
LiteTM: Reducing Transactional State Overhead

Syed Ali Raza Jafri, Mithuna Thottethodi, and T. N. Vijaykumar
School of Electrical and Computer Engineering

Purdue University
{sjafri, mithuna, vijay}@ecn.purdue.edu

Abstract- Transactional memory (TM) has been proposed to address
some of the programmability issues of chip multiprocessors.
Hardware implementations of transactional memory (HTMs) have
made significant progress in providing support for features such as
long transactions that spill out of the cache, and context switches, page
and thread migration in the middle of transactions. While essential for
the adoption of HTMs in real products, supporting these features has
resulted in significant state overhead. For instance, TokenTM adds at
least 16 bits per block in the caches which is significant in absolute
terms, and steals 16 of 64 (25%) memory ECC bits per block,
weakening error protection. Also, the state bits nearly double the tag
array size. These significant and practical concerns may impede the
adoption of HTMs, squandering the progress achieved by HTMs. The
overhead comes from tracking the thread identifier and the
transactional read-sharer count at the L1-block granularity. The
thread identifier is used to identify the transaction, if only one, to
which an L1-evicted block belongs. The read-sharer count is used to
identify conflicts involving multiple readers (i.e., write to a block with
non-zero count). To reduce this overhead, we observe that the thread
identifiers and read-sharer counts are not needed in a majority of
cases. (1) Repeated misses to the same blocks are rare within a
transaction (i.e., locality holds). (2) Transactional read-shared blocks
that both are evicted from multiple sharers’ L1s and are involved in
conflicts are rare. Exploiting these observations, we propose a novel
HTM, called LiteTM, which completely eliminates the count and
identifier and uses software to infer the lost information. Using
simulations of the STAMP benchmarks running on 8 cores, we show
that LiteTM reduces TokenTM’s state overhead by about 87% while
performing within 4%, on average, and 10%, in the worst case, of
TokenTM.

1 Introduction
Chip multiprocessors (CMPs) are emerging as a better alterna-

tive to uniprocessors in terms of power dissipation and perfor-
mance. However, CMPs require parallel programming which is
significantly harder than sequential programming. A key program-
mability issue is that locks can result in undesirable behavior (e.g.,
deadlocks, livelocks, and data races). To address this issue,
researchers are currently exploring transactional memory program-
ming models (TM), based on databases’ transactional processing
[15]. Transactions achieve atomic behavior without specifying
explicit locks by ensuring that the read and write accesses of one
transaction do not conflict with another transaction (i.e., a read
from or write to a memory location should not witness a write to
the same location from another concurrent transaction). As such,
transactions can better avoid the above undesirable behavior than
locks. Building on the idea of providing hardware support for TM
pioneered in [17], several hardware and software (HTM and STM)
and hybrid implementations (e.g., [3,12,14,16,24,26,27,28]) have
emerged.

While STMs are slow due to their overhead of software conflict
detection for every transactional access (true also for software
transactions in HTM-STM hybrids), HTMs use hardware to

achieve fast conflict detection. Specifically, by exploiting the fact
that both TM and coherence enforce the multiple-reader-single-
writer invariant at the block granularity, HTMs optimize perfor-
mance by piggybacking conflict detection on coherence. That is,
HTMs elide conflict detection on cache hits and bundle conflict
detection on misses as part of miss processing with little increase
in latency. Therefore, we focus on HTMs which now provide sup-
port for features such as (1) long transactions that exceed the cache
capacity [3,6,7,12,13,24], (2) context switches and page and thread
migrations in the middle of a transaction [7,28]; and most recently,
(3) avoiding coherence protocol changes, which invariably lead to
subtle correctness issues and hinder wide-spread adoption [7].
These features are essential for HTMs to be adopted in real prod-
ucts.

TokenTM [7], a comprehensive and elegant proposal, supports
all the above features, but incurs high state overhead. While some
HTMs do not incur such overhead (e.g., signature-based HTMs
[10,11,27,28]), they do not provide all the above features (as dis-
cussed in Section 2). Other HTMs which support some of the fea-
tures using per-block state (e.g., VTM [24], OneTM-concurrent
[6]) also incur such overhead. Though we focus on TokenTM, we
discuss later that our techniques are applicable to these other
HTMs. TokenTM’s overhead comes from two sources. First, to
allow conflict detection in the presence of L1 cache evictions of
transactional blocks, TokenTM maintains a count in the shared L2
of L1-evicted, transactional read sharers. The count can quickly
detect conflicts (i.e., if writes encounter a non-zero count). Further,
when a block has only one transactional sharer then the storage
space for the count can be used to hold the sharer’s thread identi-
fier. This identifier serves two purposes (1) to identify the conflict-
ing threads in the case of a conflict, and (2) to allow a transaction
access to its own transactional blocks that have either been evicted
to lower levels or been moved to other caches by coherence (i.e., to
avoid self-conflict which would lead to a livelock). To allow evic-
tions from the L2, the count or the identifier need to be spilled to
all the levels of the memory hierarchy, including main memory and
even the disk. In addition to the count and identifier, TokenTM
employs two state bits per block to distinguish among single
reader, single writer and multiple readers. Second, to avoid
changes to coherence, TokenTM uses additional bits, the count and
identifier in L1, in addition to the traditional R and W bits. Thus,
TokenTM incurs significant state overhead (e.g., at least 16 bits per
64-byte block in all levels of the memory hierarchy). In addition,
TokenTM requires additional flash-copy support in the L1 for con-
text switches, increasing L1 area and latency.

One may think that the state overhead is a mere 3.3% (16 state
bits for 64 data bytes). However, relative overhead does not capture

the following two concerns. First, to retrieve the transactional state
with the data in memory in one access, TokenTM and other HTMs
advocate stealing some of the memory ECC bits to hold the state.
(Storing transactional state in regular memory would preserve
ECC but require two accesses which would increase bandwidth
pressure.) However, stealing as many as 16 bits weakens error pro-
tection (e.g., 16 bits correspond to 25% of the 64 SECDED bits per
64-byte blocks), a concern in soft- and hard-error-prone scaled
technologies. Second, an overhead of 16 bits per block in L1 and
L2 is significant in absolute terms. For instance, such overhead is
equivalent to nearly doubling the tag array in a system with 40-bit
physical addresses and 32-KB L1 and 8-MB L2. Because HTMs
target commodity multicores where cost is a first-order constraint
(as opposed to niche products where high-cost mechanisms may be
acceptable), this overhead is a concern. Moreover, as cache and
memory size scale in future generations, L1 block sizes are likely
to remain around 64 bytes, causing the absolute overhead to grow
considerably. These significant and practical concerns may impede
the adoption of HTMs in real products, squandering the progress
achieved by HTMs.

We propose a novel HTM, called LiteTM, to reduce the state
overhead of the read-sharer count and thread identifier while sup-
porting all the above features and maintaining high performance.
Because the state bits are fundamental to guaranteeing transac-
tional semantics, naively shrinking the state to fewer bits would
violate correctness. Any such state reduction needs careful tech-
niques to infer the lost information. LiteTM is based on the key
observation that the counts and identifiers are needed neither for
conflict detection in all cases nor for identifying conflicting trans-
actions in a majority of cases. Consequently, we completely elimi-
nate the counts and identifiers from the entire memory hierarchy
and use software to handle the rest of the cases. LiteTM employs
only two state bits per block in L1, L2, and main memory, which
are adequate for hardware conflict detection. This overhead corre-
sponds to only 3.3% of the 64 SECDED bits per 64-byte block
compared to TokenTM’s 25%. Additionally, there is no flash-copy-
ing in L1. LiteTM is a new design point in the spectrum of HTMs’
hardware-software functionality split. TokenTM uses software to
rollback program state upon aborts and to clear transactional state
of L1-evicted blocks upon both commits and aborts, while detect-
ing conflicts and identifying conflicting transactions in hardware.
In contrast, LiteTM pushes the hardware-software split more
towards software and decouples key parts of conflict handling for
L1-evicted blocks; conflict detection is still in hardware but the
conflicting transactions are identified in software using transac-
tional logs. This decoupling is fundamental and can be applied to
reduce the state overhead of other unbounded HTMs with per-
block state (e.g., VTM, OneTM-concurrent). Because conflict
detection is in hardware for all accesses, LiteTM provides strong
atomicity. While LiteTM may seem like another HTM-STM
hybrid, there is a key difference: conventional hybrids switch an
entire transaction from HTM to STM when even a single transac-
tional block is evicted from the L1, whereas LiteTM uses software
only for the L1-evicted blocks while continuing to use hardware for
L1-resident blocks. Because STMs detect conflicts in software
incurring significant overhead for every access, conventional
hybrids incur significant overhead as they switch to STM on rou-
tine hardware events like evictions. In contrast, LiteTM uses soft-

