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3.4
Introduction

As computing becomes more ubiquitous and distributed, there is a growing need
for the computing environment to become more aware of the people present and
activities that take place around it. In a futuristic intelligent office building, every
piece of furniture and building structure becomes a perceptual user interface — it
sees, hears, and feels its surrounding as well as the people around it. This can be
accomplished by providing objects with sensory mechanisms similar to our own —
camera for vision, microphone for hearing, and pressure sensors for touch. Nu-
merous systems have been developed that explore the idea of perceptual intelli-
gence [1-8]. Among these, very few employ touch-based sensory information. Our
Sensing Chair and Sensing Floor projects are conceptualized to explore the use of
distributed pressure information, from sensors that are analogous to artificial skin,
to achieve perceptual intelligence.

Perceptual intelligence for a building cannot be achieved by merely collecting
and displaying sensory information, such as most webcams do. Perceptual intelli-
gence results from an understanding of what the sensory data reveal about the
state of the environment and people. The key research problem to be addressed
with the Sensing Chair and Sensing Floor, therefore, is the automatic processing
and interpretation of touch sensor information, and the modeling of user behav-
ior leading to such sensory data. We envision tomorrow’s buildings where all ob-
jects are outfitted with a layer of artificial skin (for example, a sensing chair, a
sensing floor, a sensing file folder). We expect the algorithms and behavior mod-
els that we develop with the Sensing Chair and Sensing Floor to be extensible to
large-scale distributed haptic (touch-based) sensing and interpretation.

To enable a chair to sense and interpret its occupant’s actions, pressure distribu-
tion sensors are surface-mounted on the seatpan and backrest of a Sensing Chair.
Work on the Sensing Chair draws upon current advances in computer vision, pat-
tern recognition and stochastic modeling, taking advantage of the similarity be-
tween pressure-distribution maps and gray-level images. To enable a floor to sense
and estimate the positions of its occupants, force-sensing resistors are placed un-
der the corners of floor panels that make up a suspended floor structure. The sen-
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sor readings are then combined and compared with a threshold to determine
whether the floor panel is occupied.

The successful implementation of a Sensing Chair and a Sensing Floor will im-
pact many areas including ergonomics (by monitoring a persor’s sitting posture
and giving feedback when necessary), multimodal human-computer interface re-
search (by providing new haptic systems that can be integrated with other state-of-
the-art user interfaces for multimodal interaction), intelligent environment (by
creating interfaces that can feel their environment with contact sensors), universal
access (by empowering people with limited sensory and motor capabilities with
assistive interfaces), and safety of automobile operation (by augmenting a driver’s
seat with sensors that can automatically regulate airbag deployment force).

3.4.2
Related Work

Many systems have been developed around the structure of a chair. The British
Telecom SmartSpace, for example, is a concept personal working environment of
the future, built around a swivel chair (http://www.bt.com/innovation /exhibition/
smartspace/index.htm). It is equipped with a horizontal LCD touchscreen, video
projection, and 3D sound space. In contrast, the goal of our Sensing Chair is to
achieve information extraction by instrumenting the chair itself.

BCAM International (Melville, NY, USA) has developed a recliner with pneuma-
tically controlled air bladders placed near the surface of the recliner that can be in-
flated to ‘hug’ and support the occupant's body. This technology, called the ‘intel-
ligent surface’, has recently been implemented in United Airline’s Connoisseur

Class seats [9, 10]. It should be pointed out that the air bladder activation patterns .

are based on ergonomic considerations, rather than on the needs of its occupant.
The Sensing Chair can provide the needed intelligence to such mechanisms so
that surface distribution can be altered in response to the real-time pressure distri-
butions in the chair in an ergonomically beneficial manner.

Pressure distribution sensors have been widely used for the evaluation of
weight-supporting surfaces in shoes, chairs, and beds. Examples of shoe studies
include the assessment of seven types of shoes with regard to their ability to re-
duce peak pressure during walking for leprosy patients [11], the evaluation of the
generalizability of in-shoe peak pressure measures with data collected from nu-
merous subjects over a period of time using two calibration schemes [12], and the
validation of the use of total contact casts for healing plantar neuropathic ulcera-
tions through reduction of pressure over the ulcer [13]. Studies of seats include
the development of a measurement protocol and analysis technique for assessing
pressure distribution in office chairs [14], the use of body pressure distribution
measures as part of a series of tests for assessing comfort associated with five
automobile seats [15], and an interesting review of how objective pressure mea-
sures can lead to improved aircrew seating with more evenly distributed pressure
patterns, thereby potentially improving a pilot's task performance by reducing or
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eliminating pain endured during high-acceleration maneuvers of the aircraft [16].
Examples of bed studies include an investigation of support surface pressure and
reactive hyperemia (the physiological response to pressure) in the older popula-
tion {17}, and a recent development of body posture estimation systern for sleep-
ers based on pressure distribution measures and a human skeletal model {18].

