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Abstract

Technology trends are leading to increasing number of cores
on chip. All these cores inherently share the DRAM bandwidth.
The on-chip cache resources are limited and in many situa-
tions, cannot hold the working set of the threads running on
all these cores. This situation makes DRAM bandwidth a crit-
ical shared resource. Existing DRAM bandwidth management
schemes provide support for enforcing bandwidth shares but
have problems like starvation, complexity, and unpredictable
DRAM access latency.

In this paper, we propose a DRAM bandwidth management
scheme with two key features. First, the scheme avoids unex-
pected long latencies or starvation of memory requests. It also
allows OS to select the right combination of performance and
strength of bandwidth share enforcement. Second, it provides
a feedback-driven policy that adaptively tunes the bandwidth
shares to achieve desired average latencies for memory ac-
cesses. This feature is useful under high contention and can
be used to provide performance level support for critical ap-
plications or to support service level agreements for enterprise
computing data centers.

1. Introduction

The two technology trends of increasing transistors per die
and limited power budgets have driven every major processor
vendor to multicore architectures. The number of on-chip cores
is expected to increase over the next few years [1]. This in-
creasing number of cores (and consequently threads) share the
off-chip DRAM bandwidth which is bound by technology con-
straints [2, 4]. While on-chip caches help to some extent, they
cannot possibly hold the working set of all the threads running
on these on-chip cores. Thus DRAM bandwidth is a critical
shared resource which, if unfairly allocated, can cause poor
performance or extended periods of starvation. Because it is
unacceptable that applications suffer from unpredictable per-
formance due to the concurrent execution of other applications,
DRAM bandwidth allocation primitives that offer isolated and
predictable DRAM throughput and latency are desirable design
goals. This paper develops simple, efficient and fair mecha-
nisms that achieve these two goals.

The challenges in achieving these goals are twofold. First,

the time to service a DRAM request depends on the state of
the DRAM device which in turn depends on previous DRAM
operations. This makes it hard to leverage well-understood fair
queuing mechanisms since memory latency is not only vari-
able, it also depends on the previously scheduled DRAM ac-
cesses. Second, even in the presence of fair queuing mech-
anisms that preserve relative bandwidth shares of contending
sharers, there can still be significant variation in access latency
because of (a) variation in application demand and (b) variation
in DRAM state due to interleaved requests from other sharers.
Allocating bandwidth shares to achieve the necessary latency
for the worst case is wasteful as also observed by others [27].

Our paper develops two key innovations to address the
above two challenges of managing shared DRAM bandwidth in
multicore systems. First, we develop a fair bandwidth sharing
mechanism that abstracts away the internal details of DRAM
operation such as precharge, row activation and column acti-
vation and treats every DRAM access as a constant, indivis-
ible unit of work. Our view of memory accesses as indivis-
ible unit-latency operation is purely a logical construct to fa-
cilitate fair bandwidth sharing. In practice, our scheme does
employ memory access scheduling optimizations that schedule
individual DRAM commands to exploit page hits. One obvi-
ous benefit of our technique is that it enables fair sharing with
lower complexity compared to a previous technique that incor-
porates detailed DRAM access timing [27]. One may think that
this reduction in complexity is achieved at the cost of schedul-
ing efficiency because the abstraction hides the true nature of
DRAM access which is inherently variable and dependent on
the state of the DRAM device. On the contrary, our technique
yields improvements in the DRAM latencies observed by shar-
ers and consequently, in overall performance. This is primarily
because the simple abstraction of memory requests as an indi-
visible constant unit of work enables us to adopt existing fair
queuing schemes with known theoretical properties. In partic-
ular, we adopt start-time fair queuing [8] which offers provably
tight bounds on the latency observed by any sharer.

The above bandwidth sharing scheme can efficiently en-
force specified bandwidth shares. However, the total mem-
ory latency observed by memory requests is highly variable
because it depends not only on the bandwidth share but also
on contention for the device. Under high contention, the la-
tencies observed by request in memory system can be hundred
of cycles more than the latencies observed without contention,



as shown by our results in Section 5.2. Our second innova-
tion is a feedback-based adaptive bandwidth sharing policy in
which we periodically tune the bandwidth assigned to the shar-
ers in order to achieve specified DRAM latencies. Adaptive
bandwidth management does not add to the complexity of the
hardware because it can be done entirely in software at the op-
erating system (OS) or the hypervisor by using interfaces and
mechanisms similar to those proposed for shared cache man-
agement [29]. While that interface supports various features
such as thread migration and thread grouping (wherein a group
of threads acts as a single resource principal), our study as-
sumes that each thread running on a processor is a unique re-
source principal with its own allocated bandwidth share. As
such, we use the terms threads, sharers and contenders inter-
changeably in the rest of this paper.

Related Work: Recently, researchers have recognized the
fairness issues involved in the management of DRAM band-
width [25, 27]. Nesbit et al. [27] propose a fair queuing
scheme for providing fairness, but their technique can suffer
from starvation as we discuss in Sections 3.1 and 6. We
compare our technique to theirs, referred to as FQ-VFTF, in
our simulation results reported in Section 5.1. Moscribroda
et al. [25] recognized the starvation problems in the work of
Nesbit et al. [27] and proposed a scheme which keeps track
of the latencies threads would experience without contention.
Our scheme avoids such hardware overhead and still prevents
starvation problems.