ware only for evicted blocks, performing close to HTMs.
Targeting the read-sharer count, we observe that transactional

read-shared blocks that both are evicted from multiple sharers’ L1s
and are involved in conflicts are rare. As mentioned above, the
read-sharer count enables fast detection of such conflicts. How-
ever, eliminating the count poses a hurdle for clearing L2’s and
memory’s transactional state in the uncommon case of read-shared
L1-evicted blocks; without the count, we do not know when the
last of the sharers commits or is aborted. To address this issue, we
employ a novel lazy clearing in software by walking the logs of all
the current transactions upon a conflict on an L1-evicted block.
Because such all log-walks are expensive, we ensure that this case
remains uncommon. LiteTM’s two state bits in L2 and memory
encode states that isolate the more common cases of single reader
or writer for a block, where the state is cleared when the single
reader or writer commits or aborts. The lazy clearing in OneTM-
concurrent [6] refers to the lazy update of the thread identifier
without any log-walks and works only in the restricted case where
at most one transaction may spill out of L1. In contrast, LiteTM’s
lazy clearing of transactional state handles the general case of
multiple, spilled transactions, requiring all log-walks. Further-
more, OneTM’s requirement of an identifier per block is not
removed by the lazy update.

Targeting the thread identifier, which exists only in single-
sharer cases (multi-sharer cases have the count), we observe that
both uses of the identifier — to identify conflicting transactions
and to allow a transaction to access its own blocks — are uncom-
mon. For the first use, most conflicts occur for in-L1-cache blocks
where the conflicting transactions are trivially identified by the
caches involved in the conflict. For the less-common conflicts on
evicted blocks, we identify the conflicting transactions in software
by walking all the transactions’ logs (as also done in TokenTM in
extremely rare cases). For the second use, we observe that repeated
misses to the same blocks are rare within a transaction (i.e., local-
ity holds). For the infrequent case of a transaction accessing its
own evicted block, we employ a novel self log-walk to check the
transaction’s own read and write sets.

Finally, targeting TokenTM’s R, W, and additional bits in L1,
we observe that we can leverage coherence for implicitly differen-
tiating between reads and writes in the common case, without
explicitly using R and W (not differentiating would lead to many
false conflicts, as seen in some STAMP benchmarks). Accordingly,
LiteTM uses a single T bit and employs the novel idea that conser-
vatively but closely approximates W by combining L1 ‘Modified’
coherence state and the T bit. That is, a modified block with the T
bit set is considered as transactionally written. Because Modified
and T combination is a superset of W, this W-approximation does
not miss any real conflicts. However, false conflicts are possible
but only in uncommon cases which we explain later.

The key contributions of this paper are:
• LiteTM compensates for the loss of information in terms of

separate R and W bits, the read-sharer count, and the thread
identifier, respectively, via the following novel ideas: (1) W-
approximation for L1-resident blocks, (2) lazy clearing of
transactional state in L2 and memory, (3) self log-walk to iden-
tify a transaction’s own blocks;

• Using simulations of the STAMP benchmarks running on 8
cores, we show that LiteTM reduces TokenTM’s state overhead

by about 87% while performing within 4%, on average, and
10%, in the worst case, of TokenTM. LiteTM uses two bits per
block in L1, L2, and main memory, whereas TokenTM uses 19
bits in L1, and 16 bits in L2 and memory. In contrast, STMs
and HTM-STM hybrids need at least one bit per block in L1,
L2, and memory for strong atomicity and an upper bound on
hybrids’ performance shows at least 44% average performance
degradation over TokenTM.

The rest of the paper is organized as follows. In Section 2, we
contrast LiteTM to previous proposals. We describe TokenTM in
Section 3 and LiteTM in Section 4. We describe our experimental
methodology in Section 5. We discuss our experimental results in
Section 6 and conclude in Section 7.

2 Related Work
Conceptually, TMs maintain metastate in a matrix of memory

blocks (rows) and threads (columns) where each entry records read
and write accesses for a block-thread pair. The key challenge in
making TM support fast is that each access (transactional and non-
transactional) requires a lookup of the entire row for the memory
block to check for conflict across threads followed by an update of
the row with the access, whereas a transaction commit or abort
requires clearing of the entire column holding the thread’s transac-
tional state. However, quick access to the entire matrix indexed by
both rows and columns is hard to implement. To address this issue,
HTMs exploit the fact that both TM and coherence enforce the
multiple-reader-single-writer invariant at the block granularity to
employ the crucial performance optimization of piggybacking con-
flict detection on coherence (i.e., the functional equivalent of row-
lookup in our matrix analogy). In addition to optimizing conflict
detection, HTMs optimize clearing of transactional state on com-
mits and aborts by flash-clearing the state in the cache whenever all
the transactional data fits in the cache (i.e., the column-clear in our
matrix analogy). While “coherence+flash-clear” offers a natural
way to implement the TM matrix for the case when all transac-
tional state is within the caches, the conceptual 2-D matrix model
is impractical when we consider virtualizing TM implementations
to accommodate blocks that are evicted and threads that are con-
text switched in/out.

Early solutions maintain spilled transactional metastate in cus-
tom hardware or software structures which caused significant hard-
ware complexity [3] or software overhead [12,24]. More recent
TM implementations commonly rely on one of two common sim-
plifications. The first approach uses signature-based TM imple-
mentations effectively maintain the entire column (per-thread read/
write sets) in hash-based Bloom-filter signatures [10,11,27,28].
They do not maintain any per-block information. Such implemen-
tations that omit per-block transactional state are not scalable in (a)
system size, since conflict detection requires comparison with sig-
natures of all other threads, which inherently requires broadcast
across all hardware thread contexts to effectively lookup the per-
address state across all threads, and (b) read/write set sizes, since
large transactions cause signature saturation which results in a
sharp performance loss when transactions are large [7]. One may
think that signature saturation may be eliminated by increasing the
size of the signature. However, hardware limitations prevent hash
signatures that are large enough to avoid saturation because large

signatures slow down all accesses [25].
An alternative approach to avoid the signature saturation prob-

lem is to associate some state with each memory/cache block (e.g.,
VTM [24], OneTM-concurrent [6], and TokenTM [7]). As a natu-
ral consequence of maintaining per-block state, commits may
become slower since the transactional state associated with that
transaction (the column in the matrix) that has spilled to memory
must be cleared one-at-a-time (unlike cache-bits which may be
flash cleared). Although VTM stores per-block metadata, the meta-
data is not co-located with the corresponding memory block.
Instead the metadata is spilled to separate global table (called
XADT) that must be searched for conflict detection. In addition to
the slow-commit problem, XADT searches slow down conflict
detection for all accesses in the presence of any spilled metadata
(although some searches may be avoided by using a Bloom filter).
OneTM-concurrent overcomes the slow-commit problem by limit-
ing concurrency to at most one overflowed transaction which
enables logical clearing of metastate by keeping track of the cur-
rent overflowed transaction. Metastate of older transactions is
implicitly invalid and may be cleared lazily. TokenTM may be
viewed as a generalization of OneTM-concurrent that allows mul-
tiple “spilled” transactions simultaneously. Unfortunately, both
TokenTM and OneTM-concurrent require large amounts of trans-
actional state (16 bits per L1 block). LiteTM’s state reduction tech-
niques are applicable to unbounded HTMs with per-block state
(e.g, TokenTM, VTM, OneTM-concurrent).

Finally, hybrid TMs use HTM-based execution as a preferred
fast-path and fall-back on a slower STM upon virtualization events
(e.g., replacements and context-switch) [14,19]. The limited HTMs
in hybrids, though simpler because the HTMs do not need to sup-
port virtualization, may add significant hardware complexity (e.g.,
MetaTM [18] requires coherence changes). Further, hybrid TMs
may not achieve strong atomicity (e.g., provide only single global
lock isolation [14,18,19]) without additional per-block state (e.g.,
using UFO [5]). In contrast, LiteTM offers strong atomicity and
outperforms hybrids by a significant margin while requiring mod-
est additional state overhead.

3 TokenTM: Background
While our techniques are generic and applicable to other HTMs

that use per-block state (e.g., VTM [24], OneTM-concurrent [6]),
we choose TokenTM as the base scheme to describe the details of
LiteTM because TokenTM comprehensively supports all the fea-
tures described in Section 1. This choice allows to demonstrate
that LiteTM can also support all the features while incurring less
state overhead and maintaining high performance.

