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Abstract

Streaming is emerging as an important programming
model for multicores. Streaming provides an elegant
way to express task decomposition and inter-task com-
munication, while hiding laborious orchestration de-
tails such as load balancing, assignment (of stream
computation to nodes) and computation/communication
scheduling from the programmer. This paper devel-
ops a novel communication optimization for streaming
applications based on the observation that streaming
computations typically involve large, systematic data
transfers between known communicating pairs of nodes
over extended periods of time. From the above ob-
servation, we advocate a family of routing algorithms
that expend some over overheads to compute disjoint
paths for stream communication. Disjoint-path routing
is an attractive design point because (a) the overheads
of discovering disjoint paths are amortized over large
periods of time and (b) the benefits of disjoint path rout-
ing are significant for bandwidth-sensitive streaming
applications. We develop one instance of disjoint-path
routing called tentacle routing – a backtracking, best-
effort technique. On a 4x4 (6x6) system, tentacle routing
results in 55% (84%) and 28% (41%) mean through-
put improvement for high-network-contention streaming
applications, and for all streaming applications, respec-
tively.

1. Introduction

Stream-based programming models provide a natural
way to express the parallelism of several media pro-
cessing applications and other applications with simple
forms of data- and task-parallelism. The advantages
of streaming programming models have been demon-
strated on research machines (MIT Raw [15], Stanford
Imagine [11]) as well as on real multicore systems
and accelerator-computing systems [1], [13], [2], [18],
[4]. A stream program may be expressed as a graph
with independent threads of computation – “actors”

– at vertices and directed edges representing “com-
munication streams” between actors. Each “actor” is
an independent execution context with its own private
memory that repeatedly operates on a stream of input
data and emits output streams that other “downstream”
actors may further act upon. Thus, the programming
model enables programmers to specify task decom-
position and inter-task communication while hiding
orchestration details (e.g., load balancing, assignment
of actors to processors for communication locality,
computation/communication scheduling) from the pro-
grammer.

There have been broad projects that targeted opti-
mization of all aspects of stream computation including
the CPU organization (to include wide parallelism),
bandwidth in the register/memory-hierarchy, and inter-
connection network [11], [5]. This work has a limited
focus, which is to optimize the communication of
streaming applications on existing mass-market multi-
/many-cores, rather than on specialized streaming hard-
ware. The key challenge in supporting stream communi-
cation on cache-coherent, shared-memory multi-/many-
cores is that the communication patterns for coherence
traffic (irregular, bursty, latency-sensitive) and stream-
ing traffic (large, sustained transfers between known
source/destination pairs, bandwidth-sensitive) are signif-
icantly different. Consequently, the interconnection net-
works designed for coherence traffic (irregular, bursty,
short, fixed-size packets) are not well-suited for the
communication requirements of streaming applications.

The above observation leads us to a dilemma – at
one end of the design spectrum, we have specialized
hardware which optimizes performance at the cost of
the economies of scale of mass-market multicores, and
at the other end of the spectrum we have mass-market
cache-coherent, shared memory, multicores which offer
poor support for streaming communication. The key
goal of this paper is to develop efficient support for
streaming communication with minimal, incremental
changes to coherence networks of mass-market many-
cores.



To motivate our design, we begin by describing the
two key inefficiencies of coherence networks in sup-
porting streaming communication. The first inefficiency
is the mismatch between “pull-based” communication
supported by coherence networks and the “push-based”
communication used by streaming applications. To un-
derstand this mismatch, consider the least disruptive
way to support streaming on coherence networks of
shared memory multicores. In such a design, streaming
would be implemented using the underlying shared
memory (i.e., by implementing streams as software-
based FIFOs) and no hardware changes would be
needed. Coherent shared memory supports pull based
communication where the producing actor deposits new
values in its local caches, which are then “pulled” by
coherence mechanisms by consuming actors. In con-
trast, stream communication is inherently push-based
wherein producing actors actively push data to con-
suming actors. Supporting push-based communication
using pull-based mechanisms wastes bandwidth because
pull-based communication requires a request and a
response, rather than a simple data packet. In addition,
because pull-based communication requires producer-
consumer synchronization, there may be other packets
to be exchanged as well.

In contrast, we could implement a push-based net-
work by allowing the processor to directly place data
in the local input queues of the router. The packet
would then be injected into the network and carried
to the destination node. At the destination node, the
recipient actor would similarly pull data directly out of
the exit-queues of its local router. Thus, push based net-
works result in reduced communication and improved
bandwidth for streaming applications. Networks that
support a push-based interface can be implemented with
minimal changes to existing coherence networks. How-
ever, implementing push-based communication alone is
insufficient because of the second mismatch between
the requirements of streaming communication and co-
herence networks.

