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ABSTRACT

As computing becomes more ubiquitous, there is a need for
distributed intelligent human-computer interfaces that can per-
ceive and interpret a user’s actions through sensors that see, hear
and feel. A perceptually intelligent interface enables 2 more natu-
ral interaction between a user and a machine in the sense that the
user can lock at, talk to or touch an object instead of using a ma-
chine language. The goal of the present work on a Sensing Chair
is to enable a computer to track, in real time, the sitting postures
of a user through contact sensors that act like a layer of artificial
skin. This is accomplished with surface-mounted pressure distri-
bution sensors placed on the backrest and the seatpan of an office
chair. Given the similarity between a pressure distribution map
from the contact sensors and a greyscale image, computer vision
and pattern recognition algorithms, such as Principal Components
Analysis, are applied to the problem of classifying steady-state sit-
ting postures. A real-time multi-user sitting posture classification
system has been implemented in our laboratory. The system is
trained on pressure distribution data from subjects with varying
anthropometrics, and performs at an overall accuracy of 96%. Fu-
ture work will focus on the modeling of transient postures when a
user moves from one steady-state posture to the next. A robust,
real-time sitting posture tracking system can lead to many excit-
ing applications such as automatic control of airbag deployment
forces, ergonomics of furniture design, and biometric authentica-
tion for computer security.

1 INTRODUCTION

This work is motivated by the desire to make computers
intelligent. Today’s computers can perform astronomical
computations, yet they do not have the capability to do any-
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thing more than what we tell them to do. We enter strings
of commands and the computer executes them. A computer
is aware of its surroundings only if the necessary informa-
tion has been entered by a user through the low bandwidth
devices of mouse and keyboard. Intelligence would allow
a computer to interpret and anticipate the needs of a user
while interacting with his or her surroundings. This can
be achieved by giving a computer human-like senses such
as sight, hearing, and touch. This can be done by employ-
ing digital cameras, microphones, and pressure sensors as
the eyes, ears, and skin of the computer, along with algo-
rithms that can interpret sensory input from these devices
and from it, predict the user’s wishes.

We can extend the notion of intelligent machines to in-
clude typically non-computational aspects of our surround-
ings, such as a room, a chair, a desk, and clothing. The
range of items is endless. Systems are being developed that
can locate, recognize, and track people; interpret gestural
commands; understand natural language; and use all of this
information to predict and assist the needs of a user. These
include the smart room [16], the intelligent room [2, 23], the
intelligent classroom [5], an intelligent house [12], clothing
(16, 11], and chairs [20, 7, 4].

The majority of these systems use audio and visual
cues to interpret their surroundings. The use of haptic, or
touch-based, interfaces, specifically those that use pressure-
sensing devices, are driving a new and exciting area of
machine intelligence research. Current work in the use of
pressure-sensing devices to measure sitting pressure distri-




Figure 1. THE SENSING CHAIR.

butions is focused on relating these distributions to seat
comfort [9, 19, 21, 22, 1, 3, 8, 18]. Most of these systems do
not perform real-time analysis, nor do they use pressure as
an input to drive another application.

The goal of the Sensing Chair Project is to enable a
computer to track, in real time, the sitting postures of a
user through the use of surface-mounted contact sensors. A
picture of the Sensing Chair is shown in Figure 1. It is an
office chair (Aeron chair by Herman Miller) with surface-
mounted pressure sensors (Tekscan Inc.). The problem of
posture interpretation via the analysis of contact pressure
can be divided into two subcategories: static posture classi-
fication and dynamic posture tracking. Static posture clas-
sification deals with the recognition of a posture while the
user is in a steady-state posture (e.g., sitting upright). A
rea)-time single-user static posture classification system was
presented in [20]. The work presented here is an extension of
that work into a multi-user system. Dynamic posture track-
ing tackles the problem of interpreting posture from sitting
pressure distributions as a user moves from one static pos-
ture to another. Issues involved in dynamic posture tracking
will be discussed in the future work section of this paper.
The realization of a robust, real-time tracking system will
lead to many exciting applications such as automatic con-
trol of airbag deployment forces, ergonomics of furniture
design, and biometric authentication for computer security.

The remainder of this paper is as follows. Section 2
describes the system configuration used in the Sensing Chair
Project and the pressure data that is obtained from the
hardware. Section 3 presents the algorithm used for static
posture classification. The results of the system are given
in Section 4. The paper ends in Section 5 with a conclusion
and discussion of future work.
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2 SYSTEM CONFIGURATION

The sensing system used in the Sensing Chair Project is
the Body Pressure Measurement System (BPMS) (Tekscan,
Inc, South Boston,MA). It consists of two identical surface-
mounted pressure-sensitive transducer sheets, their inter-
face electronics, a PC interface board, and an API library
for real-time data capture.