TokenTM maintains the invariant of multiple readers and single
writer for transactional blocks. TokenTM implements the invariant
by using an abstraction based on tokens, where (1) a transactional
read to a block must acquire a token for the block; (2) a transac-
tional write to a block must acquire all the tokens for the block; (3)
a transaction commit or abort releases all the tokens acquired dur-
ing the transaction. Read-write conflicts are detected when a read
or a write cannot acquire its requisite number of tokens because a
conflicting access already holds some or all of the tokens.
TokenTM employs LogTM’s transaction log [22] to maintain a
transaction’s read and write sets, and the previous version of the
memory state to rollback memory state upon transaction aborts.

TokenTM addresses two key issues. First, TokenTM allows
long transactions, that may evict transactional blocks from the
cache, by pushing transactional state all the way to memory, as
shown in Figure 1. While this idea was previously proposed in
OneTM which allows only one transaction to spill out of cache,
TokenTM generalizes OneTM to allow more than one transaction
to spill. Second. TokenTM provides TM support without changing
the coherence protocol by using two techniques called token fusion
and fission.

Despite the name, TokenTM does not require token coherence.
The implementation for TokenTM in [7] assumes a conventional
directory-based coherence protocol for private L1s with a shared
L2. While every transactional access needs to acquire the appropri-
ate number of tokens, piggybacking on coherence allows cache
hits “to generate” token(s) locally. Such generation does not lead to
undetected conflicts because both coherence and TokenTM enforce
multiple-readers-single-writer invariant so that any conflicting
access must trigger a global coherence event. TokenTM piggy-
backs on this event to detect the tokens held by other transactions
and thus the conflict. Any non-conflicting transactional cache miss
simply receives the data (via coherence) and the appropriate
tokens. All acquires of tokens (reads or writes) are logged.
TokenTM maintains a read bit (R) and a write bit (W) per L1 block
to signify the holding of one token for a read and all the tokens for
a write (first row under TokenTM column in Table 1). Transaction
commit or abort releases the tokens by clearing the R and W bits
using hardware in some cases and software handlers in the rest. All
TM-related software functionality is implemented via escape
actions [23].

We provide a high-level summary of TokenTM’s state in
Table 1. However, because TokenTM’s state ensures transactional
semantics in TokenTM and because our purpose is to reduce the
state, a high-level description alone would not suffice. Any
detailed description would inevitably involve some subtle correct-
ness issues. The rest of the section gives some of these details.

3.1 Fusion and Fission
It is relatively easy to see that the acquire and release of tokens

in non-conflicting cases can be done without changing the coher-
ence protocol. While some previous HTMs, such as LogTM [22],
handle conflicts via nacks which require protocol changes and roll-
backs to break deadlocks of mutually-nacking transactions,
TokenTM employs fusion of tokens to ensure that the coherence
protocol remains unchanged even on conflicting accesses. The no-
change stipulation requires that coherence actions should complete
as usual even on conflicts (nacks disallow coherence completion

creating potential for deadlocks). A key point here is that though
coherence actions complete, the conflicting access does not com-
plete and instead raises an access-fault exception which performs
conflict resolution (i.e., rollback of a conflicting transaction).
Coherence completion requires that the previously-acquired tokens
of the conflicting block must be kept intact through the conflict so
that the tokens are released properly either by a commit or abort.
We explain how fusion achieves this goal by considering the three
cases of conflicts: reads-followed-by-write, write-followed-by-
read, and write-followed-by-write.

In a reads-followed-by-write conflict (writer and readers in dif-
ferent cores), the writer invalidates the readers as usual. However,
the readers’ tokens should not be lost in the invalidated blocks (so
the tokens can be released properly in either case of the readers
committing or aborting) and the conflict should be detected. To
these ends, the readers’ tokens are sent to the writer in the invalida-
tion-acknowledgement payloads. Note that adding bits to payloads
does not constitute a protocol change as long as there are no
changes to states or transitions which are what raise correctness
issues. The writer fuses the readers’ tokens into its modified block
and flags a conflict. Though the readers’ tokens are physically
present in the writer’s block, the tokens belong to the readers and
cause the write to fault. The writer proceeds only after the conflict
is resolved assuming the writer is not aborted in the resolution. To
record the readers’ tokens in the writer’s block, TokenTM uses the
R’ bit (for single reader), the R+ bit (for multiple readers), and
holds the thread identifier for single sharer or the read-sharer count
for multiple readers (Figure 1 and second and third rows in
Table 1) As part of the conflict handling, if the readers are aborted
then their tokens are released (i.e., the R’ in the writer’s block is
cleared or the read-sharer count is decremented) allowing the
writer to acquire all the tokens and proceed. Or if the writer is
aborted then there are no tokens to be released because none were
acquired (the write did not complete).

In a write-followed-by-read conflict (writer and readers in dif-
ferent cores), the writer’s token goes to the reader and sets the W’
bit and the thread identifier to indicate a conflict, analogous to the
R’ bit (second row in Table 1). In addition, as part of the modified-
block writeback, the state bits and thread identifier in the L2 are
updated to prevent new reads before the writer commits or aborts.
We explain the state bits in the L2 later in Section 3.3. A write-fol-
lowed-by-write conflict is handled similarly.

While fusion involves many cases as described above, fission is
for the relatively-easy case of readers joining non-conflicting shar-
ing where new tokens are “generated” on the fly.

3.2 Commits and Aborts
Because fusion occurs only on conflicts without which a trans-

action’s blocks remain in the cache (assuming no evictions which
we handle a little later), commit of a transaction that does not
encounter any conflicts in its lifetime, is fast. In fast commit, all the
acquired tokens are released by a flash-clear of the R and W bits in
the cache. However, the tokens of the transactions, that survive
conflicts and reach commit, are fused in other caches. Therefore,
such transactions undergo slow commit in which a software com-
mit handler performs a log-walk of the read and write sets to
release the tokens one at a time. Each token release for a read
clears exactly one of an R or R’ bit with matching thread identifier,

FIGURE 1: TokenTM Transactional State

P1
S

ha
re

d
L2

M
ai

n
M

em
or

y
P

riv
at

e
L1

P2

R R’W W’ R+
S

TA
TE

AT
TR

 <
2>

<1
4>

<1
4>

AT
TR TAGS, COHERENCE STATE, DATA (T,CS,D)

S
TA

TE
<2

>

<1
4>

AT
TR ECC, DATA

T,
C

S,
D

R R’W W’ R+

AT
TR

<1
4>

T,
C

S,
D

in the absence of which decrements the read-sharer count associ-
ated with an R+ bit (token release uses coherence to contact all the
sharers with R’ and R+). Each token release for a write clears the
W, W’ and L2/directory state bits.

Though the blocks have moved from a transaction’s cache,
future conflicts on the blocks can be traced back to the transaction
through the thread identifiers accompanying R’ and W’, as long as
there is only one reader. We call this case as a fast abort. If multi-
ple readers have fused then only the read-sharer count is available
and the identity of the readers is lost, requiring future conflicts to
walk the logs of all the current transactions to identify the readers.
We call this case as a slow abort. Because either cases of abort
occur due to conflicts which cause tokens to be fused into non-
local caches, flash-clear of the R and W bits is not possible. Conse-
quently, a software abort handler releases the aborted transac-
tions’s tokens, similar to the commit handler.

3.3 Handling evictions
One of TokenTM’s key features is support for long transactions

that spill out of the cache. As L1 blocks get evicted, any tokens
they carry are held in the L1 directory (at L2) and in memory when
evicted from L2. Each L2 and memory entry maintains two state
bits providing four states — single-reader, either idle (no sharers)
or multiple-reader (more than one reader), writer, and overflow of
read-sharer count — along with the thread identifier/read-sharer
count (Figure 1 and “Shared L2” rows in Table 1). It is easy to see
that R, W, R’, W’, and R+ can be mapped to these states. The
block’s thread identifier or read-sharer count is held as is. As more
R, R’, or R+ evictions occur (evictions are non-silent), the read-
sharer count goes up. Accesses from a transaction to its own previ-
ously-evicted blocks can be recognized using the identifier on the
blocks and proceed without any questions of conflict. Because
complete token information is available, conflicts on evicted
blocks can be flagged. As in the case of in-cache conflicts, the
thread identifier allows a fast abort in the single-reader case,
whereas the multiple-reader case requires a slow abort (i.e., all
log-walk to identify the conflicting transactions).

If a transaction evicts a transactional block then the transaction
cannot perform a fast commit, so that a slow commit or an abort
ensures that the state in the L2 and/or memory is cleared properly.

When the same transactionally-read block (i.e., R, R’, and R+) is
evicted and accessed again multiple times, a new token is acquired
and the block’s read-sharer count increases. Each such new token
is logged so it can be released at an abort or commit.

