset � of these subexpressions a �-type, andwill say that a domain element of a model has �-type � in that model if � is exactlythose subexpressions of � which contain the domain element in that model. It shouldbe clear that every domain element has exactly one �-type. We will call a �-type� inhabited in a model if there is a domain element d of type �, and will say that dinhabits �.To facilitate the descriptions below we de�ne the following abbreviation. We saythat a relation or function symbol R can map the �-types �1; : : : ; �n to the �-type� whenever � contains every subexpression R(E01; : : : ; E0n) of � such that each E0i inthe corresponding �i. This condition ensures that the members of � do not triviallyprohibit R from mapping domain elements of types �1 � � ��n to a domain element oftype � . R(�1; : : : ; �n); � .The �rst step in our reduction is to guess which �-types are inhabited|but inorder for there to be a model of � consistent with our guesses, they must satisfy thefollowing conditions. We say that a set I of �-types is locally consistent if:1. (Upward Closure Constraint) Each �-type in I is upward closed underthe subset statements in �; that is, if a �-type is in I and contains a setexpression E then it also contains every set expression F such that E � Fis in �. 82



2. (Completeness Constraint) For each negation subexpression :E in �,each type in I contains exactly one of the expressions E and :E.3. (Disjunction Resolution) Every type in I contains a disjunctive setexpression (E1 [ E2) if and only if it contains at least one of E1 and E2.4. (Predecessor Existence Constraint) For each �-type � in I containinga relation or function application R(E1; : : : ; En), there must be �-types�1; : : : ; �n also in I containing E1; : : : ; En, respectively, which R can mapto � .5. (Function Totality Constraint). For any function symbol f of arityn, any expression f(E1; : : : ; En) in �, and any �-types �1; : : : ; �n in Icontaining E1; : : : ; En respectively, there must be a �-type � in I that fcan map �1; : : : ; �n to.By guessing a locally consistent set I of inhabited types, we have made a numberof guesses exponential in the size of �|for each subset of � we have guessed whetheror not it is inhabited. The existence of a locally consistent set of inhabited �-typesis enough to ensure that � is satis�able and thus has a model, whenever � does notcontain any function symbols of arity zero (a model construction very similar to that inthe proof below easily establishes this fact|the resulting model will have countablymany domain objects of each inhabited type). However, the presence of constantfunctions in the language forces us to consider the cardinalities of various subsets ofthe domain. Consider for example the set constraint f c1 � :c2; (c1 [ c2) � f(c3) gwhere c1, c2, and c3 are zero arity function applications. This constraint has a locallyconsistent set of inhabited types (the three types fc3; :c2g, fc1; :c2 (c1 [ c2); f(c3)g,and fc2; (c1 [ c2); f(c3)g) but is not satis�able because f(c3) can contain only oneelement but must contain the distinct meanings of c1 and c2.To recognize such inconsistencies we must reason about the cardinalities of thesubsets of the domain inhabiting each �-type. We introduce a nonnegative integervariable z� for each inhabited �-type �, representing the cardinality of the set ofinhabitants of �. We must also reason about the cardinalities of the images of the83