Each sensor sheet contains a flexible printed circuit ar-
ray of 42x48 pressure sensing elements (sensels). The sensels
are uniformly spaced 10 mm apart. The overall effective
sensing area is 41 x 47 cm. For the Sensing Chair Project,
the two sensor sheets have been mounted on the seat back
and seatpan of a Herman Miller Aeron chair (Figure 1).
Each sensel acts as a variable resistor. Its resistance is de-
termined by the normal force being applied to its location.
When unloaded, its resistance is high. As an applied force
is increased, its resistance decreases. This resistance is con-
verted to an 8-bit digital value. The interface electronics
and PC interface board can capture the two pressure dis-
tribution maps at rates up to 127 Hz.

The sensors can be calibrated in two steps. The first
step, equilibration, makes sure that equal pressures applied
to two sensing elements will result in equal sensor readings.
The second step, calibration, enables conversion from raw
digital sensor readings to pressure values in units such as
PSI or mmHg. We did not use either calibration step for
three reasons. First of all, like any resistive sensor, our sen-
sors suffer from nonlinearity, hysteresis, thermal sensitivity,
drift, and sensor durability, just to name a few. Qur experi-
ence indicates that the amount of noise that can be reduced
by equilibration to make the effort worthwhile is relatively
small. Secondly, the algorithm we have developed utilizes
only the relative pressure distribution information. This
makes it unnecessary to convert raw sensor data to proper
pressure units. Finally, the sensor sheets are bent when a
person is seated in the chair. Thus it is almost impossible
to calibrate the sensor sheets with the exact conditions un-
der which they are used. Qualitatively, the noise present in
the unloaded sensors affixed to the chair is located mostly
around the sensor corners [Figure 3(b)]. They don’t change
much once the seat is occupied (thus do not affect our al-
gorithm).

The pressure maps can be visualized as a greyscale im-
age. Figure 2(a) shows a person sitting in the Sensing Chair
seated in an upright posture. Figure 2(b) shows the corre-
sponding pressure map (with the seatback pressure map
shown stacked above the seatpan pressure map). The seat-
back and seatpan data captured at the same time are al-
ways combined and treated as one image. Lighter areas in
the image correspond to higher pressures, and darker areas
correspond to lower pressures.

The image shown in Figure 2(b) is subject to noise due




(a) (b)

Figure 2. (a) A PERSON SEATED IN AN UPRIGHT POSTURE IN THE
SENSING CHAIR. (b} AN EXAMPLE OF A RAW SITTING PRESSURE DIS-
TRIBUTION MAP, FROM A PERSON SEATED UPRIGHT IN THE SENS-
ING CHAIR, DISPLAYED AS AN 8-BIT GREYSCALE IMAGE. THE TOP
HALF OF THE IMAGE SHOWS THE PRESSURE DISTRIBUTION ON THE
BACK OF THE CHAIR, AND THE BOTTOM HALF SHOWS THAT OF
THE SEATPAN. THE TOP, BOTTOM, LEFT, AND RIGHT SIDES OF THE
IMAGE CORRESPOND TO THE SHOULDER AREA, KNEE AREA, RIGHT
SIDE, AND LEFT SIDE OF THE PERSON, RESPECTIVELY.

to two sources: inherent Sensor Noise, and Sensor Sheet
Deformation. Sensor noise can be seen as the local abrupt
changes in greyscale values (e.g., the spikes in Figure 3(c}).
Sensor sheet deformation introduces pressure artifacts into
the sitting pressure distribution map that are the results of
the sensors bending around and conforming to the chair.
The pressure sensors in the Body Pressure Measurement
System were designed to be placed on firm flat surfaces. The
Aeron chair is contoured to fit the human body. To affix
the pressure sensors to the chair, their corners and edges
have been wrapped around the edges of the chair. This
causes pressure artifacts to appear in the sitting pressure
distribution maps (e.g., see the small pressure areas in the
upper-left and upper-right corners of Figure 3(a)).