Streaming applications require large, sustained data
transfers and are bandwidth sensitive, unlike coherent
shared memory workloads which have bursty, irregular,
lateny-sensitive communication with short messages.
Coherence networks are very efficient within their do-
main of operation: they use packet-switching to maxi-
mize link utilization for short coherence packets; they
use minimal routing to reduce latency. We make two
observations on this coherence-vs.-streaming mismatch.
First, because of the bandwidth-sensitivity of stream-
ing applications, minimizing network link contention

for each stream, even at the cost of increasing hop
count, is a desirable goal. Second, because streaming
applications communicate large amounts of data over
extended periods of time between known pairs of ac-
tors, it is perfectly acceptable to incur some overheads
to setup contention-free routing paths. The overheads
will be amortized over the duration of the streaming
application (or the duration between actor migration,
if such migration is permitted). Previous orchestration
mechanisms have typically assumed simple (coherence-
network like) routing algorithms as a constraint. For
example, the StreamIT compiler1 assumes dimension-
ordered routing (DOR) when optimizing the layout of
actors on computational nodes. Such routing algorithms
suffer from unnecessary link-contention which results in
degraded application throughput. While minor routing
changes like using minimal adaptive routing instead
of DOR can help link-contention for coherence traffic,
adaptive routing is less useful for streaming because
of the in-order delivery semantics of streams. Adaptive
routing may deliver packets out-of-order, thus requiring
additional complexity for re-assembly. More impor-
tantly, even if packet re-assembly were free of cost, we
show that while marginally better than DOR for some
benchmarks, adaptive routing falls significantly short of
the throughput achieved by our design described below.

The first contribution of this paper is that we identify
routing of streaming data among communicating actors
as a novel degree of freedom in optimizing stream
applications (unlike previous techniques which assumed
a fixed routing algorithm). Based on the above observa-
tion, we propose a family of flexible routing algorithms
– disjoint path routing algorithms – that customize rout-
ing for each streaming application as a key component
of stream program orchestration. Disjoint-path routing
algorithms aim to minimize link contention and thus
improve the throughput of streaming applications.

Our second contribution is the design of a specific
instance of disjoint-path routing calledtentacle routing.
Tentacle routing operates in a distributed fashion to dis-
cover and setup contention-free paths between commu-
nicating actors. Tentacle routing is a best-effort mech-
anism that is not guaranteed to find such disjoint paths
even if they exist. In spite of that, it is attractive because
(a) it works well in practice, successfully finding disjoint
paths for all the benchmarks we consider and (b) when
tentacle routing fails, we may always fall back on the
underlying routing algorithm. Tentacle routing leverages
circuit-switching as the switching mechanism which can
be efficiently supported with incremental changes on

1. Specifically, the compiler backend for the Raw machine.

2



a packet switched router, as demonstrated by Jerger
et.al. [10], [9]

Finally, we evaluate tentacle routing over a suite
of streaming applications. Tentacle routing results in
significant throughput improvements (on average, 55%–
84% for applications with high link contention and
28%–41% for all applications) over two different system
sizes. Most importantly, tentacle routing achieves near-
ideal throughput (within 6% for 4x4 and within 11% for
6x6 networks). The combination of high throughput and
simple implementation makes tentacle routing a very
attractive design point.

In summary, the major contributions of this paper are:

• We identify and describe a design space of
disjoint-path routing algorithms that directly aim
to minimize link-contention among communication
streams of streaming applications.

• We design one concrete instance of disjoint path
routing called tentacle routing that can leverage
a pre-existing router design that requires minimal
changes to a packet-switched router.

• Tentacle routing improves application throughput
by 28% and 41% on average in 4x4 and 6x6
systems, respectively. It achieves within 6% and
11% of ideal performance on 4x4 and 6x6 systems,
respectively.

The rest of the paper is organized as follows. Sec-
tion 2 describes our disjoint-path routing techniques.
Section 3 describes our experimental methodology. Sec-
tion 4 presents the results. Finally, Section 5 concludes
this paper.