functions applied to the �-types|the cardinality of the n-ary function f applied totypes �1; : : : ; �n cannot be larger than the product of the cardinalities z�1 thru z�n.To this end, we de�ne the range expressions for f , for each n-ary function symbolf , to be the expressions of the form f(�1; : : : ; �n), where �1; : : : ; �n are any n inhabited�-types. We will say that a domain element d of a model is in a range expressionf(�1; : : : ; �n) in that model if there are some domain elements d1; : : : ; dn of �-types�1; : : : ; �n respectively such that d is in f(d1; : : : ; dn). We will say that f(�1; : : : ; �n)is covered by an application expression f(E1; : : : ; En) whenever each Ei is containedin the corresponding �i. We will say that a range expression is inhabited in a modelwhen there is some domain element in the range expression in that model|note thata range expression is inhabited exactly if all of its argument types are inhabited.Finally, we say that a range expression f(�1; : : : ; �n) can map to a type � if f canmap �1; : : : ; �n to �.We introduce an additional nonnegative integer variable zf(�1; : : : ; �n) for eachinhabited range expression f(�1; : : : ; �n) representing the cardinality of the set ofdomain elements inhabiting the range expression.Simply guessing cardinalities for the variables z� and zf(�1; : : : ; �n) will still notenable us to check the consistency of �. To see the remaining problem, considerthe constraint f c1 � :c2; f((c3 [ c4)) = (c1 [ c2) g for zero arity function applica-tions c1 � � � c4. This constraint is trivially consistent, as f can map c3 to c1 and c4 toc2, for instance. However, if we enlarge the constraint by adding to it the two simi-lar formulas f((c4 [ c5)) = (c1 [ c2) and f((c3 [ c5)) = (c1 [ c2), we no longer have aconsistent constraint, even though the local cardinality conditions appear acceptable.The problem is that no mapping for f is consistent with all three constraints on f|fmust map two of the three constants c3, c4, and c5 to either c1 or c2 by the pigeonholeprinciple.In order to detect this type of inconsistency, we must reason explicitly about thetypes of the predecessors implied by our cardinality guesses. In particular, consider a�-type � which contains an application expression f(E). For each domain element dinhabiting �, there must be some predecessor domain element d0 inM [[E]] such that84



f(d0) = d. But what is the �-type of d? There may be many �-types containing Ethat f can map to �|we must guess which one d0 will inhabit. In general, for eachdomain member inhabiting � and each application expression in �, we must guess arange expression which is covered by the application expression and can map to �. Inthe inconsistent constraint just given, it is not possible to make such predecessor typeguesses for both c1 and c2 in such a way that the natural local cardinality constraints(elucidated below) are satis�ed (some one of c3, c4, or c5 will end up being asked tobe a f -predecessor to both c1 and c2).To formalize this reasoning, we introduce the notion of a \predecessor account-ing. A predecessor accounting � for a �-type � is a mapping from the applicationexpressions in � to range expressions covered by them that can map to �. We saythat � charges a range expression if that range expression is actually in the range of�. For any domain element d of type �, we say that a given accounting � accountsfor d if d inhabits all of the range expressions in the range of �. In a given model,many predecessor accountings can account for given domain element, but there mustalways be at least one that does. Intuitively, we will choose one primary accountingfor each domain element and then introduce cardinality variables to count the domainelements each accounting is primary for. We can then write constraints to ensure thatthe range expressions charged in the accounting can be large enough to contain allthe domain elements whose primary predecessor accountings charge them.To this end we introduce a new nonnegative integer variable x�;� for each �-type� and predecessor accounting � for �, to represent the number of domain elementsof the model of type � whose primary accounting is �.We are now ready to state Diophantine constraints on the new integer variablesin an attempt to ensure the existence of a satisfying model. We de�ne the Tarskianconsistency constraints for a set constraint � and a locally consistent set of �-typesI (those chosen as inhabited) to be the following constraints on the variables z� andzf(�1; : : : ; �n), and x�;� for �; �1; : : : ; �n all in I, and � a predecessor accounting for�: 85



1. (Habitation Constraints) For every type � in I, z� must be greater than orequal to one.2. (Account Limit Constraints) For each inhabited range expression f(�1; : : : ; �n),the value of zf(�1; : : : ; �n) must be as large as the sum of all x�;� for which �charges f(�1; : : : ; �n).3. (Account Cover Constraints) For every type � in I, the sum over all pre-decessor accountings � for � of the variables x�;� must be equal to z�.4. (Predecessor Constraint). For any n-ary function symbol f and types�1; : : : ; �n, zf(�1; : : : ; �n) must not exceed the product of the cardinalities ofthe �i, or 1 if n = 0.We note now that the Tarskian consistency constraints for a constraint � andlocally consistent set of �-types I involve a number of variables at most exponentialin the number of subexpressions of �. This can be seen by observing the followingfacts:1. There are at most exponentially many subsets � (and thus variables z�) of theset of all subexpressions of �.2. For any particular �-type � there clearly are at most linearly many membersof �.3. Given our �xed bound on the arity of function symbols there are at most expo-nentially many range expressions (and thus variables zf(�1; : : : ; �n)).4. There are exponentially many functions from a linear sized domain to an expo-nential sized range (and thus exponentially many variables z�;�).To conclude our non-deterministic reduction we guess which of the variables wehave introduced has the in�nite value � . We require that this guess be consistent withthe constraints just given|i.e., if there is an in�nite variable on the small side of aninequality there must be one on the large side. Given this restriction on the guess, we86