The raw sitting pressure distribution maps undergo pre-
processing to remove the Sensor Noise in the maps. The raw
sitting pressure distribution map is smoothed by convolving
it with the following smoothing kernel:

L [05]10]05
7 | L0 1010 (1)
051005

Figure 3(c) shows the raw sitting pressure distribution
map for a sample of posture Upright, and Figure 3(d) shows
the result of applying the smoothing operator. These pres-
sure maps are displayed as 3-D height maps, where the
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Figure 3. (a) 2-D VIEW OF A RAW SITTING PRESSURE DISTRIBU-
TION MAP FOR A PERSON SEATED UPRIGHT. (b) THE SENSOR NOISE
PRESENT IN THE UNLOADED SENSORS SHOWN AS A 3-D HEIGHT
MAP. (c) THE SITTING PRESSURE DISTRIBUTION WHEN LOADED
WITH A PERSON SEATED IN AN UPRIGHT POSITION. (d) RESULT
OF APPLYING THE SMOOTHING OPERATOR TO THE PRESSURE MAP
SHOWN IN (c).

height of the surface above the X-Y plane indicates the pres-
sure value at each sensel on the pressure sheets. Smoothing
greatly reduces the noise spikes visible in the raw sitting
pressure distribution map. It also increases the overall ac-
curacy of our static posture classification system by 7%.
The removal of pressure artifacts due to sensor sheet defor-
mation turned out to be unnecessary.

After the sitting pressure distribution maps are
smoothed, they are then normalized. The pressure values
on the seatpan are usually much higher than those of the
seat back. Therefore, the values in the seat back and seat-
pan are normalized independently.

3 STATIC POSTURE CLASSIFICATION ALGORITHM
Given the similarity between a pressure distribution
map from the contact sensors and a greyscale image, it is
speculated that computer vision and pattern recognition al-
gorithms used for object recognition and classification might
be applicable to the problem of static posture classification.
We will therefore briefly review work on appearance-based
object recognition methods in computer vision, and then
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describe how we adapted this technique for posture classi-
fication.

In an appearanced-based system, objects are repre-
sented by a set of global parameters that is dependent solely
on the object’s visual appearance. Training of the system
involves acquiring a set of training images of the objects
and deriving a parameter vector from each of these images.
Recognition of a test object is a matter of finding the closest
match between the parameter vector of the test image and
the parameter vectors of the training images.

A common approach to reducing the size of the pa-
rameter vector is through the use of Principal Components
Analysis (PCA) [6]. In this method, the training images
are projected onto an orthogonal space. Each image is then
represented by a vector of coefficients of the principal com-
ponents in this space. Recognition is then performed in
this lower-dimensional space. This method has been suc-
cessfully applied to the recognition of faces through the use
of a set of principal face images, termed eigenfaces, [24, 15).
In posture classification, we can view different steady-state
postures (e.g., sitting upright and slouching) as being anal-
ogous to different faces (e.g., Mike, Ted, Julie) and set up
our system to classify posture instead of the person.

3.1 Static Posture Database

We have collected a small database containing Static
Sitting Pressure Distribution Maps. The Static Posture
Database provides the necessary training data for the devel-
opment of our static posture classification system system,
as well as data needed for the evaluation of the classifica-
tion system. The set of postures we have selected to be
in the database includes Sitting Upright, Leaning Forward,
Leaning Left, Leaning Right, Right Leg Crossed, Left Leg
Crossed, Leaning Left with Right Leg Crossed, Leaning Right
with Left Leg Crossed, Leaning Back, and Slouching. The
selection of a posture set is application-dependent. We have
selected the above set as a starting point because it includes
postures commonly found in office environments [10].

A total of 30 subjects (15 females and 15 males) par-
ticipated in data collection. Five samples for each of the
ten postures were collected from each subject. A total of
150 samples were collected for each posture. Subjects were
selected on the basis of their overall size. The goal was to
obtain subjects with a wide distribution of anthropometric
measurements (e.g., weight and height).

3.2 Posture Space Training

Training one of the ten posture spaces starts with con-
verting each of the training sitting pressure distribution
maps for that posture into a vector. This is done by raster
scanning each sample into a 4032x1 vector. The eigenpos-
ture space for each posture k (k = 1...N with N = 10), is

10562

Figure 4. MEAN SITTING PRESSURE DISTRIBUTION MAPS FOR POS-
TURES (a) SITTING UPRIGHT, (b) LEANING LEFT, (c) RIGHT LEG
CROSSED, AND (d) LEANING LEFT WITH RIGHT LEG CROSSED.

computed as follows.