2. Disjoint Path Routing

In this section, we describe our technique for disjoint-
path routing for stream programming models. Though
our techniques are broadly applicable to various stream-
ing programming models and network topologies, we
limit discussion in this paper to the StreamIT pro-
gramming language [16] and to two-dimensional mesh
networks. Two-dimensional meshes will be the likely
connection-fabric as we move to the manycore era. First,
we offer a brief background of orchestration for the
StreamIT programming model (Section 2.1). Next, we
describe the space of disjoint path routing techniques, in
general, and examine the pros and cons of several points
in the design space (Section 2.2). Finally, we describe
our design –tentacle routing– which is one specific
instance of disjoint path routing Section 2.3.

2.1. Background and Related Work

In StreamIT, applications may be interpreted as a
graph, with the computation expressed as “actors” or
“filters” ( verticesS, J , C1, C2, C3 andC4 in the graph
on the left of Figure 1(a)) that communicate among
one another over streams (edges in the graph). The pro-
grammer may overdecompose applications and express
them using an arbitrary number of actors irrespective
of the number of processors. Because the actors may
be imbalanced in terms of workload and because the
actors may exceed the number of available nodes, the
compiler automatically fuses/fisses actors to achieve a
transformed, load-balanced, stream computation graph
in which (a) the number of actors are comparable in
terms of workload and (b) the number of actors does
not exceed the number of processors.

Once the load-balancing is complete, actors in the
stream computation graph are mapped to processors in
the layout stage as shown in Figure 1(a). The StreamIT
compiler [7] attempts to optimize layout of actors in the
fabric by assuming that the underlying routing function
imposes a communication cost and optimizing the over-
all communication cost via simulated annealing [12].
Specifically, StreamIT’s Raw processor back-end uses a
cost-function that penalizes distance (number of hops)
and switch interference (number of streams that pass
through a switch). Assuming X-first, dimension-ordered
routing, we can observe that there is significant link
contention on the “North” incoming link at nodeJ in
Figure 1(b). It is this link contention that our technique
targets. One may think that the link contention is an
artifact of dimension ordered routing and that adaptive
routing can eliminate/reduce link contention. However,
we will show later that adaptive routing is insufficient to
eliminate link contention. Instead, our technique focuses
on routing stream data on disjoint paths – paths that
do not share any links – as shown in Figure 1(c).
Note, the paths may be longer than minimal paths
(e.g., the path betweenC2 and J , in Figure 1(c))
because of our insight that streaming applications are
bandwidth sensitive (i.e., it is more important to avoid
link contention) and not latency sensitive (i.e., it is okay
to increase the number of hops).

2.2. Disjoint-Path Routing Design Space

The disjoint path routing problem may be stated
in two different ways. The first variant, which is the
most general statement of the problem, treats layout
and disjoint-path routing as a single integrated problem.
Given some stream graph (in which actors have been
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Figure 1. Maximizing Throughput via Disjoint Path Routing

load balanced) and some network topology, what is the
optimal way to map actors in the graph to nodes in the
network topology and edges in the graph to network
paths to eliminate network contention? This is the same
as the problem of finding a node- and edge-disjoint
embedding of the stream graph in the network topology
graph. Because such embedding of arbitrary graphs
is a hard problem, we reformulate a simpler variant
which can still capture the benefits of disjoint path
routing. The second variant stipulates that there exists a
mapping of actors to nodes (possibly from the layout
obtained by simulated annealing assuming a simple
routing algorithm). As a result of this simplification,
disjoint-path routing is reduced to computing a set of
paths from each source to its corresponding destination
such that no two stream paths share a network link.
One potential drawback of the above simplification is
that it may result in an infeasible layout (i.e., a layout
for which there is no feasible disjoint-path routing).
However, such a scenario may be handled by retrying
the routing problem after modifying the layout. While
this simple approach does not upperbound the number
of attempts needed, we found that it was practical
approach as it was adequate for all the benchmarks we
considered. Within this variant, we examine other design
choices in terms of the following two questions.

Who is responsible for discovering the edge-
disjoint paths? Given that the expected run-time of
the application is significantly longer than the routing
time, disjoint path route discovery can be done in
software at one centralized node (at the compiler or
runtime system). The route discovery can use sophis-
ticated routing algorithms such as those used in VLSI
netlist routing. For example, disjoint path routing on a

mesh network may be viewed as equivalent to global
routing on a rectilinear grid. Each stream corresponds
to a two-terminalnet and the entire set of streams
corresponds to the netlist. Using the above formulation,
powerful techniques likeconcurrent routingmay be
brought to bear on the problem [8], [3]. On the other
hand, such heavy-weight computation may introduce
too much overhead especially if the runtime system
allows actor migration. An alternative would be to use
simpler routing algorithms such as net-by-net routing.