drop any constraints which mention in�nite variables as trivially true, leaving us witha semi-linear set of Diophantine inequalities over a number of variables exponentialin the size of �. Our earlier theorem shows that we can �nd a solution to theseinequalities if one exists in nondeterministic exponential time (relative to the numberof variables, which is itself exponential in the size of �).We now show that there is a model of � if and only if there is a locally consistent setof �-types I such that the Tarskian consistency constraints for � and I are solvable.Theorem 6.2 (Model Existence) A set constraint � has a model if and only ifthere exist a locally consistent set of �-types I such that the Tarskian consistencyconstraints for � and I are satis�able over the nonnegative integers plus the in�nitevalue � .Proof: We �rst suppose that M is a model of �. The �rst step is to choosewhich �-types are inhabited. Let I be exactly those �-types which are inhabited inM . Using the fact that this choice of I derives from a model, it is easy to checkthat the upward closure, completeness, disjunction resolution, predecessor existence,and function totality constraints upon our choice are satis�ed, so that I is locallyconsistent.We now give a solution to the inequation set, with the variable values ranging overthe non-negative integers and the in�nite value � . This solution includes a choiceof which variables are in�nite that is consistent with the constraints, and a �nitesolution to the constraints not mentioning in�nite variables.First, we assign each variable z� the number of domain elements ofM that have�-type �, or � if there are in�nitely many such elements. Then, for each functionsymbol f and each domain element d of M , let � be the �-type of d, and pick onepredecessor accounting � of � which accounts for d in M and call it the chosenpredecessor accounting of d. Assign each variable x�;� to be the number of domainelements whose chosen predecessor accounting was �, or � if there are in�nitely manysuch elements. 87



These valuations for the variables give a solution to the constraints listed above,concluding this direction of the proof.For the more di�cult direction of the proof, suppose that we have guessed alocally consistent set I of types as habitable and solved the resulting set of Tarskianconsistency constraints over the nonnegative integers plus � . We must build a modelM of �.The domain of our model will be the union over all inhabited types � of setsf�i j i � z� g where for each type � and each index i we assume that �i is a distinctobject, and we treat the value � of the variables that were guessed to be in�nite asthe �rst in�nite cardinal !.We de�neM on each set constant P to be the set of all domain elements �i whosebase type � contains P . We de�ne M on each relation symbol R of arity n to bethe relation that maps each n-tuple h(�1)(i1); : : : ; (�n)(in)i to every domain element � jsuch that R can map �1; : : : ; �n to � .Finally, we de�ne M on the function symbols. For each type inhabited � andeach function symbol f , the variables x�;� for all � must sum to z�|therefore, wecan choose a partition of the domain elements of base type � into subsets �[�] of sizex�;�, respectively.To de�ne M on the n-ary function symbol f , consider an n-tuple of inhabited�-types h�1; : : : ; �ni. We de�ne f simultaneously on all tuples of domain elementswhose base types are �1; : : : ; �n, respectively. First, construct an enumeration ofsuch tuples, which we will call the domain enumeration. Next, construct a rangeenumeration of the domain elements that f is required to cover when applied to suchtuples: that is, enumerate all domain elements that are members of any set �[�] suchthat f(�1; : : : ; �n) is charged by �.If this range enumeration is empty, we need to �nd some element to map to: �rst,if there is any tuple of expressions E1; : : : ; En, members of �1; : : : ; �n respectively,such that f(E1; : : : ; En) is in �, then the function totality constraint guarantees usthat there is some inhabited type � that f can map �1; : : : ; �n to, so we can take therange enumeration to consist of the single element � 1 for any such � ; otherwise let88