3.4 Handling OS interactions
The remaining issues are OS interactions such as page migra-

tion, context switch, and thread migration in the middle of a trans-
action. Because the transactional state can be flushed all the way to
memory and even to disk, page migration simply moves the page
along with the transactional state. The key issue with context
switch is that conflicts between the switched-in and switched-out
threads should not go undetected. While evicted tokens or fused
tokens (R’, W’, R+) are accompanied by the identifier or count
which detect conflicts, in-cache tokens (R and W) are not. There-
fore, the R and W bits of the switched-in and switched-out threads
cannot be distinguished. To address this issue, upon a context
switch, TokenTM flash-ORs the R and W bits to the R’ and W’ bits,
and sets the thread identifier. While W and W’ cannot co-exist due
to the implied conflict, TokenTM exploits R+ to ensure that R and
R’ are not both set. Thus, there is no flushing of the switched-out
transaction’s blocks (i.e., constant-time context switch). Finally,
thread migration (preceded by a context switch) can occur without
any problems. The blocks that are already accessed by the
migrated thread are identified by the thread identifier which is pre-
served through the context switch, and access to other blocks
require new tokens as usual.

3.5 State overhead
While comprehensive in supporting all the desired features,

TokenTM incurs state overhead at all the levels of the memory
hierarchy (19 bits per block in L1, and 16 bits in L2 and memory).
As mentioned in Section 1, TokenTM and other TMs [5] advocate
stealing some of the ECC bits in memory to hold the transactional
state which can then be retrieved in one access with the data. The
idea is that while SECDED for 64 bits requires 8 bits, SECDED
for 256 bits requires only 10 bits, thus sparing 22 bits for
SECDED-protected transactional state. However, stealing as many
as 16 bits weakens error protection (e.g., 16 bits are 25% of the 64

Table 1: TokenTM vs. LiteTM : Transactional state for Conflict Detection
TokenTM LiteTM

State Interpretation State Interpretation

Private L1 R/W Local thread has transactionally read/
written to block

T+Clean/
T+Modified

Local thread has transactionally read/
written to block.

R’/W’ with ID Remote transaction ID has read/write
to block.

T’ At least one unknown remote transac-
tion has accessed block

R+, count (=N) At least N remote transactional readers
exist

— No explicit tracking of multiple
remote transactional accesses.

Shared L2,
memory
(L1-evicted
transac-
tional state.
Four states
in L2)

Single reader (ID) Transaction (ID) has read block Single-reader Some transaction has read block

Multiple reader with
count N

A total of N transactions (identities
unknown) have read block

Multiple-
reader

Multiple readers (number and identi-
ties unknown) have read block

Single Writer (ID) Transaction (ID) has written to block Single-Writer Some transaction has written to block

Idle (encoded as multi-
ple reader with N = 0)

No transactional state for block has
overflowed from upper caches.

Idle Same as TokenTM’s state

SECDED bits per 64-byte blocks). Also, 16 bits per block is a sig-
nificant overhead in absolute terms, equivalent to nearly doubling
the tag array in a system with 40-bit physical addresses and 32-KB
L1 and 8-MB L2.

4 LiteTM
Recall from Section 1 that we propose LiteTM to reduce

TokenTM’s state overhead based on the key observation that read-
sharer counts and thread identifiers are not needed for conflict
detection. Even to identify conflicting transactions, the state is not
needed in a majority of cases (i.e., when the transactional state has
not been evicted from L1). As such, we completely eliminate the
counts and identifiers from the entire memory hierarchy. LiteTM
decouples key parts of conflict handling for L1-evicted blocks;
conflict detection is still in hardware but the conflicting transac-
tions are identified in software using transactional logs. LiteTM
employs only two state bits per block in L1, L2, and main memory,
which are adequate for conflict detection in hardware. Because
conflict detection is in hardware for all accesses, LiteTM provides
strong atomicity.

To eliminate the read-sharer count, we observe that transac-
tional read-shared blocks that both are evicted from multiple shar-
ers’ L1s and are involved in conflicts, which are detected by the
count, are rare. To eliminate the thread identifier, which exists only
in single-sharer cases (multi-sharer cases, instead, use the count),
we observe that both uses of the identifier — to identify conflicting
transactions involved in a conflict on an L1-evicted block and to
allow a transaction to access its own blocks — are uncommon. The
first use is uncommon because most conflicts occur for in-L1-
cache blocks where the conflicting transactions are trivially identi-
fied (by the caches involved in the conflict). The second use is
uncommon because repeated misses to the same block are rare
within a transaction (i.e., locality holds). Finally, we replace
TokenTM’s R, W, R’, W’, and R+ bits in the L1 with only T and T’
bits by observing that we can leverage coherence for implicitly dif-
ferentiating between reads and writes in the common case, without
explicitly using R and W. We employ the novel idea that conserva-
tively but closely approximates the W bit by combining L1 ‘Modi-
fied’ state and the T bit.

In the rest of this section, we explain how LiteTM uses software

to handle the uncommon cases, for which TokenTM uses separate
read and write bits, the count, and the identifier. Table 2 shows a
high-level summary of these differences. As mentioned in
Section 1, because TokenTM’s state bits are fundamental to guar-
anteeing transactional semantics, naively shrinking TokenTM’s
state to fewer bits would violate correctness. LiteTM carefully
compensates for the lost information.

4.1 Modifications to transactional state bits: T
(transactional) bit in L1 and two bits in L2, memory

While TokenTM uses R and W bits in L1, LiteTM merges read
and write into a single T bit (transactional bit) (first row under
LiteTM column in Table 1). As in TokenTM, a transactional read
or write hit locally sets the T bit. If multiple readers concurrently
get cache hits, then multiple T bits are set, as are multiple R bits in
TokenTM. To detect conflicts, we need to infer that a given block
was transactionally written using a single T bit and no W bit. To
that end, we approximate W by considering modified blocks with
the T bit set to be transactionally written. Thus, any request to the
modified block gets a reply with the modified state and the T bit as
part of the payload, allowing the requestor to detect the conflict
and incur a fault.

Because Modified and T combination is a superset of W, the W-
approximation does not miss any real conflicts. However, false
conflicts are possible but only in the following case: A block is
non-transactionally modified, or transactionally modified and com-
mitted. Then a new transaction on the same core reads the block
which becomes modified and transactional (i.e., approximated as a
transactional write). Finally, a remote transaction reads the block,
resulting in the abort. However, if the remote read occurs before
the local read then there is no abort because the block would not be
transactional at the time of the remote read. With even three or
more read sharers, the chances of the local read occurring first and
causing the false abort are low. Also, if there is no read sharing
then there are no false aborts. Therefore, such false aborts are rare
in general. We could have avoided the false aborts by confirming
the conflict via a log-walk of the writer transaction. However, such
log-walks are pure overhead for true conflicts, which are more
common than false conflicts. Therefore, we do not perform this
log-walk (first row in Table 2). Note that W-approximation does

Table 2: TokenTM vs. LiteTM
TokenTM
vs. LiteTM

Missing
information

LiteTM’s compensation Performance impact on LiteTM

Private
L1

R, W, R’,
W’, R+,
and 14 bits
of count/id
(19 bits)
vs.
T, T’

R, W not
separate

Approximate W by Modified and T
(in hardware)

Extra false conflicts — extra fast-aborts (conflict on L1-
resident block); slow-aborts (conflict on evicted block)

No thread id Self/all log-walk for potential con-
flict — hit or miss to T’ (in software)

self log-walk overhead (no conflict) — slow-commit in
both TMs; all log-walk overhead (conflict) — fast-aborts
in TokenTM become slow-aborts

No read-
sharer count

Abort all but one reader for multi-
ple-reader conflict (in software)

Extra aborts — extra fast-aborts

Shared
L2 and
memory

2 state bits
and 14 bits
of count/id
vs.
2 state bits

 No thread
id

Self/all log-walk for potential con-
flict on evicted single-reader or
writer block (in software)

Self log-walk overhead (no conflict) — slow-commit in
both TMs; all log-walk overhead (conflict) — fast-aborts
in TokenTM become slow-aborts

No read-
sharer count

Lazy clearing all log-walk for a
write’s potential conflict on evicted
multiple-reader block (in software)

All log-walk overhead — fast- or slow-commit depend-
ing on evictions in both TMs (no conflict); slow-aborts
in both TMs (conflict)

not impact cache hits in any way (i.e., transactional write hits to
modified blocks with or without T bit set proceed as in TokenTM).

W-approximation is recorded in the transactional state, called
writer-state, in the L2 (and memory) whenever a modified L1
block with the T bit set is evicted or is fused upon a conflict.
LiteTM’s writer-state is similar to that of TokenTM’s though
TokenTM’s state is exact. We explain fusion details next and evic-
tion details in Section 4.4.