While the above algorithmic options were being
considered at a central node, it is also possible to let
each node attempt to discover edge-disjoint routes in
a distributed fashion. Such a design inherently requires
the net-by-net (stream-by-stream, in our context) routing
approach in which routing of nets occurs independently
without global, algorithmic co-ordination. Further, such
net-by-net routing may be sequential or parallel. One
challenge when implementing net-by-net routing in a
parallel fashion is deadlock- and livelock-avoidance.
If we assume link-by-link reservation for each path
(because each path will consist of multiple links and
because multiple links cannot be reserved atomically),
there can be deadlocks. If we allow pre-emption and/or
release of network links upon deadlock (“rip-and-route”,
in VLSI routing terminology), there may be livelock.
Finally, some layouts may not have any feasible disjoint
path routing at all. Parallel net-by-net routing mecha-
nisms must also have a consensus mechanism where
all nodes agree that there is no feasible disjoint path
routing. Alternately, net-by-net routing may also be
implemented in a sequential manner. Sequential net-by-
net routing (without pre-emption) is deadlock- and live-
lock free since there are no other contenders reserving
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links concurrently. However, routing for one stream may
fail because all necessary links are held by previously
routed streams. In such cases, some mechanism to detect
failure when there are no feasible paths is needed.

In all cases of failure (either because disjoint path
is truly infeasible or because of algorithmic artifacts in
net-by-net routing) we may fall back on the underlying
network’s routing algorithm because it is acceptable to
have degraded performance rather than to not perform
at all.

What are the switching mechanisms for Disjoint
Path Routing? Once such a set of disjoint paths
are discovered, we must deploy appropriate switching
mechanisms to enable packet transmission along those
paths. Possible switching mechanisms include circuit
switching or source-routed packet-based switching. both
of which closely match stream requirements (in-order
delivery along fixed network paths, with bandwidth-
reservation in case of circuit-switching). Further, recent
research has shown that circuit switching can be sup-
ported via minor modifications to the canonical packet-
switched router [10], [9]. Most importantly, because
the modified router allows packet switching and circuit
switching to co-exist, it is an ideal architecture for
multicore on-chip networks, where multiple program-
ming models may be used. Source-routed packet switch-
ing can also be supported with very few incremental
changes to a canonical packet-switched router.

2.3. Tentacle Routing

While the above discussion focused on the broad prin-
ciples of disjoint-path routing and the need to minimize
link-contention, in this section, we describe a concrete
instance of disjoint path routing called tentacle routing.

In Tentacle routing, route discovery is distributed.
Consequently, we use the stream-by-stream routing
rather than a globally co-ordinated concurrent routing
strategy. Further, route discovery is sequential and not
concurrent. Each node attempts to discover routes for
its own outgoing streams in strict sequence by using
a greedy algorithm, with backtracking. Route discover
across nodes is also sequential. The operation of tentacle
routing algorithm is illustrated in Figure 2. Each node
sends out control flits along the minimal paths reserving
links as they progress. If links are available, the entire
stream path is established (e.g., the paths between the
< S1, D1 >, and < S1, D2 > pairs in Figure 2(a)).
However, if an attempt to make forward progress fails
because of unavailable links (i.e., links reserved by other
streams) the control flits backtrack to the previous node
and are rerouted along other links. For example, the

attempt to establish a path fromS2 to D3 initially
reserves the “North” link to nodeS1. But upon dis-
covery that there are no free outgoing links fromS1, it
backtracks to nodeS2 (Figure 2(b)) from where it tries
the “East” port (Figure 2(c)). As routing proceeds, the
non-minimal routes (detours) may also be chosen if the
greedy (minimal) choice is unavailable.

Handling deadlocks, livelocks and routing fail-
ure. Because tentacle routing is sequential and non-
preemptive, it is guaranteed to be deadlock- and
livelock-free. Because of backtracking, tentacle routing
effectively does an exhaustive depth-first search, which
makes it easy to detect failure when tentacle routing
fails. Tentacle routing is a best-effort routing technique
because it does not guarantee that a disjoint-path routing
will be found even if one exists because of our stream-
by-stream routing approach. The failure to discover
feasible routes can occur because tentacle routing incre-
mentally adds paths for communicating pairs. Since the
routes discovered for earlier pairs are not relinquished
until all paths have been established, the probability
of success may depend on the order of consideration.
While such failures are possible, in all our benchmarks,
tentacle routing discovered disjoint paths without fail.
Because of the difficulty of generating meaningful “per-
turbed” layouts (StreamIT compiler’s output layouts are
very consistent, and random layouts are not meaning-
ful), we do not present any empirical sensitivity study of
failures. We leave a theoretical analysis of the possibility
of failures for future work. As mentioned earlier, upon
such failures, it is possible to consider other options
including retrying routing after changing (a) the order of
stream consideration and (b) the layout (i.e., the actor-
to-node assignment). As a final safety net, we may also
declare that no feasible path exists and fall back on the
underlying routing algorithm as stated before. Note, to
prevent deadlocks between the stream paths and regular
packet-switched packets, we assume thatall streams fall
back to the underlying routing algorithm ifany stream
fails to be routed.