Our Sensing Chair and Sensing Floor projects are similar to the last study cited
{18] in that we focus on the automatic processing and interpretation of contact
sensor information, whereas the other studies rely on expert analysis of pressure
distribution measures. Of particular importance is the development of real-time
systems that can be used to drive other processes such as a sitting posture moni-
toring system for persons with chronic lower-back pain, or for the prevention of
such ailments.

343
The Sensing Chair System

3.4.31
Overview

The long-term goal of the Sensing Chair project is to model the sitting postures
of the person occupying the Sensing Chair (Figure 3.4-1). As shown in Figure 3.4-
2, the Sensing Chair project is further divided into the two components of Static
Posture Classification (identification of steady-state sitting postures), and Dynamic
Posture Tracking (continuous tracking of steady-state as well as transitional sitting
postures). In each case, we start with a single-user system and proceed to a multi-
user system. Our ultimate aim is a robust, real-time, and user-independent sitting
posture tracking system.

Fig. 3.41 The sensing chair
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Sensing Chair Fig. 3.4-2 Overview of the sen-
sing chair project

Static Posture Dynamic Posture
Classification Tracking

I |
| . I

Single-user Multi-user Single-user Multi-user
System System System System

Given the similarity between a pressure map and an 8-bit gray-scale image (see
Figure 3.4-3), it is speculated that pattern recognition algorithms developed for
computer vision would be applicable to the interpretation of sitting postures from
pressure distribution data. There are two major approaches to object representa-
tion and recognition in computer vision: model-based (eg, [19]) and appearance-
based (eg, [20]). The latter is considered more applicable since the concept of ob-
ject model does not apply directly to pressure maps. Appearance-based modeling
and object recognition involves the two steps of training and recognition. First, a
set of training images is obtained. The technique of principal components analy-
sis (PCA, also known as ‘eigenspace methods’, ‘eigen-decomposition’, or ‘Karhu-

Fig. 3.4-3 A full pressure map for the posture ‘left
leg crossed'. See text for details
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nen-Loeve expansion) [21] is often applied to the training data to obtain a low-di-
mensional representation (eigenspace) for the training and test images. Recogni-
tion of a test object is performed by projecting a test image on to the eigenspace
and comparing the distance between the test image and image models derived
from training. This is the approach that we have taken for static posture classifica-
tion. Our work is based primarily on the computer face recognition work con-
ducted at the MIT Media Lab [22, 23].

3432
The Sensor

Our Sensing Chair is equipped with a commercially available pressure distribu-
tion sensor called the Body Pressure Measurement System (BPMS) manufactured
by Tekscan (South Boston, MA, USA). The office chair shown in Figure 3.4-1 is
fitted with two sensor sheets (hidden inside the protective pouches) on the seat-
pan and the backrest. Each sensor sheet is an ultra-thin (0.10 mm) flexible
printed circuit. The sensing units are arranged in 42 rows and 48 columns with
an equal inter-element spacing of 1.016 cm. Each sensing point acts as a variable
resistor in an electrical circuit - its resistance changes in inverse proportion to the
pressure applied. This resistance is then converted to an 8-bit {0-255) digital value
that corresponds to a pressure range of 0—4 psi. Each sensor sheet is attached to a
multiplexing unit called a Handle (see Figure 3.4-1). The Handles for both sensor
sheets can then be connected to a PC interface board that occupies a 16-bit ISA
expansion slot of a personal computer.

The Tekscan BPMS system comes with a software environment where pressure
distribution data from multiple Handles can be displayed in real time as color-
coded two-dimensional maps. It also provides numerous functionalities including
the recording of pressure maps as ‘movies’ for later viewing or analysis. The cur-
rent version runs in a Windows 95/98 environment. This software is useful for
checking the integrity of the sensor sheets and for gaining intuition about the
structure of pressure distribution associated with various sitting postures.