4.2 Modifications to Fusion: T’ and log-walks
To avoid coherence changes to handle conflicts, LiteTM

employs fusion but with some modifications. First, reads-followed-
by-a-write conflicts in LiteTM (writer and readers on different
cores) fuse the readers’ tokens at the writer, as in TokenTM. How-
ever, LiteTM does not have read-sharer counts in the L1 and there
is only a single T’ bit to track exactly one reader’s token (second
and third rows in Table 1). Consequently, all but one reader are
always aborted in this type of conflict so that either the writer or
exactly one reader survives (third row in Table 2). Because con-
flicts involving multiple read-sharers are not common, LiteTM’s
extra aborts over TokenTM do not degrade LiteTM’s performance
by much.

Second, in write-followed-by-read conflicts, the usual modi-
fied-block writeback is accompanied with the T bit in the payload,
allowing the transactional state in the L2 (and memory) to go to the
writer-state. Just as TokenTM sets the W’ bit in the reader’s block,
LiteTM sets the T’ bit (second row in Table 1).

Accesses or miss requests to blocks with the T’ bit set can nei-
ther differentiate whether the T’ bit is from a read or a write, nor
identify the transaction whose T bit was converted into the T’ bit
given that LiteTM does not have thread identifiers. Consequently,
such an access raises a potential-conflict exception so that the
exception handler performs log-walks of all the current transac-
tions to determine whether there is a conflict. We discuss evictions
of T’ blocks in Section 4.4.

To avoid unnecessary all log-walks when the block is already in
the accessor’s read or write set (as appropriate), the accessor first
performs a lower-overhead self log-walk of its own log and triggers
an all log-walk only if the block is not in the accessor’s read or
write set (second row in Table 2). The log-walks are optimized to
look up only the read set or the write set where appropriate (e.g.,
only the write set for self log-walk by a write) and to scan the log
starting from the end to find the block sooner due to locality. Fortu-
nately, such all log-walks are not frequent as they correspond to
read-shared access to a previously-conflicted block, and hence do
not degrade performance much.

Finally, there are some subtle details about log-walks. While
one thread performs an all log-walk due to a conflict, other threads
can continue concurrently and update their logs. Because all con-
flicts result in a fault and perform a retry, there is no risk of perma-
nently missing a conflict. A new access, N, that conflicts with the
faulting access, F, and intervenes or races with F’s log walk may be
missed temporarily by the log walk. However, N would take coher-
ence permissions away from F which upon retry, would coherence
miss, fault again, do a log walk, and catch the missed conflict. To
avoid unlikely, indefinitely-repeated retries, we stop all other
threads after a fixed threshold on the number of retries (this condi-
tion did not occur in our runs).

4.3 Modifications to Commits and Aborts: Log-walks
As in TokenTM, transactions that do not encounter any con-

flicts (hence, their tokens have not moved) undergo fast commits in
LiteTM, whereas transactions that survive conflicts undergo slow
commits. In the case of aborts, because there is no thread identifier
in LiteTM, only in-cache conflicts on T blocks can identify the
conflicting transactions and undergo fast aborts (i.e., no all log-
walks). All conflicts on evicted blocks require all log-walks, as do
in-cache conflicts on T’ blocks, as discussed before.

4.4 Modifications to handling evictions: Lazy clearing
One key difference from TokenTM pertains to token release for

L1-evicted blocks. Tokens in L1-evicted blocks are fused into the
L2 which may spill into memory, as done in TokenTM. LiteTM’s
L2 and memory have two state bits per block to record the follow-
ing states which are similar to TokenTM’s states (Section 3.3) as
well as the directory states in [4]: idle, single-reader, writer, and
multiple-readers (“Shared L2” rows in Table 1). A clean, T or T’
block that is evicted starts in the single-reader state in L2 and goes
to the multiple-reader state if more such copies are evicted. If a
modified, T block is evicted, the block enters the writer-state in L2.
A modified, T’ block cannot exist due to the implied conflict.

Because there is no identifier, a transaction cannot recognize its
own evicted block in the single-reader or writer states and must
perform a self log-walk. As discussed in Section 4.2, if the self log-
walk determines that the appropriate token is not already held, then
an all log-walk follows to identify the conflicting transactions
(LiteTM in second last row in Table 2). Because transactions do
not miss repeatedly on their own blocks, these log-walks are
uncommon.

TokenTM combines idle and multiple readers cases into one
state and uses the read-sharer count to separate the cases. In con-
trast, because LiteTM does not have the count, LiteTM’s idle and
multiple-readers must be separate states. Because single-reader
and writer-state imply only one sharer that has evicted the corre-
sponding block, any commit or abort that tries to clear these states
must be from that sharer and hence can proceed. In the case of
multiple-reader state, however, only the last sharer’s commit or
abort can clear the states. But because there is no count in LiteTM,
the last sharer cannot be distinguished from the rest. Consequently,
all clearings of the multiple-reader state are ignored by the hard-
ware, causing the read sharers to leave behind this state.

When a conflicting access occurs due to this left-behind state,
LiteTM employs lazy clearing which performs an all log-walk to
determine whether the previous sharers still exist. If so, there is a
true conflict requiring an abort, and if not, the state is cleared
allowing the access to proceed (last row in Table 2). Note that if
there is a non-conflicting access (i.e., a read) to the left-behind
multiple-reader state, the access can proceed without any lazy
clearing or log-walks. Fortunately, conflicts with multiple L1-
evicted readers, and hence lazy clearings, are uncommon.

There are two correctness issues: a minor one with self log-
walks and a major one with lazy clearing. The issue with self log-
walks involves the retry semantics of faults. Self log-walks may
evict the block for which the log-walk was triggered. Such evic-
tions would cause another self log-walk upon retry, potentially
resulting in a livelock. We resolve this issue by touching the block
at the end of the self log-walk to bring the block into L1. In rare

cases, a concurrent conflicting access may steal the block’s coher-
ence permissions away between the touch and retry, in which case
the retry would fault. Repeated occurrences of such stealing is pos-
sible, though extremely rare, and would be caught by our retry
threshold.

The major correctness issue with lazy clearing involves a race.
It is possible that after the all log-walk checks a transaction’s log
and does not find the block in the read set, but before the state is
cleared, the transaction may read miss on the block and proceed
with the read as the state is multiple-reader. Then, the state clear-
ing would be incorrect. This issue does not arise in TokenTM
because TokenTM’s log-walks decrement the read-sharer count
while new readers increment the count. Increments and decrements
are commutative, unlike setting and clearing, so that a reader’s
increment can come before or after a log-walk’s decrement without
making the count incorrect.

One option is to stop all other threads during such a lazy clear-
ing but this option would be slow. Another option is to use an extra
state bit per block in L2 and memory so that a lazy clearing starts
by changing to busy state. Access to a busy block triggers a poten-
tial-conflict exception whose service is serialized after the lazy-
clearing. Because this option increases the state overhead from 2
bits to 3 bits per block, we explore a third option by observing that
only a few blocks undergo lazy-clearing at any given moment (e.g.,
3-4). Therefore, we employ a few buffers, called busy buffers, in
the L2 and memory controller to hold the blocks’ addresses. The
buffers are common to all the threads of a process. Lazy clearing
starts by placing the block address in the buffer and removing the
address upon exit. Misses that address-match on a buffer trigger
potential-conflict exceptions which are serialized after the lazy
clearing in software (without any hardware stalling). For the rare
case of exceeding the number of buffers, we employ a single
counter for a process, called busy counter, to track the excess lazy
clearings. Any miss that encounters a non-zero busy counter trig-
gers a potential-conflict exception irrespective of address-match on
a buffer, and is serialized after all the current lazy clearings.

4.5 Modifications to handling OS Interactions
Any context switch in the middle of a lazy clearing, though

rare, must preserve the busy buffers and busy counter for correct
operation upon resumption. Thus, the buffers and counter are part
of the process state. To reduce the amount of the process state, only
the sum of the busy counter and the number of non-empty busy
buffers is saved. Upon resumption, the sum is loaded into the busy
counter. Thus, in this rare case, all misses trigger potential-conflict
exception until all the resumed lazy clearings are complete and the
busy counter goes to zero. Note that because of the replay seman-
tics of conflicting accesses as discussed in Section 4.2, there is no
risk of missed conflicts while a transaction is switched out.

LiteTM handles mid-transaction page migration similar to
TokenTM but deals with mid-transaction thread migration differ-
ently. While TokenTM leverages R+ to guarantee that R and R’ are
not both set (Section 3.4), LiteTM does have an R+-equivalent to
give the same guarantee for T and T’. Therefore, the switched-out
thread performs a self log-walk in LiteTM and flushes the transac-
tional blocks to memory, so that conflicts with the switched-in
thread are detected correctly. Because context switches are rare,
such flushing being slow may not be a concern.