We adopt, with two modifications, a hybrid router
architecture proposed recently by Jergeret.al. [10],
[9] that can support both packet-switched traffic and
circuit-switched traffic. The focus of the work by Jerger
et.al.is on optimizing coherence performance via circuit
switching where pairwise coherence communication is
predictable. Our focus is entirely different; we wish to
use the circuit-based switching mechanism to deliver
packets along the disjoint paths that Tentacle routing
discovers. Tentacle routing requires two key changes in
the router behavior described by Jergeret.al. [10], [9].

5



Traffic :

S1 {D1, D2}

Traffic :

S1 {D1, D2}
S2 D3

Traffic :

S1 {D1, D2}
S2 D3

D1 D2

D3

backtracking

S1

D1 D2

S2

D3

S1

D1 D2

S1

S2

A) B) C)

detour

Figure 2. Tentacle Routing: An Example

First, the circuits we setup are “hard” resource reserva-
tions, unlike the “soft” reservations used in their design.
In their design, established circuits may be dissolved
when there are more circuits than the switch can handle.
In the absence of this change, our backtracking-based
route discovery mechanism does not work (because
links are never unavailable). Second, the setup network
must be modified to support Tentacle’s greedy rout-
ing with backtracking. Their design leaves routing un-
changed, and only alters switching. The hardware sup-
port for routing-with-backtracking has been discussed
elsewhere [6] in the context of fault-tolerance. Note,
our novelty claims are limited to tentacle’s disjoint-path
routing mechanism; we do not claim novelty on the
hardware support for circuit-switching/backtracking.

3. Methodology

Streaming Applications and Network Load Gener-
ation. We use the StreamIT compiler[16], [17] and the
set of stream applications distributed by the StreamIT
project (listed in the first column of Table 2). We use the
StreamIT compiler’s built-in functions to create load-
balanced sets of actors that are then laid-out on our
networks (4x4 and 6x6 mesh networks). Because the
built-in layout functionality of the StreamIT compiler in
customized for the RAW machine’s static network, we
introduce a minor modification in the layout computa-
tion to accurately model our network configuration. We
modify the cost function used in simulated annealing
to remove the synchronization cost since our routers
can handle multiple incoming flits without stalling.
To generate the network workload corresponding to

streaming applications, we use a front-end driver that
(a) reads inputs from the input stream queues (waiting
if necessary for inputs to be available), (b) loops for
a duration that’s proportional to the work at the actor,
and (c) emits output data to its output stream queue. We
vary the proportionality constant (computation scaling
factor) to alter the network load. (This corresponds to
varying the computational power of the processor.) We
assume that memory bandwidth is not a bottleneck.
Memory may be accessed in two different ways. First,
there may be memory accesses by the computation in
actors/filters that go off-chip. However, we model all
computation (including memory stalls) as a single delay.
Second, the input stream data and output stream data
will have to go off-chip to be written to memory. We
do not model the bandwidth of such memory accesses
in our simulation since there are known techniques to
offer large memory bandwidths (e.g., stream buffers) for
bulk, contiguous accesses.

Router Configurations. We simulate two system
sizes (4x4 and 6x6) and six sets of router/switching
configurations for each size. The six routing/switching
configurations are as follows: two push-based packet-
switching configurations (one with DOR, and another
with minimal adaptive routing algorithm), two pull-
based packet-switching configurations (one with DOR,
and another with minimal adaptive routing algorithm),
one tentacle routing configuration and finally an “ideal”
configuration. The various network configurations (with
additional network parameters) are listed in Table 1.