The Sensing Chair project requires real-time access to pressure distribution
data collected from the two sensor sheets. For that purpose, Tekscan provides a
simple hardware interface API (application program interface). The Tekscan API
is a 32-bit static library developed for the Microsoft Visual C++ 6.0 environment.
It provides functions that enable a user, who may not have extensive knowledge
of how to control and interface to the sensor hardware, to perform tasks such as
initializing the sensor sheets, checking sensor parameters (number of rows and
columns, and total number of sensor sheets), and capturing a frame of pressure
distribution data in a buffer. The throughput sampling rate supported by the API
can be up to 127 Hz.

The Tekscan BPMS system has been selected for several reasons. First, the in-
ter-element resolution of the sensor sheets is 1.016 cm. This resolution is consid-
ered to be very high so as not to become the bottleneck of the performance of the
Sensing Chair system. Another reason for using a sensor systemn with a higher
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at (b

Fig. 3.4-4 3D views of a pressure map for the posture ‘seated upright’, (a) before and (b) after
smoothing

than necessary resolution has to do with the integrity of the data: raw pressure
readings can be very noisy (see spikes in Figure 3.4-4a). Local averaging smooths
raw data (see Figure 3.4-4Db) at the cost of reduced sensor resolution. This reduc-
tion in resolution is compensated for by the use of a sensor system with high res-
olution. Second, the sensor sheets are very thin (0.10 mm in thickness). The flex-
ibility of the sheets makes it possible for them to conform to the shape of a chair.
Third, the Tekscan pressure measurement systems are widely used by major re-
search and industry laboratories including the Natick Army Research Laboratory
(for the design of army boots) and Steelcase and Herman Miller (for chair evalua-
tion). This enables us readily to compare our findings with those of other re-
searchers. Finally, an important reason for our selection of the BPMS system is
Tekscan's willingness to provide an API that has enabled us to access and process
pressure distribution data in real time.

There are several known problems associated with the Tekscan BPMS system.
Like any resistive sensors, the Tekscan sensors suffer from nonlinearity, nonuni-
formity, hysteresis, drift, temperature sensitivity, and limited sensor life. The
noise introduced by these characteristics turned out to be manageable. Another
problem with the sensor sheets is that they are designed for flat surfaces. When a
person sits on a chair, the sensor sheet interfacing the person and the chair sur-
face can bend, thereby introducing additional noise to sensor readings that are de-
pendent on both the individual and the sitting postures. Repeated bending results
in cracks in certain parts of the sensor sheets. When this happens, the entire sen-
sor sheet needs to be replaced. An additional limitation of the Tekscan sensor is
that it can only measure the pressure component that is perpendicular to the
sensing elements. One can easily imagine how knowledge of pressure compo-
nents that are tangential to chair surfaces can be useful in determining an occu-
pant’s sitting postures. Finally, the high cost of the Tekscan BPMS system has re-
stricted its use to a handful of research systems.
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3433
Preprocessing of Pressure Data

The image shown in Figure 3.4-3 is a full pressure map for the static sitting pos-
ture of Left Leg Crossed (after noise removal). The top and bottom halves of the
pressure map correspond to the pressure distribution on the backrest and seat-
pan, respectively. To understand the orientation of the pressure map, imagine
standing in front of the chair and its occupant and unfolding the chair so that the
backrest and the seatpan lie in the same plane. Therefore, the top, bottom, left,
and right sides of the pressure map shown in Figure 3.4-3 correspond to the
shoulder area, knee area, and right and left sides of the occupant, respectively.
The size of each full pressure map is 84-by-48 (two sheets of 42-by-48 maps), or
equivalently, 4032 sensels (sensing units).

As mentioned earlier, the raw pressure distribution map is typically noisy
(spikes in Figure 3.4-4a). The noise is removed by convolving the pressure map
with a 3-by-3 smoothing kernel:

NI o=

The smoothed pressure map (Figure 3.4-4b) contains pressure artifacts (at the top
left and right corners of the image) due to the corners of pressure sensor sheets
being wrapped around the chair. Since these artifacts are common to all pressure
maps, their removal is not necessary for the real-time posture tracking system that
we have developed. Finally, although the sensor sheets can be calibrated to display
pressure readings in psi or other standard units, the raw digital data are used since
we are only interested in the relative pressure distribution on the chair surfaces. The
raw pressure readings are normalized, separately for the seatpan and the backrest
maps. The rest of the discussion on the Sensing Chair system assumes that all pres-
sure maps have gone through the above-mentioned preprocessing procedures.