the range enumeration consist of any single domain element.The predecessor and account limit constraints ensure us that the domain enumer-ation is at least as long as the range enumeration. De�ne f to map each tuple fromthe domain enumeration to the corresponding element of the range enumeration. Ifthe range enumeration is shorter than the domain enumeration, simply extend it byrepeating the last element until it is the same length.This de�nition of f ensures that every member of a set �[�] does in fact inhabitevery range expression in �, which will in the proof below ensure that each suchmember in habits all the applications expressions in �.In order to prove that M is a model of �, we prove �rst by induction on thestructure of the subexpressions of � that every domain element �i of M has �-type� in M . Once we have proven this, the upward closure constraint on our choice ofinhabited types ensures that every subset formula in � is satis�ed by M .Lemma: Every domain element �i of M has �-type � in M .Proof: We prove by induction on the structure of the subexpressions Eof � that the meaning of E in M is the set of domain elements of Mwhose base type contains E.The lemma is true for set constants by the de�nition of M .Suppose E is the negation of an expression E1 for which the lemmaholds. We show that the lemma holds for E. Our induction hypothesistells us that M [[E1]] is the set of domain elements whose base �-typescontain E1|then of course M [[E]] is the complement of this set, i.e.,the set of domain elements whose base types do not contain E1. Thecompleteness constraint on the set of inhabited types ensures that everyinhabited type contains exactly one of E1 and :E1|so the set of domainelements which do not contain E1 is exactly the set of domain elementswhose base types contain :E1, as desired.Now suppose E is the union of two expressions E1 and E2 for whichthe lemma holds, and show that the lemma holds for E. Our inductionhypothesis tells us thatM [[E1]] (and respectively,M [[E2]]) is just the set89



of all domain members whose base type contains E1 (respectively, E2). SoM ((E1 [ E2)) is the set of all domain members whose base type containseitherE1 or E2. The upward closure and disjunction resolution constraintsensure that this is exactly the set of all domain members whose base typecontains (E1 [ E2), as desired.Now suppose E is the application of the n-ary relation symbol R toexpressions E1; : : : ; En for which the lemma holds. We �rst show theforward direction|that every domain element whose base type containsR(E1; : : : ; En) is also in M [[R(E1; : : : ; En)]]. Consider a domain element�k where � that contains R(E1; : : : ; En). � must be among the �-types weselected as inhabited. Then, by the predecessor existence constraint, wemust also have selected as inhabited �-types some �1; : : : ; �n containingthe E1; : : : ; En, respectively, that R can map to �. But then by de�nitionM [[R]] maps h(�1)1; : : : ; (�n)1i to d. But by our induction hypothesis,each element �i1 must be in the corresponding M [[Ei]], so �k must be inM [[R(E1; : : : ; En)]], as desired.For the reverse direction, suppose that a domain element �k is inM [[R(E1; : : : ; En)]], and show that R(E1; : : : ; En) is in �. Because �k is inM [[R(E1; : : : ; En)]], there must be domain elements (�1)(i1); : : : ; (�n)(in)in M [[E1]]; : : : ;M [[En]] respectively, such that R can map �1; : : : ; �n to�. But, by our induction hypothesis, since each (�j)(ij) is in M [[Ej]] wehave that each �j contains Ej. Then, by the meaning of \can map to �",we have that � contains R(E1; : : : ; En), as desired.The �nal case to consider is when E is the application f(E1; : : : ; En)of an n-ary function symbol f to n expressions E1; : : : ; En for which thelemma holds. Again, we �rst consider the forward direction|we suppose�k is a domain element in M [[f(E1; : : : ; En)]] and show that � containsf(E1; : : : ; En). Since �k is in M [[f(E1; : : : ; En)]], it must be the imageunder f of some tuple of domain elements (�1)(i1); : : : ; (�n)(in) which aremembers, respectively, ofM (E1); : : : ;M (En). Our induction hypothesis90