4.6 Multithreaded hardware support
LiteTM can support multithreaded cores by replicating the T

bits per hardware thread context while continuing to keep a single
T’ bit per block. Each transaction can infer the existence of other
transactional accesses via T’ (remote) or T (another local context).
In TokenTM’s case, though it has thread identifiers, the identifiers
are used for tracking transactional accesses solely from remote
cores and not from local contexts. As such, even TokenTM has to
replicate its R/W bits for each context. As in LiteTM, TokenTM
need not replicate R’, W’, and the attribute bits for each context.

4.7 LiteTM’s generality
LiteTM decouples key parts of conflict handling for L1-evicted

blocks; conflict detection is in hardware but the conflicting transac-
tions are identified in software using transactional logs. This
decoupling is fundamental and can be applied to other unbounded
HTMs using per-block state. For instance, LiteTM can eliminate
OneTM-concurrent’s thread identifiers [6]), and VTM’s identifiers
(i.e., pointers to XSW in XADT) and implicit counts (i.e., number
of entries in XADT) [24].

4.8 State overhead
LiteTM needs only two state bits per block in L1, L2, and main

memory, while TokenTM needs at least 16 bits. Assuming that the
ECC memory bits are stolen to hold transactional state, this over-
head corresponds to only 3.3% of the 64 SECDED bits per 64-byte
block compared to TokenTM’s 25%. Also, LiteTM’s two bits add
about 12% to the tag entries compared to TokenTM’s overhead of
nearly 100%.

To reduce the state overhead even beyond LiteTM, we experi-
mented with a LiteTM variant that has one state bit per L1 block in
L2 and memory. Because the bit cannot distinguish between trans-
actional reads and writes, and single and multiple readers, this
variant employs self and all log-walks to make these distinctions.
The bit is lazy-cleared, if possible, upon a potential conflict. We
show this variant’s performance in Section 6.1. Another variant is
to have R, W, R’, W’ in L1 (and two state bits per block in L2 and
memory) which would reduce L1 overhead from 19 bits to 4 bits,
as compared to TokenTM. This variant may be acceptable because
L1 is a custom structure unlike main memory. However, because
W-approximation works well in practice, this variant does not offer
any major advantages over the original LiteTM. We emphasize that
the bulk of the state reduction comes from removing the thread
identifier and sharer count, and not from collapsing R and W into T.

5 Methodology
To evaluate our ideas, we implement LiteTM in the Wisconsin

GEMS HTM simulator [21] which uses Simics [20] to perform
full-system simulations. We simulate a SPARC-based multicore
running Solaris 10. Table 3 summarizes the parameters of the sim-
ulated system. Using GEMS’s user-level exception handlers, we
faithfully capture all the cases requiring self log-walks, all log-
walks, lazy clearing, slow-commits, fast-aborts, and slow-aborts.

We use STAMP with the smallest input dataset [9] (many
benchmarks do not scale beyond 4 cores with larger datasets,
which also slow down simulations). Table 4 characterizes the

benchmarks showing the fraction of TokenTM’s execution time
spent in transactions (%xact time), the length of transactions
expressed quantitatively as the number of instructions per transac-
tion (#instrs/xact) and qualitatively (xact length), and the amount
of contention expressed quantitatively as the ratio of number of
aborts to number of commits in TokenTM (#aborts/#commits) and
qualitatively (contention). These data mostly match the STAMP
paper [9] and show that STAMP covers a wide spectrum of trans-
actional behavior (i.e., evictions, read-sharing instances, and con-
flicts), even for the small dataset, providing confidence in the
generality of our results. Because we compare LiteTM against
TokenTM, we validate TokenTM’s performance obtained by us
against the TokenTM paper [7]. In the column TokenTM vs.
LogTM-SE, we show TokenTM’s performance normalized to that
of LogTM-SE with 2K-bit Bloom filters (2Hx3 in [7]). On aver-
age, TokenTM performs 42% better than LogTM-SE (not shown).
The numbers agree with the TokenTM paper [7] and show that
Bloom filter saturation (Section 2) hurts performance, justifying
TokenTM’s “full-map” approach of per-block transactional state
without hashing. In the last column (TokenTM vs. Single), we show
TokenTM’s speedups on 8 cores over single-thread runs to confirm
that TokenTM scales well over at least a modest number of cores.

The benchmarks with long transactions and high contention
(e.g., yada, bayes, and labyrinth) perform better if the oldest con-
flicting transaction is chosen to survive the abort, as proposed in
[8] to alleviate the problem of “the starving elder”. For uniformity,
we apply this policy to all the benchmarks. In LiteTM, we apply
this policy also to abort of all but one L1-resident read-sharer
(Section 4.2). To account for statistical variations (e.g., the ran-
domized back-off delay for a transaction relaunch after an abort for
reducing repeated conflicts [8]), we use enough randomly-per-
turbed runs to achieve 95% confidence [2].

6 Experimental Results
LiteTM eliminates TokenTM’s read-sharer count and the thread

identifier to reduce the state overhead from 16 bits per L1 block to
2 state bits. To compensate for this missing information, LiteTM
perform parts of conflict detection in software for L1-evicted
blocks. That is, conflict detection is still in hardware using the state
bits but the conflicting transactions are identified in software by
walking transactional logs. In doing so, LiteTM incurs some per-
formance overhead. Therefore, we begin with a performance com-
parison of LiteTM against TokenTM. We then explain the
performance numbers by quantifying the number of self and all
log-walks and their extra work, and by providing breakdowns of
fast and slow commits and aborts.

6.1 LiteTM performance
In Figure 2, we compare LiteTM’s performance to that of

TokenTM. Both the LiteTM 1-bit variant (Section 4.8) and HTM-
STM hybrids have only one bit per L1 block in L2 and memory
which is half the state overhead of LiteTM. (Hybrids need one bit
to ensure isolation among hardware and software transactions, and
among transactions and non-transactions (i.e., strong atomicity)
[5].) Therefore, we include these two TMs in this comparison with
one twist: Because we do not have access to a fully-optimized
hybrid, we use a hybrid variant which provides an upper bound on
hybrid’s performance. In hybrids, transactions switch from HTM
to STM when a transactional block is evicted. In our variant, hard-
ware transactions use TokenTM, whereas software transaction per-
form a single extra memory write to a globally-shared hash table
whenever a new token is obtained (i.e., the first transactional
access to a block). We do not impose any other overheads on soft-
ware transactions upon commit or abort (e.g., to clear the hash
table). Because software transactions perform at least one write to
a globally-shared hash table to update read sets and write sets for
conflict detection (in reality, STMs incur more memory accesses to
update other structures such as per-transaction private read/write
set and undo log [1]), our variant provides an upper bound on
hybrids’ performance.

Figure 2 shows the performance of LiteTM, LiteTM 1-bit vari-
ant, and hybrid upper-bound variant normalized to that of
TokenTM. The X axis shows the benchmarks in the order of pri-
marily increasing transaction length and secondarily increasing
contention (Table 4). This ordering clearly shows trends across
benchmarks. LiteTM incurs 4% average degradation over
TokenTM with the worst degradation of about 10% for bayes.
LiteTM-1-bit incurs significantly higher average (24%) and worst-
case (72%) degradation than LiteTM. LiteTM-1-bit requires
numerous self and all log-walks to distinguish between transac-

Table 3: Hardware parameters
Processors 8, 1 GHz, in-order issue
Private L1 32K, 4-way, 64 byte blocks, 1-cycle latency
Shared L2 8M, 8-way, 64 byte blocks, 34-cycle latency
Memory 8 GB, 448-cycle latency
Coherence Directory MOESI with full bit-vector sharer list
TokenTM n state bits + 14 bits of thread id/sharer count per

block in L1 (n = 5) and in L2 and memory (n = 2)
LiteTM 2 state bits per L1 block in L1, L2, memory + 4

busy buffers + 1 busy counter

Table 4: Benchmarks
Bench-
mark

%
xa

ct
t

im
e

#i
ns

tr
s /

xa
ct

xa
ct

 le
ng

th

#a
bo

rt
s /

#c
om

m
its

co
nt

en
tio

n

To
ke

nT
M

vs
.