3434
Static Sitting Posture Classification

To date, we have developed both a single-user [24, 25} and a multi-user [26] Static
Posture Classification System (see Figure 3.4-2). For the multi-user system, a
Static Posture Database has been collected on 30 subjects (15 females and 15
males) for 10 sitting postures. The subjects were selected with the goal of cover-
ing a wide distribution of anthropometric measurements. The ranges of subject’s
height, weight, and age were 152-191 cm, 45.5-118.2 kg, and 18-60 years, respec-
tively. Each subject contributed five pressure distribution samples per posture.
There are therefore a total of 150 training samples per posture, and the training
database consists of a total of 1500 pressure distribution maps.
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The postures contained in the Static Posture Database are (1) seated upright, (2)
leaning forward, (3) leaning left, (4) leaning right, (5) right leg crossed, (6) left leg
crossed, (7) leaning left with right leg crossed, (8) leaning right with left leg
crossed, (9) leaning back, and (10} slouching. These postures are considered to be
representative of the typical sitting postures that can be found in an office envi-
ronment {27].

For each of the 10 postures, the 150 training samples are used to calculate the
eigenspace for that posture (called an ‘eigenposture space’). During classification,
a new pressure distribution map is first tested for ‘empty seat by comparing the
sum of all pixel values with a preset threshold. Once a pressure map has passed
this initial test, it is projected on to the 10 eigenposture spaces. The posture label
associated with the eigenposture space that best represents the new pressure map
is then assigned to the new map. A more detailed description of our posture clas-
sification algorithm can be found in [26].

3435
Performance Evaluation

The accuracy of our multi-user Static Posture Classification system was evaluated
with additional pressure maps collected from two groups of subjects. First, an addi-
tional 200 pressure distribution maps were collected from 20 of the 30 subjects who
contributed to the Static Posture Database {one sample per posture per subject).
These pressure maps were then labeled with respect to their corresponding pos-
tures by the Static Posture Classification system. Figure 3.4-5 shows the classifica-
tion accuracy in terms of percent-correct scores averaged over postures, as a func-
tion of the number of eigenvectors that are used in the classification algorithm
{see [26] for details). As expected, overall classification accuracy increases as a func-
tion of the dimension of eigenposture space. The curve in Figure 3.4-5 shows a knee
point at 15 eigenvectors with a corresponding average accuracy of 96.0%.
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Classification accuracy by posture (averaged across subjects) ranges from 90.3%
{for posture ‘leaning back) to 99.8% (for ‘slouching’). The system is also able to
discern among postures that have very similar pressure distribution maps (eg,
95.2% for ‘leaning left, 95.1% for ‘right leg crossed’, and 93.5% for ‘leaning left
with right leg crossed).

Second, a total of 400 pressure distribution maps were collected from eight new
subjects (five samples per posture per subject) who did not contribute to the
Static Posture Database. The ranges of subject's height and weight were 160-
191 cm and 65.9-93.6 kg, respectively. These anthropometric values are within
those represented in the Static Posture Database. For these ‘new subjects that the
system has never ‘felt before, the average classification accuracy at 15 eigenvec-
tors dropped from 96.0 to 78.8%. In an effort to locate the sources of error, we ex-
amined the posture labels associated with not only the eigenposture space that
best represents the test pressure map, but also those with the next two closest ei-
genposture spaces. The classification accuracies that can be potentially achieved if
the correct posture label is associated with the first three closest eigenposture
spaces turned out to be 99.0 and 97.5% for ‘familiar’ and ‘new subjects, respec-
tively.

The execution time for the classification subroutine as a function of the num-
ber of eigenvectors used was also measured, with source codes that have yet to be
optimized for speed. This is an important parameter for any real-time application
of our system. The average classification time for 5, 10, 15, and 20 eigenvectors is
62.1, 107.8, 168.1, and 241.0 ms, respectively. The corresponding average classifi-
cation accuracy {for ‘familiar’ subjects) is 88.5, 94.5, 96.0, and 96.0%, respectively.
In view of these measurements, 15 (out of 150) eigenvectors corresponding to the
15 largest eigenvalues are used for our current version of the multi-user Static
Posture Classification system.