then implies that for each j, Ej is a member of �j. Then by our de�nitionof M , when f was de�ned for tuples from �1; : : : ; �n, �k must have beenin the range enumeration. There are two ways that this can happen. First,�k could be an element of �[�] for some � containing f(�1; : : : ; �n). Inthis case, f can map �1; : : : ; �n to � (since � is a predecessor accountingfor �). But then, since each Ei is in the corresponding �i, f(E1; : : : ; En)must be in � as desired. Second, if all �[�] for � containing f(E1; : : : ; En)are empty, �k must be � 1 for some � that f can map �1; : : : ; �n to|thisonce again implies that f(E1; : : : ; En) is in � (which is � ) as desired.It remains to show the reverse direction: we take an arbitrary domainelement �k such that � contains f(E1; : : : ; En) and show that this �k isa member of M [[f(E1; : : : ; En)]]. � must be among the �-types in I,therefore z� must be non-zero by the habitation constraint. The accountcover constraint then ensures us that there is some predecessor accounting� such that x�;� is non-zero, and thus that �[�] is non-empty. Since� contains f(E1; : : : ; En), �(f(E1; : : : ; En)) must be a range expressionf(�1; : : : ; �n) that is covered by f(E1; : : : ; En) and can map to �|i.e.,such that E1; : : : ; En are members of �1; : : : ; �n respectively, and f canmap �1; : : : ; �n to �. But then, by our inductive hypothesis about the Ei,every tuple of domain elements of respective base types �1; : : : ; �n mustbelong, respectively, to M [[E1]]; : : : ;M [[En]]. This is the entire domainenumeration for f on �1; : : : ; �n, so the entire range enumeration for fon �1; : : : ; �n must be contained in M [[f(E1; : : : ; En)]]. But this rangeenumeration must include �k since it is a member of �[�] and � chargesf(�1; : : : ; �n). Q. E. D. (Model Existence Lemma)This concludes the proof of the our model existence theorem, and with it theproof of our main result that Tarskian set constraints are in non-deterministic doublyexponential time: 91



Theorem 6.3 (Tarskian Set Constraints Decidability Theorem)The problem of deciding the consistency of a Tarskian set constraint � is in non-deterministic doubly exponential time in the number of subexpressions of �.
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Chapter 7ConclusionIn this thesis we have argued against the practice of limiting the expressiveness oftype systems in programming languages. We believe that complete type inferencefor an inexpressive type system is less valuable than the achievable incomplete typeinference for an expressive type system. We have presented a particular expressivetype system, and a particular incomplete inference algorithm for inferring types forprograms in this expressive system. We argue the usefulness of our algorithm bygiving examples of programs that it can �nd interesting types for|types that cannoteven be expressed in traditional type systems of limited expressiveness.The type language we presented is based on the use of nondeterminism to representsets of values. This use of nondeterminism, inspired by the work of David McAllesteron the Ontic veri�cation system, allows the natural use of the programming languageto represent types, and makes it straightforward to collapse the syntactic distinctionbetween term and type. This collapse allows the same inference mechanisms to reasonboth about program de�nitions and type de�nitions. Reasoning directly about typesis inherently more powerful than reasoning only about single objects themselves,leading to more e�ective inference.[27, 28] In chapter 5 we discussed some techniquesfor enhancing the reasoning mechanism to increase its e�ectiveness in reasoning aboutnondeterministic expressions.The algorithm presented is e�ective in the sense that it runs in polynomial time.It is similar to traditional type inference algorithms in that it is based on a syntax-93



directed set of typing rules. These rules do a recursive descent into the expressionbeing analyzed. We apply a powerful forward-chaining inference engine at each levelof the recursive descent. The overall algorithm can be viewed as an abstract interpre-tation algorithm with a particularly rich class of information being generated at eachlevel of the interpretation. Our algorithm discovers such type information as that asimple insertion sort program always returns a permutation of its input.A skeptical interpreter of this work might object that the algorithm may be tar-geted explicitly to the handful of examples given, since no wider survey of its appli-cability has been done yet. We believe that the simplicity of the underlying inferencerules constitutes argues against this interpretation. Each inference rule captures asimple local property of the language syntax rather than any more complex problemspeci�c fact. Each of the examples given uses the vast majority of the inference rules.The inference rules given were selected from a much larger set of candidate in-ference rules|the selections were to some degree motivated by the target examples.However, even adding the entire larger set of inference rules would leave the algorithmin polynomial-time. It is likely that consideration of a very wide class of exampleswould make clear that a somewhat larger set of (polynomial-time) inference rules isneeded. We believe that this enlargement upon consideration of new examples willquiesce, converging upon a widely useful polynomial-time inference relation much likethat presented here.Another objection from the skeptics might be that the polynomial-time complex-ity of the inference algorithm is small comfort when the polynomial is worse thanquadratic, and the problems being considered may be quite large. In particular, wewish to be able to consider target programs in the context of a large library of knowl-edge, much of which has nothing to do with the target programs. In answer to thisobjection, we point out that the polynomial-time bound is a worst case bound, andthat in particular that worst case assumes that all of the knowledge library is beinginstantiated for every target program expression. In practice, we expect that our or-ganization of instantiation around the types of the quanti�ed variables will limit suchinstantiation|only theorems about relevant types will be instantiated on a program94