Let P, = {Xl,ly X5, Xo1, . Xog, o Xga, .- Xushbe
the set of training samples for posture k, where H = 30 is
the number of subjects. S = 5 is the number of samples per
posture per subject. There are HS = 150 training samples
of each posture in the Static Posture Database. For simplic-
ity, the training set P is rewritten as P, = {X3, X, ..., Xnm}
where M = 150. The mean sitting pressure distribution
map vector for posture k is calculated as:

L
M <
1

M=

Xk = Xi (2)

I
_

The mean sitting pressure distribution map vectors for pos-
tures sitting upright, leaning left, right leg crosses and lean-
ing left with right leg crossed are shown in Figure 4. The
vectors have been converted back to arrays for display pur-
poses.

Zero-mean training data is obtained by subtracting the
mean from each of the training samples:

¢ = Xi — Xx (3)

The zero-mean training samples are stacked to form a
large matrix @, of size 4032x150, whose covariance matrix
Cis:




C= iiqﬁqﬁl = id)(b’ (4)
M e RTM

where ® = [¢1, @2, ...¢ ] 1s of size 4032xM.

The eigenvectors and eigenvalues of C' determine the
eigen-decomposition of the training samples. Seeing that
C is such a large matrix, computation of its eigenvectors
is computationally expensive. Since M = 150 < 4032, no
more than M eigenvalues are non-zero. The eigenvectors
of our large 4032x4032 matrix C' = 3 ®®' and those of the
MxM matrix C’ = 4 ®'® matrix are related in the following
manner [13] [24]:

Let vectors v; of size Mx1 be the eigenvectors of C' =
ﬁ@’@. Then,

%‘I"Dlvi = KV (5)

where p; are eigenvalues. Premultiplying by @ yields:

%@@’(@vi) = pi(Pwi) (6)

So, the eigenvalues and eigenvectors of C are y; and ®v;,
respectively.

The eigen-decomposition of the training samples con-
sists of finding the M eigenvectors v; of C' = 4 ®'® and
obtaining the corresponding eigenvectors of C, e; of size
4032x1, as follows:

M
ei=dvi=Y wgifori=1,2,..M )

j=1

where v;; is the j-th component of v;. The e; (¢ = 1,2,...M)
are the axes for the eigenposture space; i.e., the reduced-
dimensional space for representing the original pressure dis-
tribution vectors. They are called the eigen pressure maps.
The procedure for obtaining the eigen pressure maps
described above is repeated for each of the ten postures.

3.3__ Static Posture Classification

Classification of a test sitting pressure distribution map
is performed as follows. Figure 5 shows a flowchart for
the following procedure. First, the test map undergoes the

1053

same preprocessing steps the training data has undergone
{smoothing and normalization). The following steps are re-
peated for each. posture space k. The posture mean X of
the training samples for posture k is subtracted from the
test map X..

¢ = Xy — X (8)

The mean-adjusted test sample ¢; is projected onto the
first D eigenvectors of eigenposture space k to obtain a D-
dimensional weight vector W, = [wp...wkp]T, where the ith
element of W, is the projection of ¢; onto the ith eigenvector
of posture space k. The test map is then reconstructed as
follows:

D
¢ = Z WhiCki 9)
g=1

where wy; is the ith element of W, and eg; is the ith eigen-
vector of posture space k. )

The distance from posture space d? = [|¢; — ¢4||® (i.e.,
the Distance From Feature Space - DFFS {24]) is used as
a distance measure between the test map ¢; and posture
space k. The posture space yielding the smallest d? in the
reconstruction is taken as the posture label for classification.
If ming d2 > threshold then the sitting pressure distribution
map is labeled as an unknown posture. The threshold is
dependent on the value of D, and is determined empirically.

4 RESULTS

The static posture classification system was evaluated
in three ways. First, execution time as a function of num-
ber of eigenvectors used was measured. This is an impor-
tant parameter for any real-time application. The results
are shown in Table 1. It was observed that when using
20 eigenvectors in classification, there is a noticeable delay
between the time of moving to a new posture and that of
the display of the classification result. As the number of
eigenvectors is decreased, say to ten, this delay is no longer
noticeable.

Second, extra pressure-map samples (from the same
people who contributed to the Static Posture Database)
that did not get used in eigen decomposition were used
to test the accuracy of the posture classification system,
again, as a function of number of eigenvectors used. There
were a total of 200 extra samples, 20 for each of the ten
postures. The results in Figure 6 shows an increase in ac-
curacy as the number of eigenvectors used in classification
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Figure 5. FLOWCHART OF THE PROCEDURE TO RECONSTRUCT A
TEST MAP X, IN POSTURESPACE k.