Pull-based streaming mimics the network behavior
of streaming using coherent shared memory. In such
systems, the communication of any unit of data has
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to occur via two network packets which carry the
coherence request and the cache-block response, respec-
tively. Note, the above approximation is a conserva-
tive simplification because it ignores other coherence
network traffic such as (a) the invalidates produced
by the producers’ writes and (b) the request-response
packets for a synchronization variable which must be
used for accurate producer/consumer synchronization.
We consider two variants of pull-based configuration;
one with DOR and another with minimal adaptive rout-
ing. Because adaptive routing can result in out-of-order
packet delivery, it introduces the additional burden for
stream re-assembly. However, we conservatively assume
stream re-assembly for free.

Push-based streaming assumes some interconnection
network interface wherein the processor can directly
inject contents into the network’s local queues (e.g.,
stream registers or memory mapped stream queues).
With such interfaces, actors can directly push data into
a stream which is then delivered in the local queue at
the destination node across the network. As with pull-
based streaming, we examine both DOR and minimal
adaptive routing.

For tentacle routing, we assume the router architec-
ture described in the previous section with a push-based
processor/network interface. The choice of circuit-
switching vs. source-routed packet-switching is not ex-
pected to make a big difference in performance since
the bulk of the improvement occurs because of link-
contention elimination. Though Tentacle routing is not
guaranteed to find a disjoint-path network, tentacle
routing discovered disjoint paths in all our benchmarks.
(In general, we may fall back on the underlying packet
routing mechanism if tentacle routing fails.)

Finally, we also assume an “ideal” configuration in
which all actors can communicate with “downstream”
actors with a latency of one cycle. We model the
bandwidth of links and the total incoming/outgoing
bandwidth of each node. The ideal configuration effec-
tively represents a customized network whose topology
matches the stream graph. Special-purpose streaming
network architectures cannot outperform the ideal con-
figuration.

Simulator. We use a modified version of PoPnet[14]
network simulator. PoPnet models a four-stage pipelined
router for packet-switching network. Once the circuits
for disjoint paths are setup, the packets go through only
two stages (switch traversal and link traversal). The
network was simulated for 100,000 cycles which was
seen to be adequate for the network to achieve steady
state. And before collecting data, there is 10,000 cycle

Network Configuration
Topology 2D Mesh

Network Size 4x4, 6x6
Routing Algorithm DOR, Adaptive
Switching Method Packet(Push, Pull), Circuit

VCs/PC 2, 4

Table 1. Network Configurations

Benchmark Link contention
4x4 Network 6x6 Network

Audiobeam High Low
Beamformer High High
Bitonic Sort Low High

Channelvocoder High High
DES Low Low

FilterBank High High
FMradio High High

TDE Low Low
Vocoder Low Low

Table 2. Benchmarks and their classification
according to link contention

warm-up time. The channels are full-duplex bidirec-
tional links.

In terms of buffer resources, circuit-switching net-
work requires a single virtual channel, because circuit-
switching network does not suffer from HOL (Head-
Of-Line) blocking. In contrast, adaptive routing algo-
rithm for packet-switching network requires at least
two virtual channels. Further, to avoid HOL blocking,
we evaluate packet-switching network with four virtual
channels. This effectively means that our comparisons
of tentacle routing with packet-switched routers are
very conservative since the packet switched routers use
twice the buffer resources as tentacle routing’s circuit-
switching network.

4. Results

The four primary conclusions of our results are:

• Five of the nine applications have significant net-
work contention which results in increased oppor-
tunity for tentacle routing. (Details in Section 4.1.)

• Adaptive routing helps to reduce link contention
marginally, but is unable to eliminate it. Further, as
expected, all flavors of push-based communication
are more efficient than pull-based communication
resulting in improved throughput for push-based
configurations. However, push-based communica-
tion alone (without disjoint path routing) suffers
from a 37% throughput degradation compared to
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tentacle routing. (Details in Section 4.2.)
• On a 4x4 (6x6) system, tentacle routing achieves an

average (geometric mean) of 55% (84%) through-
put improvement for applications with high net-
work contention which corresponds to 28% (41%)
throughput improvement overall. On a 4x4 (6x6)
system, tentacle routing achieves within 6% (11%)
of an ideal communication architecture. (Details in
Section 4.3.)

• Tentacle routing has very low overhead, even under
extremely pessimistic assumptions (e.g., 0.015%
overhead assuming reconfiguration on every OS
tick). (Details in Section 4.4.)

The remainder of this section elaborates on these key
results.

4.1. Measuring Opportunity: Link Contention
of Streaming Applications

Recall that if stream paths are disjoint under
dimension-ordered routing, there is no opportunity for
disjoint-path routing to improve streaming performance.
In this section, we classify the benchmarks based on
the link contention assuming dimension-ordered rout-
ing and demonstrate that tentacle routing does achieve
higher performance on applications with high con-
tention.