3.44
The Sensing Floor System

3.4.4.1
Overview

The goal of the Sensing Floor project was to track single or multiple people by in-
strumenting floor panels. It takes advantage of a suspended floor structure where
the weight of each floor panel is supported along its edges by aluminum railings
(Figure 3.4-6). Force-sensing resistors (FSRs) are placed between the floor panels
and their supporting structures. Readings from FSRs are then combined and
compared to a threshold to determine whether a floor panel supports weight.
While the overall concept is straightforward, sensor stability and accuracy turned
out to be the limiting factors for the success of the Sensing Floor project.
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Suporting
Structure

Fig. 3.46  An illustration of the sensing floor components. See text for details

3.442
The Sensor

The floor sensors are based on the FSRs manufactured by Interlink Electronics
{Camarillo, CA, USA) (Part No. 402) [28]. Each sensor has a circular active sens-
ing area that is 12.7 mm in diameter. It is interfaced with the floor panel and its
supporting structure via rubber pads. Four sensors are used for each floor panel
at its four corners. Each FSR is connected (as a variable resistor) to a measuring
resistor in a simple force-to-voltage conversion configuration. The analog voltage
level is then sent to a computer and digitized as an 8-bit integer.

The FSRs were selected for their ease of use and relatively low cost. The FSR
User's Guide clearly states that ‘FSRs are not suitable for precision measure-
ments’ and ‘only qualitative results are generally obtainable’ [28]. It was antici-
pated, however, that if a 2-bit accuracy per FSR channel could be achieved, then it
would be possible to detect and track movements on the floor panels. In practice,
we had considerable difficulties with sensor drift, thermal sensitivity, and hyster-
esis. It was difficult to compensate for random sensor variations as FSR readings
would at times fluctuate as much as 50% in idle condition (that is, with no one
standing or walking on the floor panels).

3443
Data Processing

Real-time data acquisition is accomplished with a PC board that can support 64
analog inputs simultaneously at a sampling rate of up to 500 kHz (Part No. AT-
MIO-64E-3, National Instruments). On-line data processing is performed with the
LabVIEW software (National Instruments) that features a graphical-based pro-
gramming environment: The initial implementation of the sensing floor included
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a total of 162 ft® floor panels (as limited by the 64-channel data acquisition sys-
tem). Readings from the four sensors corresponding to the same floor panel are
summed and compared with an empirically determined threshold. If the total
force reading exceeds the threshold, an icon representing the floor panel will
change its color from green to black on the computer screen. When sensor read-
ings are stable, the system can correctly track a person walking across the active
floor area.

3.4.5
The Future

We have described two systems based on distributed contact sensors. The Static
Posture Classification system is based on a Sensing Chair that monitors the pres-
sure distribution patterns on its surfaces in real time. Future work is aimed to-
wards a Dynamic Posture Tracking system that continuously tracks not only
steady-state (static) but also transitional (dynamic) sitting postures. It is expected
that techniques such as hidden Markov modeling (HMM) commonly used for
speech recognition can be successfully applied to sitting posture tracking. A ro-
bust posture tracking system to be completed in the near future will support
many exciting applications such as a sitting posture monitoring system for ergo-
nomics, and automatic adjustment of airbag deployment forces for automobiles.

The Sensing Floor system is based on floor panels instrumented with force-
sensing resistors. Although we have demonstrated that it is possible to track peo-
ple on the floor in real-time, we have had considerable difficulties with unstable
readings from FSRs. Sensors that are more stable and accurate are needed in the
future. It is conceivable that force-sensing units can be manufactured as an inte-
gral part of the floor structure to enable universal access to force distribution data
on an active floor.

3.4.6
Acknowledgments

Part of this work was presented at the First Workshop on Perceptual User Inter-
faces and at the Eighth International Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems. The first two authors were partly sup-
ported by British Telecom, Things That Think consortium at the MIT Media Labo-
ratory, and Steelcase NA. The first and last authors were partly supported by a Na-
tional Science Foundation Faculty Early Career Development Award under Grant
No. 9984991-11S.

303



304

3 Information and Transportation

3.4.7
References

10

12

13

14

Coen, M. H., [EEE Intell. Syst., March/
April (1999) 8. Vol. 14, no. 2.

Franacan, J. L., [EEE Intell. Syst., March/
April (1999) 16. Vol. 14, no. 2.