Number of | Average Classification
Eigenvectors Time (ms)
5 62.07
10 107.81
15 168.13
20 241.0

Table 1. AVERAGE CLASSIFICATION TIME.

is increased. Even when only 15 eigenvectors are used, the
overall accuracy of the system is 96% correct. Table 2 lists
the accuracy as computed for each posture averaged over
different numbers of eigenvectors used. These values range
from 90.3% for posture leaning back to 99.8% for posture
slouching.

Third, real-time evaluation was conducted using four
subjects who contributed pressure-distribution samples to
the training data (“old” subjects), and four others who did
not (“new” subjects). In general, the system correctly clas-
sified sitting postures for all eight subjects. Even using
as few as 15 eigenvectors in classification, the system still
seemed to be able to correctly classify static postures. The
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Static Sitting Posture Classification Results

80

Accuracy (%)

8

20

50 % 100
Dimension of Posture Space

Figure 6. ACCURACY VS. THE NUMBER OF EIGENVECTORS USED
FOR CLASSIFICATION. THE ACCURACY INCREASES AS THE DIMEN-
SION D, THE NUMBER OF EIGENPOSTURE MAPS USED IN THE RE-
CONSTRUCTION, 1S INCREASED.

Posture Class Accuracy (%)
Sitting Upright 97.4832
Leaning Forward 95.6376
Leaning Left 95.1678
Leaning Right 98.2215
Right Leg Crossed 95.0671
Left Leg Crossed 94.7651
Leaning Left with Right Leg Crossed 93.5235
Leaning Right with Left Leg Crossed 96.5436
Leaning Back 90.3020
Slouching 99.7987

Table2. CLASSIFICATION ACCURACY FOR EACH POSTURE CLASS AV-
ERAGED OVER DIFFERENT NUMBERS OF EIGENVECTORS USED.

fact that our system performed equally well with the four
“new” subjects and with the four “old” ones indicates that
it can be used as a multi-user system as long as the user’s an-
thropometry is represented in the Static Posture Database.

In view of the fact that when the number of eigenpos-
ture maps used in static posture classification increased be-
yond 15, (1) the average classification time increased beyond
200 ms, (2) the overall classification accuracy plateaued,
and (3) there was no noticeable enhancement in real-time
performance, it was decided that only the eigenposture
maps corresponding to the largest 15 eigenvalues need to
be used in the static posture classification system.

&




5 DISCUSSION

We have extended our previous work on a single-user
static posture classification system to a multi-user system
by training eigenposture spaces with pressure-distribution
maps from a group of individuals whose anthropometrics
(in terms of weight, height, age, and paddedness around the
thighs) cover a wide range of values. An overall accuracy of
96% is achieved with a reasonably small number of eigen-
posture maps (15) used in classification. The system runs
in near real-time on a Pentium PC. Testing with new users
demonstrates the potential for a user-independent system as
long as the training data reflect the anthropometrics of the
general population. It is interesting to point out that clas-
sification accuracy varies with posture, with an impressive
99.8% for the posture of slouching. Given that this posture
deprives the user of proper support in the lumbar area and
could potentially lead to ailments such as lower-back pain,
we envision a system that can identify almost 100% of the
occurrences of this sitting posture and discourage the user
from slouching for extended periods of time.

The accuracy of our static posture classification sys-
‘tem can potentially be improved by examining the first few
eigenposture spaces that produce the smallest DFFS val-
ues. For example, a small difference between two lowest
DFFS values could indicate that a test map could be clas-
sified as either of the two postures. Additional information
could either verify or reject the posture corresponding to the
minimum DFFS value. Possible candidates for additional
information may include features such as center of force, av-
erage force, and spread of the pressure peaks. One approach
we are taking is to model the pressure-distribution map as a
surface represented by a mixture-of-lognormal function. A
lognormal distribution is preferred in order to accommodate
the fact that equal pressure contours in the sitting pres-
sure distribution maps are skewed. The distribution of the
means and covariances of the lognormal densities for each
of the postures will be learned from the training samples
in the Static Posture Database and used for sitting posture
classification in a Bayesian framework.

Our current work focuses on the development of a real-
time dynamic posture classification system. Here we are
specifically looking at the problem of modeling transient
postures between a pair of static postures. Possible ap-
proaches to take are the manifold approach used in com-
puter vision for estimating the pose of an object [14] or Hid-
den Markov modeling that is widely used in speech recog-
nition [17}. The ultimate goal of our work on the Sensing
Chair is to develop a chair interface that can be part of a
multimodal human-computer interface system in an intelli-
gent environment.
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