L
og

T
M

-S
E

To
ke

nT
M

vs
. S

in
gl

e

ssca2 13 13 short 0.01 low 1.01 5.6

k-means-
low

7 106 short 0.03 low 0.99 3.5

k-means-
high

11 106 short 0.07 low 1.02 3.1

intruder 56 187 short 1.25 med 1.11 2.6

genome 61 1209 med. 0.11 low 1.05 4.0

vacation-
low

92 1640 med. 2.78 high 1.38 4.4

vacation-
high

92 2218 med 2.56 high 1.46 4.1

yada 97 5715 long 1.17 med 2.36 2.5

bayes 91 39213 long 1.82 high 2.19 2.7

labyrinth 99 147515 long 3.86 high 2.72 2.0

tional reads and writes, and single and multiple readers, whereas
LiteTM uses its two state bits to make the distinction (Section 4.4).
Hybrid-bound incurs 44% average degradation over LiteTM. This
degradation comes from hybrids’ software conflict detection on
every access of software transactions whereas LiteTM incurs log-
walks only for L1-evicted blocks, as mentioned in Section 1. Given
that both LiteTM-1-bit and hybrids need one state bit per block,
these results justify the use of two state bits in LiteTM. Combining
TokenTM’s speedups over LogTM-SE from Table 4 and LiteTM’s
slowdowns over TokenTM, LiteTM performs 36%, on average,
better than LogTM-SE, maintaining TokenTM’s performance
advantage over LogTM-SE.

Finally, LiteTM’s degradation mostly increases as transaction
length and contention increase across benchmarks (from left to
right). Longer transactions and higher contention result in more
evictions and conflicts which require the use of thread identifier
and read-sharer count triggering more log walks and hence incur-
ring higher performance degradation in LiteTM. The main outlier
is labyrinth which degrades less than yada and bayes despite hav-
ing higher contention and longer transactions. Because of laby-
rinth’s extremely long transactions and high contention (Table 4),
TM’s optimistic execution incurs significant overhead — aborts
and back-off time for relaunch after aborts (Section 5). We tried
turning off back-off which led to starvation due to excessive aborts.
Compared to this high overhead, LiteTM’s additional overhead is
relatively small, resulting in less degradation for labyrinth as com-
pared to those for yada and bayes. The trend of increasing degrada-
tion from left to right also holds, albeit with more outliers, for
LiteTM-1-bit and hybrid-upper-bound.

We ran LiteTM on 16 cores with a slight implementation vari-
ant of the W-approximation. The degradations over TokenTM were
statistically similar to those of the 8-core runs (not shown). We
also experimented with adding R, W, R’, and W’ bits to LiteTM and
saw less than 5% improvement in performance.

6.2 LiteTM performance analysis
The key explanation for LiteTM performing close to TokenTM

is as follows. LiteTM’s self and all log-walks with lazy clearing
compensate for the loss of information in terms of separation of
reads and writes, read-sharer count, and thread identifier (Table 2).

LiteTM’s log-walks not only increase the amount of compute
work, but also (1) replace transactional data with log data causing
more slow-commits (commit after eviction) and slow-aborts (con-
flict on block evicted by multiple read sharers); and (2) stretch
transactions’ life times and induce more conflicts (i.e., log-walks
delay token release keeping blocks in transactional state longer).
However, as stated before, the cases requiring the information and,
consequently, the log-walks are uncommon. Hence, the log-walks’
performance overhead is low. Accordingly, we quantify how often
these pieces of information are needed and the number of log-
walks in Section 6.2.1, and the number of extra slow commits and
aborts in Section 6.2.2.

6.2.1 Log-walks

Recall that (1) TokenTM uses the thread identifier to recognize
a transaction’s own blocks that either are fused in another cache
(Section 3.1) or are evicted from L1 (Section 3.3), and to identify
the transactions involved in conflicts on evicted blocks
(Section 3.3); (2) TokenTM uses the read-sharer count to deter-
mine conflicts on read-shared blocks (Section 3.3); and (3) LiteTM
approximates W as a combination of modified state and T
(Section 4.1). Table 5 quantifies how often (1) these uses occur
which require self and all log-walks with lazy clearing, and (2) W-
approximation is inaccurate and induces false aborts. The table
shows the misses to a transaction’s own blocks as a percent of all
transactional misses (%miss to own block), the out-of-cache aborts
due to conflicts on evicted blocks as a percent of all aborts (%out-
of-cache abort), the conflicts on read-shared L2 blocks which have
been evicted from more than one sharer’s L1 — true conflicts and
false conflicts requiring lazy clearing — as percent of all conflicts
(%conflict on L2 rd-shared), and the false aborts due to W-approx-
imation as percent of true aborts (%false abort).

We see that % miss to own block and % out-of-cache aborts,
which together correspond to use of thread identifier in TokenTM,
are low, confirming that repeated misses to the same blocks and
conflicts on L1-evicted blocks are rare. % conflicts on L2 rd-shared
block, which corresponds to the use of read-sharer count in
TokenTM, is low, confirming that conflicts involving multiple L1-
evicted read-shared blocks are rare. For the most part, only the
benchmarks with higher contention and longer transactions —
yada, bayes, and labyrinth (Table 4) — have significant quantities,
as expected. LiteTM replaces the identifier and count, respectively,
with self log-walks and all log-walks with lazy clearing, which,
consequently, are infrequent. We also see that % false aborts is low
implying that the W-approximation is rarely inaccurate. The num-
ber of self and all log-walks per committed transaction (#self + all
log-walk / #commit) reconfirm that the self and all log-walks are
mostly infrequent with the self log-walks occurring more often
than the all log-walks. labyrinth with its numerous self log-walks
is an exception. However, labyrinth’s log-walks do not degrade
performance as they are amortized over the extremely long trans-
actions (Table 4). Across the benchmarks, however, each instance
of the log-walks scan many addresses as shown by the number of
addresses per self log-walk and all log-walk, respectively, in the
last two columns in Table 5 (self log length and all log length). The
high log-walk volume, especially of the more-often-occurring self
log-walks, increases the compute work, degrading LiteTM’s per-
formance. The volume also results in evictions inducing extra

FIGURE 2: LiteTM Performance

ss
ca

2
km

ea
ns

-
km

ea
ns

-
in

tru
de

r
ge

no
m

e
va

ca
tio

n-
va

ca
tio

n-
ya

da
ba

ye
s

la
by

rin
th

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

1.1
TokenTM LiteTM LiteTM-1-Bit Hybrid-bound

m
ea

n

lo
w

hi
gh lo
w

hi
gh

slow-commits and slow-aborts, and stretches transactions’ life
times inducing more aborts. We analyze these effects next.

6.2.2 Commits and aborts

Table 6 compares TokenTM and LiteTM in terms of the ratio of
number of all aborts to number of all commits (#aborts / #com-
mits), the percent of slow commits over all commits (%slow-com-
mits), and the percent of slow aborts over all aborts (%slow-
aborts). Comparing the abort-to-commit ratios in TokenTM and
LiteTM, the benchmarks with relatively more log-walks (#self +
all log-walk / #commit in Table 5) — bayes and labyrinth — have
more aborts (the two TMs have the same number of commits). The
increase in aborts is due to the stretching of the transactions’ life-
times. yada is an exception with many log-walks but fewer aborts.
Instead of more aborts, yada incurs more back-off delay for
relaunch after abort (Section 5). k-means low, vacation low, and
vacation high are exceptions in the opposite direction: relatively
few log-walks but many more aborts. The increase in the percent of
aborts appears to be large for k-means low because the absolute
number of aborts is small, as confirmed by the small performance
degradation (Figure 2). In vacation low and vacation high, the
extra aborts are due not to the log-walks but include the aborts of
all-but-one L1-resident read-sharer involved in a conflict
(Section 4.2). These all-but-one aborts serialize the read-sharer
inducing even more conflicts in these high-contention benchmarks
(#aborts/#commits in Table 4).

Comparing the percent of slow-commits in TokenTM and
LiteTM, the benchmarks with relatively more log-walks — yada,
bayes, and labyrinth (Table 5) — evict many transactional blocks
leading to slow commits which contribute to their performance

degradation (Figure 2). Though labyrinth has the largest increase
in slow commits, its basic optimistic execution overhead, as dis-
cussed in Section 6.1, dwarfs its slow-commit overhead. vacation-
low and vacation-high are exceptions which have more slow com-
mits but relatively few log-walks (#self+all log-walk / #commit in
Table 5). These two benchmarks’ extra aborts (discussed above)
imply more conflicts which lead to more slow-commits because
transactions that survive conflicts undergo slow-commits
(Section 3.2). However, because the aborts far outnumber the com-
mits in these benchmarks (Table 6), the abort overhead dwarfs the
extra slow-commit overhead so that overall performance degrada-
tion is not much (Figure 2). Finally, we see that slow-aborts are
infrequent in both TokenTM and LiteTM.