Given the layout generated by the StreamIT com-
piler, we assume dimension-ordered routing, and use
the number of streams that map to a link as a
metric of contention. Figures 3 (a) thru 3(d) illus-
trate the link contention for four selected applications
out of the nine applications we consider; two high-
contention applications(filterbank andFMradio)
and two low-contention applications (vocoder and
bitonic-sort) on one network configuration (4x4).
In each graph, we plot the links on the X-axis (the
order of appearance of the 48 physical links is not
important) and the number of streams that use that
link on the Y-axis. Among the high-contention ap-
plications (filterbank and FMradio) we observe
several links with contention. For example, link 33 in
Figure 3(a) and links 28 and 33 in Figure 3(b) have
five streams that contribute to link load. In contrast, the
link loads for the low contention applicationsvocoder
and bitonic-sort, never exceed one2, which im-
plies that paths obtained by dimension-ordered routing
are naturally disjoint. Consequently, we cannot expect

2. Because we count fractional link loads when a single stream is
demultiplexed over several links, it is possible for link load to be less
than one.

tentacle routing to improve communication performance
any further.

Due to lack of space, we omit detailed link-load
distribution results for the other five applications. In-
stead, we present summary results in Table 2 with a
broad classification of high-contention applications and
low-contention applications, as measured on 4x4 and
6x6 networks. Note that there are minor differences in
application classification in the two network configu-
rations (4x4 and 6x6) because the stream graph and
its placement are dependent on network size. The next
section examines how the opportunity measured by link
contention translates to improved application throughput
with tentacle routing.

4.2. Performance Analysis of Network Config-
urations

The four graphs in Figure 4 illustrate the performance
of the same set of four applications. Each graph contains
six curves for each of the six routing/switching configu-
rations. The X-axis plots the computation scaling factor
(used to scale the computational workload of actors, as
described in Section 3). For uniformity, we normalize
the computational scaling factor to 1 at the lowest
scaling factor where the application is still computation-
bound. As can be seen in Figure 4, the application
throughput is largely independent of network config-
uration when the computational scaling factor is 1 or
greater. When computation is scaled to smaller numbers,
computation ceases to be a bottleneck and we enter
the communication-bound region of operation where
the network configuration affects overall application
throughput (shown in absolute units on the Y-axis). Note
that lower values on the X-axis correspond to higher
network loads. Further, because the normalization of
the computation scaling factor is application dependent,
the computational scaling factor cannot be compared
across applications; it is meaningful only within a single
application. Similarly, the absolute values of throughput
(on the Y-axis) are not comparable across applications.

In the communication-bound region of operation,
as load increases, the throughput increases though it
eventually saturates at different levels for different
routing/switching configurations. One may observe a
clear difference between the pull-based networks and
push-based networks (with push-based networks being
better). This is not surprising since pull-based networks
effectively impose a bandwidth penalty on streaming
communication.

For the low-contention workloads (Figure 4(c) and
Figure 4(d)), there is no difference in throughput among
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Figure 3. Link Load Distribution

tentacle routing, the two other push-based mechanisms,
and the ideal configuration, even in the communication-
bound region. This is as expected because of lack of
opportunity.

In contrast, the channel load offilterbank and
FMradio show significant link contention(Figure 4(a)
and Figure 4(b)). Not surprisingly, the throughput im-
provement for these benchmarks is also significant.
Further, we observe that adaptive routing results in
a small throughput improvement forfilterbank.
However, the improvement is significantly less than
the improvement achieved by tentacle routing. Finally,
tentacle routing achieves near-ideal performance in both
high-contention applications.

4.3. Performance Improvement

Figure 5(a) and Figure 5(b) plot the throughput
improvements for all nine streaming applications on the
4x4 and 6x6 system, respectively. Each figure includes
six bars for each streaming application (shown on the
X-axis). Each bar corresponds to one of the rout-
ing/switching mechanisms. The height of the bars (Y-
axis) shows the maximum throughput achieved by that
particular configuration (i.e., the saturation throughput
in the communication-bound region) normalized to that
of the configuration with push-based packet-switching
and adaptive routing (the best prior scheme). In addition,
we include two additional sets of bars; one shows
the geometric mean of normalized throughput across
all high-contention applications and another shows the
geometric mean across all applications. The benchmarks
are listed in the order of increasing link-contention.
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Figure 4. Peak Throughput for routing/switching configurations

Not surprisingly, we observe that the best improvements
are for the applications with the most link contention.
When considering only high-contention applications,
tentacle routing results in 55% throughput improvement
for the 4x4 system and 84% for the 6x6 system. When
averaged over all applications, the mean throughput
improvement is 28% and 41% for the 4x4 and 6x6
systems respectively. Also, tentacle routing achieves
near-ideal throughput (within 6% and 11%) in the two
network sizes. The gap between tentacle routing and
ideal is because of the single-hop latency that the ideal
configuration enjoys.