Frankiin, D., IEEE [ntell. Syst., Sept./
Oct. (1999) 2. Vol. 14, no. 5.

Mozer, M.C., [EEE Intell. Syst., March/
April (1999) 11. Vol. 14, no. 2.
PENTEAND, A.P., Sci. Am. 274 (1996) 68.
Torrance, M.C,, in: Proceedings of
CHI95 Research Symposium, Denver, CO;
Association for Computing Machinery,
New York, NY, USA, 1995.

Turk, M., {ed.), Proceedings of the Work-
shop on Perceptual User Interfaces
(PU1'97), Santa Barbara, CA, PUI Work-
shop, Banff, Alberta, Canada, October
19-21, 1997.

Turk, M. (ed.), Proceedings of the Work-
shop on Perceptual User Interfaces
(PUI'98), Santa Barbara, CA, PUI Work-
shop, San Francisco, CA, November 4-6,
1998.

Coy, P., Business Week, Nov. 4 (1996) 199.
Roacw, M., Discover, March (1998) 74.
Vol. 19, no. 3.

Birke, J.A., Foro, J.G., DEEPAK, S., War-
SON, |., Lepra Revi. 65 (1994) 262.
MueLLer, M.J., Struss, M.]., Clin. Bio-
mech. 11 {1996) 159.

Conri, S.F., MarTIn, R.L., CHAYTOR,

E.R., HucHes, C., LuttrELL, L., Foot An-

kle Int. 17 (1996) 464.

Reep, M., Grant, C., Development of a
Measurement Protocol and Analysis Tech-
niques for Assessment of Body Pressure Dis-
tributions on Office Chairs; Technical Re-

port, Ann Arbor, MI: University of Michi-

gan, 1993.

HucHes, E.C,, SuEN, W, VERTIZ, A.,
SAE Tech. Pap. Ser. (1998) 980658, pp.
105-115.

CoHeN, D., J. Aviat. Space Environ. Med.
69 (1998} 410.

Barnerr, R.1, Suerron, F.E., J. Prev.
Healing: Adv. Wound Care, vol. 10, no. 7
(1997 21.

18

20

21

22

23

24

25

26

27

28

Harapa, T, Mort, T, Nisuipa, Y,
Yosuimy, T., Sato, T, in: Proceedings of
the 1999 IEEE [nternational Conference on
Robotics and Automation, May, Detroit,
MI; IEEE (The Institute of Electrical and
Electronics Engineers) Piscataway, NI,
USA (1999) pp. 968-975.

Brooks, R.A., [EEE Trans. Pattern Anal.
Machine Intell. 5 (1983) 140.

Murasg, H., Navar, S.K., Int. J. Com-
put. Vision, 14 (1995) 5.

Fukuwnaca, K., Introduction to Statistical
Pattern Recognition, 2nd edn.; New York:
Academic Press, 1990.

PenTianD, A, MoGHADDAM, B., STAR-
NER, T, in: Proceedings of [EEE Conference
on Computer Vision and Pattern Recogni-
tion; TEEE (The Institute of Electrical and
Electronics Engineers) Piscataway, NI,
USA (1994} pp. 84-91.

Turk, M., PENTIAND, A, J. Cogn. Neu-
rosci. 3 (1991) 71.

Tan, H.Z., in: Proceedings of the ASME
Dynamic Systems and Control Division,
Vol. 67, Olgac, N. {ed.); New York: Amer-
ican Society of Mechanical Engineers,
1999, pp. 313-317.

Tan, H.Z., Ly, L, PENTLAND, A, in: Pro-
ceedings of the Workshop on Perceptual
User Interfaces (PUT97); Turk, M. (ed.),
Banff, Alberta, Canada, October 19-21,
1997, pp. 56-57. Santa Barbara, CA, PUI
Workshop

Suvovsky, L.A., Tan, H.Z., A Real-time
Sitting Posture Tracking System: Purdue
University Technical Report, TR-ECE 00-
1,West Lafayette, IN: School of Electrical
and Computer Engineering, Purdue Uni-
versity, 2000.

Lueper, R., Noro, K., Hard Facts about
Soft Machines: the Ergonomics of Seating;
Bristol, PA: Taylor & Francis, 1994.

ESR integration Guide and Evaluation
Parts Catalog; http://
www.interlinkelec.com/, Interlink
Electronics, Camarillo, CA, USA, 2000.