6.3 Sensitivity to number of busy buffers
Recall from Section 4.4 that LiteTM uses busy buffers and a

busy counter to handle races between log-walks for lazy clearing
and transactional accesses. In Figure 3, we show LiteTM’s perfor-
mance varying the number of buffers as four (same as Figure 2, see
Table 3) and zero normalized to that of TokenTM. With no buffers,
a non-zero busy counter implies that a lazy clearing is underway
and flags all misses during a lazy clearing to be serialized after the
lazy clearing, under the conservative assumption that the misses
are to the block being lazy-cleared.

Table 5: Log-walks
Bench-
marks

%
 m

is
s t

o
ow

n
bl

oc
k

%
 o

ut
-o

f-
ca

ch
e

ab
or

t
%

 c
on
fli

ct
 o

n
L

2
rd

-s
ha

re
d

%
 fa

ls
e

ab
or

t
#s

el
f +

 a
ll

lo
g-

w
al

k
/

#c
om

m
it

se
lf

lo
g

le
ng

th

al
l l

og
le

ng
th

ssca2 0.04 0 0 0 ~0 2 0

k-means-
low

0.16 0 0 0 ~0 3.3 0

k-means-
high

0.24 0 0 0 ~0 4 0

intruder 0.4 0.04 0.04 0 ~0 22 34

genome 0.39 0 0.65 2.5 0.02 +
~0

17 27

vacation-
low

0.01 0 0.36 0 ~0 28 36

vacation-
high

0.05 0.03 0.40 0 0.02 +
0.01

38 54

yada 2.3 0.8 0.5 0.9 0.3 + ~0 97 102

bayes 6 1.1 1.9 0.3 3.9 +
0.08

162 327

labyrinth 15 5.6 2.5 0.1 58 +
0.94

272 1408

Table 6: Commits and aborts
Benchmark TokenTM LiteTM

#a
bo

rt
s /

#c
om

m
its

%
sl

ow
-

co
m

m
its

%
sl

ow
-

#a
bo

rt
s /

#c
om

m
its

%
sl

ow
-

co
m

m
its

%
sl

ow
-

ab
or

ts

ssca2 0.01 0.4 0 0.01 0.5 0

k-means low 0.03 2.1 0 0.04 2.7 0

k-means high 0.07 2.87 0 0.08 2.9 0

intruder 1.3 31 0 1.4 33 0.04

genome 0.1 3.1 0 0.1 9.2 0

vacation low 2.8 38 0 3.1 54 0

vacation high 2.6 33 0 2.9 56 0.03

yada 1.2 15 ~0 1.1 30 0.8

bayes 1.8 17 ~0 2.7 38 1.1

labyrinth 3.9 26 0 5.3 95 5.6

FIGURE 3: Sensitivity to number of busy buffers

ss
ca

2
km

ea
ns

-

va
ca

tio
n-

ge
no

m
e

km
ea

ns
-

va
ca

tio
n-

in
tru

de
r

ya
da

lab
yr

in
th

ba
ye

s0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

4 buffers no buffer

lo
w

hi
gh lo
w

\h
ig

h

Because of the severely-conservative assumption, the no-buffer
configuration incurs more performance loss for the benchmarks
with longer transactions and higher contention which have more
lazy clearing than the other benchmarks (%conflict on L2 rd-
shared in Table 5). Nevertheless, the number of lazy clearings per
transaction is low, even in the high-contention benchmarks (#self +
all log-walk / #commit in Table 5). Consequently, not many lazy
clearings occur in parallel (we found at most 3 in labyrinth) requir-
ing only a few busy buffers. However, because each lazy clearing
all log-walk is long, the no-buffer configuration holds up all misses
for these long time periods incurring significant performance loss.

7 Conclusions
To allow transactional state to exceed cache capacity, recent

HTMs (e.g., TokenTM, VTM, OneTM-concurrent) employ per-
block thread identifiers and sharer counts. The resulting overhead
can be high, especially if the state is held in stolen ECC bits.
LiteTM cuts the overhead by decoupling the detection of conflicts
(done in hardware) from the identification of conflicting transac-
tions (done in software using transactional logs, in the uncommon
case). LiteTM compensates for the lost information via the follow-
ing novel ideas: (1) approximating W for L1-resident blocks, (2)
lazy clearing of transactional state in L2 and memory, (3) self log-
walk to identify a transaction’s own blocks. LiteTM requires just 2
bits per block in L1, L2, and memory. Experiments show that
LiteTM reduces TokenTM’s state overhead by about 87% while
performing within 4%, on average, and 10%, in the worst case, of
TokenTM. By reducing transactional state overhead while main-
taining performance, LiteTM lowers the barrier for adoption of
HTMs in real products.

Acknowledgments: We thank Jayaram Bobba, Kevin Moore, and
the anonymous reviewers for their feedback. This work was
funded, in part, by the National Science Foundation (Award
No.:CCF-0644183).

References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,

B. Saha, and T. Shpeisman. Compiler and runtime support for effi-
cient software transactional memory. In Proc. of 2006 PLDI, pages
26–37. ACM, 2006.

[2] A. R. Alameldeen and D. A. Wood. Variability in architectural
simulations of multi-threaded workloads. In Proc. of 9th HPCA,
page 7, 2003.

[3] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded transactional memory. In Proc. of Eleventh HP-
CA, pages 316–327. Feb 2005.

[4] J. Archibald and J. L. Baer. An economical solution to the cache
coherence problem. In Proc. of 11th ISCA, pages 355–362, 1984.

[5] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory
protection to build a high-performance, strongly atomic hybrid
transactional memory. In Proc. of 35th ISCA. June 2008.

[6] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Mak-
ing the fast case common and the uncommon case simple in un-
bounded transactional memory. SIGARCH Comp. Arch. News,
35(2):24–34, 2007.

[7] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood. To-
kentm: Efficient execution of large transactions with hardware
transactional memory. In Proc. of 35th ISCA. Jun 2008.

[8] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,

and D. A. Wood. Performance pathologies in hardware transac-
tional memory. In Proc. of 34th ISCA, pages 81–91. 2007.

[9] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Proc.
of IISWC, September 2008.

[10] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An effec-
tive hybrid transactional memory system with strong isolation
guarantees. In Proc. of 34th ISCA. Jun 2007.

[11] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambigua-
tion of speculative threads in multiprocessors. In Proc. of 33rd IS-
CA, pages 227–238. 2006.

[12] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,
M. Van Biesbrouck, G. Pokam, B. Calder, and O. Colavin. Un-
bounded page-based transactional memory. SIGPLAN Not.,
41(11):347–358, 2006.

[13] J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D.
Carlstrom, C. Kozyrakis, and K. Olukotun. Tradeoffs in transac-
tional memory virtualization. SIGOPS Oper. Syst. Rev., 40(5):371–
381, 2006.

[14] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In Proc. of 12th AS-
PLOS, pages 336–346, 2006.

[15] J. Gray. The transaction concept: Virtues and limitations. In Proc.
of Seventh VLDB, pages 144–154. Sep 1981.

[16] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C. Kozyrakis,
and K. Olukotun. Transactional coherence and consistency: Sim-
plifying parallel hardware and software. IEEE Micro, 24(6), Nov-
Dec 2004.

[17] M. Herlihy and J. E. B. Moss. Transactional memory: Architectur-
al support for lock-free data structures. In Proc. of 20th ISCA, pag-
es 289–300. May 1993.

[18] O. S. Hofmann, C. J. Rossbach, and E. Witchel. Maximum benefit
from a minimal HTM. In Proc. of 14th ASPLOS, pages 145–156.
2009.

[19] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hy-
brid transactional memory. In Proc. of PPoPP, Mar 2006.

[20] P. S. Magnusson et al., Simics: A full system simulation platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[21] M. M. K. Martin et al., Multifacet’s general execution-driven mul-
tiprocessor simulator (GEMS) toolset. SIGARCH Comp. Arch.
News, 33(4):92–99, 2005.

[22] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In Proc. of the
12th HPCA, pages 254–265. Feb 2006.

[23] M. J. Moravan et al., Supporting nested transactional memory in
LogTM. SIGPLAN Not., 41(11):359–370, 2006.

[24] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In Proc. of 32nd ISCA, pages 494–505.Jun 2005.

[25] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam. Imple-
menting signatures for transactional memory. In Proc. of the 40th
Micro, pages 123–133. 2007.

[26] N. Shavit and D. Touitou. Software transactional memory. In Proc.
of the 14th PODC, pages 204–213. Aug 1995.

[27] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible decoupled
transactional memory support. In Proc. of 35th ISCA, pages 139–
150. 2008.

[28] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos, M. D.
Hill, M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling hard-
ware transactional memory from caches. In Proc. of 13th HPCA.
Feb 2007.