4.4. Tentacle Routing Setup Overhead

Typically, the streaming routes are set up once at
the beginning of application, following which the same
stream computation is applied continuously for huge

amounts of data. For example, the FMradio application
may typically run for several minutes/hours. As such,
tentacle routing overheads may be amortized over the
entire run of the application. Table 3 quantifies the
overhead (in cycles) of setting up the various disjoint-
path routes for 4x4 and 6x6 networks. For each bench-
mark, the minimum (second column), maximum (third
column) and average (fourth column) single path setup
times are shown. The total overhead shown in fifth
column includes the overhead of setting up all paths, one
after the other. The absolute overhead varies between
605 (741) cycles and 2009 (3109) cycles on a 4x4 (6x6)
network which is neglible as a fraction of execution time
because streaming applications run on large streams of
data for minutes/hours whereas the setup overhead for
tentacle routing is no greater than 1.5 microseconds
assuming a 2GHz clock.
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Figure 5. Throughput Improvement

In rare situations, when the run-time forces actor
migration or when application changes to add new filters
(e.g., addition o noise-removal filters in DSP algorithms
when channel noise increases), paths may have to be re-
formed. Though our experiments did not re-configure
routes at run-time, we observe that the low overheads
of path setup can easily accommodate reconfiguration
on every OS tick (say 10ms) since the overhead is
about 1.5 microsecs (i.e., 0.015% overhead). Thus, we
conclude that the circuit establishment overhead of
tentacle routing is negligible.

5. Conclusions

Streaming is emerging as an important programming
model for multicores. Streaming provides an elegant
way to express task decomposition and inter-task com-
munication, while hiding laborious orchestration de-
tails such as load balancing, assignment (of stream
computation to nodes) and computation/communication
scheduling from the programmer. Previous work on
orchestrating streaming programs treated a given routing
algorithm as an immutable constraint and attempted to
maximize application throughput within that constraint.
This paper enables novel optimizations based on the
observation that routing need not be viewed as an
unchangeable constraint; instead flexible routing can be
viewed as a new degree of freedom in orchestrating
streaming applications.

Our design is driven by two observations. First,
streaming application performance is bandwidth-
sensitive. From this observation, we conclude that as-
signing stream communication to disjoint network paths
minimizes network link-contention, and thus maximizes

Benchmark One Path Total
Establishment Time Overhead

min max average
4x4 network

Audiobeam 5 13 7.29 605
Beamformer 5 21 7.97 1613
Bitonic Sort 5 5 5 1505

Channelvocoder 5 31 10.29 1125
DES 5 17 6.41 1709

FilterBank 5 59 11.61 826
FMradio 5 33 12.2 2009

TDE 5 9 6.07 1509
Vocoder 5 9 5.33 1205
Average 1345

6x6 network
Audiobeam 5 41 13.46 741
Beamformer 5 29 9.25 2729
Bitonic Sort 5 21 6.52 2917

Channelvocoder 5 65 11.17 1625
DES 5 17 6.41 1709

FilterBank 5 41 14.18 2241
FMradio 5 33 12.2 2009

TDE 5 9 5.26 3109
Vocoder 5 18 6.88 3105
Average 2242

Table 3. Disjoint Path Routing/Establishment
Overhead (cycles)

both the bandwidth available for streaming communi-
cation and application throughput. Second, streaming
communication involves large, systematic data transfers
between known communicating pairs of nodes over
extended periods of time. From this observation, we
conclude that incurring some overhead to compute and
setup the disjoint network paths is justified since (a)
the costs are amortized over large periods of time and
(b) the benefits of disjoint path routing are signifi-
cant. Based on the above two design decisions, we
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develop one instance of disjoint-path routing called
tentacle routing – a backtracking, best-effort, circuit-
routing technique. On a 4x4 (6x6) system, tentacle
routing results in 55% (84%) and 28% (41%) mean
throughput improvement for high-network-contention
streaming applications, and for all streaming applica-
tions, respectively.
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