expression. Informally, this type restriction appears to result in an \average" casecomplexity that is polynomial in the logarithm of the library size.Yet another objection that must be considered stems from the observation thatthe examples appear to depend on the exact choice of representation for the speci�ca-tions computed. For example, if we had de�ned a-permutation-of using bijectionsbetween list-members, it is not clear that the algorithm would have computed thesame results in analyzing insert. This objection is critical|we believe that howknowledge is represented has an immediate strong e�ect on what can be quickly in-ferred from it. It is then no surprise that our algorithm re
ect just such a dependence.Users wishing to write less constructive de�nitions of key properties may well haveto take the time to prove them equivalent to the more useful constructive de�nitions.While we do not give any algorithm for recognizing which forms of de�nition willprove most useful, it is apparent that speci�cation de�nitions that are constructedas nondeterministic programs for computing values of the speci�cation being de�ned.We wrote the speci�cation de�nitions used in this thesis without conscious attentionto making them useful for the algorithm.Our inference algorithm also provides a polynomial-time automatic induction pro-cedure. We believe that many useful inductive theorems that seem \obvious" to hu-man programmers can be discovered by automated induction procedures that guar-antee quick termination. While this work gives an example of such a procedure, webelieve that signi�cant improvement can be made in the power of the automated in-duction provided here by incorporating induction into the forward-chaining inferenceprocedure.[30]Although we believe that the most signi�cant inference complexity in type infer-ence is present in typing �rst-order languages, we have also shown how to extendour programming language and inference algorithm to a higher order language, andargued that our techniques generalize to that case. From our vantage point, the mostinteresting part of the higher order presentation lies in the set-theory based semanticsand the ability of the language to naturally capture all of representation and inferenceprinciples of Zermello-Fraenkel set theory.95



We also presented a separate piece of research in the area of set constraints. Wefocused on a previously neglected type of set constraint involving function symbolswithout standard interpretations (uninterpreted function symbols, or Tarskian func-tion symbols). We showed that consistency for a simple set constraint languageinvolving these function symbols is decidable in nondeterministic doubly exponentialtime.1 Along the way we de�ned a new type of Diophantine solvability problem whichwe called solvability of semi-linear Diophantine inequations. We showed this problemto be solvable in nondeterministic exponential time, but conjecture it to be in NP.Although we made no attempt to present an e�cient practical algorithm for check-ing the consistency of Tarskian set constraints, we believe that such an algorithmexists. Previous related set constraints work (e.g. on Herbrand set constraints[2])has found practical algorithms in cases where the worst case complexity was similarlyunattractive. We believe that an e�ective Tarskian set constraints based algorithmcould be usefully integrated into a modern type inference system.Finally, to conclude we mention several directions for future research in this area(including some already mentioned):� Find and implement an e�ective consistency checking algorithm for Tarskianset constraints and incorporate it into a type inference system.� Show the solvability problem for semi-linear Diophantine inequations to be inNP (and get a tighter complexity bound on Tarskian set constraints).� Incorporate inductive inference principles into a polynomial-time decidable for-ward chaining inference system like the one presented above for type inference.� Incorporate expressive natural language features into the speci�cation languagepresented here to increase the e�ectiveness of the underlying inference proce-dures.[27]1Aiken, Wimmers, and Lakshman[2] have given a decision procedure which is useful in practicefor the related Herbrand set constraints satis�ability problem, which has a similarly bad worst casecomplexity. 96
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