In summary, this paper makes the following contributions:

• We demonstrate a simple and efficient mechanism to
achieve fair-queuing for DRAM access that improves av-
erage sharer service latency (number of cycles a sharer
waits before receiving service) by 17.1% and improves
overall performance by 21.7%, compared to a previously
proposed DRAM fair-queuing scheme [27]. In addition,
our technique reduces worst case service latencies by upto
a factor of 15.

• We demonstrate that a feedback-based adaptive policy can
effectively deliver predictable memory latencies (within
12% of the target in our experiments) for a preferred
sharer. Such a policy can be used to prioritize critical
threads or support service level agreements in data cen-
ters.

The rest of this paper is organized as follows. Section 2 of-
fers a brief background of fair queuing and DRAM memory
system organization. Then we present the details of our tech-
nique in Section 3. We discuss our experimental methodology
in Section 4 and present our results in Section 5. We describe
the related work in Section 6 and conclude our paper with fu-
ture possibilities in Section 7.

2. Background

This study applies the ideas from fair queuing to DRAM
systems. In order to give a clear understanding of the concepts
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Figure 1. An example for fair queuing (adapted
from [13])

in the paper, we introduce fair queuing in this section, followed
by an explanation of the working of the DRAM systems.

2.1. Fair Queuing

The notion of fairness is well-defined and well-studied in
the context of networking. Fair queuing systems are based on
the concept of max-min fairness [5, 6]. A resource allocation is
max-min fair if it allocates resources to sharers in proportion to
their relative weights (or shares, commonly represented as φ).
A sharer is referred to as backlogged if it has pending requests
to be served. A service discipline which follows the above def-
inition of fairness divides the available bandwidth among the
backlogged queues in proportion to their share. If a sharer is
not backlogged, its share of bandwidth is distributed among
backlogged sharers. As soon as it becomes backlogged again,
it starts receiving its share. A sharer is not given credit for
the time it is not backlogged. Such credit accumulation can
cause unbounded latency for the other sharers (even though
these other sharers did not use the bandwidth at the expense
of the first sharer). The scheduling algorithms which penalize
sharers for the using idle bandwidth are generally regarded as
unfair [8, 28]. Fair allocation algorithms guarantee a fair share
regardless of prior usage.

Formally, an ideal fair queuing server (commonly referred
to as Generalized Processor Sharing or GPS server) can be
defined as follows: Suppose there are N flows and they are
assigned weights of φ1, φ2, . . . , φN . Let Wa(t1, t2) be the
amount of flow a’s traffic served during interval (t1, t2) during
which a is continuously backlogged. Then for a GPS server,

Wa(t1 , t2)

Wb(t1 , t2)
=

φa

φb

, where b = 1, 2, . . . ,N , or

Wa(t1 , t2)

φa

−

Wb(t1, t2)

φb

= 0

Most fair queuing implementations use a virtual clock to
implement GPS (or its approximation). We explain the use of
a virtual clock with an example adapted from [13]. Figure 1
shows three sharers, A, B, C and D, with weights of 5, 20,
10 and 1 respectively. At the instant shown, only A, C and D
are currently backlogged. These sharers have to be served in
such a way that the service received by each of them is pro-
portional to the weights assigned to them. It is not desirable
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Figure 2. DRAM Device Internal Organization

to visit sharers in a simple round robin manner, serving them
in proportion to their weights, as that would result in requests
from one sharer clustered together and others would experience
long latencies [13]. We assume here that each request takes one
unit of time for its service. For each sharer, we compute a ser-
vice interval which is the reciprocal of its weight. Note here
that weights do not have to add up to any specific value, so
their value does not change when sharers become backlogged
or unbacklogged. At any instant, we select the sharer which
has the minimum (earliest) scheduled service time. For the in-
stant shown in the example, sharer C has the minimum service
time, i.e, 27. So the virtual time is advanced to 27 and sharer
C is served. Since sharer C does not have any requests left, we
do not schedule it. Next, virtual time is advanced to 35 and
sharer A is served. Since A has more requests to be served, we
have to reschedule it. A’s service interval is 20, so its next re-
quest should be served at time 20+35=55. It is apparent that the
virtual time is advanced to serve the next sharer and thus runs
faster than the real time. We continue in the similar manner and
the resulting service schedule is shown in Figure 1. When no
sharer is backlogged, virtual time is set to zero. Once a sharer
becomes backlogged, its new service time has to be computed.
Fair queuing schemes differ in how they assign service time to
a newly backlogged sharer.

In order to implement the above mentioned algorithm for the
general case of variable sized requests, each request is assigned
a start and finish tag. Let Sa

i be the start tag of ith packet of
sharer a and F a

i
be its finish tag, these tags are assigned as

follows:
Sa

i = MAX(v(Aa
i ), F a

i−1) and

F a
i = Sa

i + lai /φa

where v(Aa
i ) is the virtual arrival time of ith packet of sharer

a, la
i

is the length of the packet and F a
0

= 0.
For an ideal (GPS) server, the virtual time is computed using

server capacity and the number of backlogged queues [5, 28].
Since the number of backlogged queues change frequently
(specially in DRAM system), such computation is prohibitively
expensive [7, 8]. To solve this problem, Zhang et al. [37] pro-
posed a virtual clock algorithm which replaces v(Aa

i ) with real
time in the calculation of the formula for start time. A similar
approach was adopted by Nesbit et al. [27]. This approach does
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not provide fairness [7, 8, 25]. We explain that with an exam-
ple. Consider a bursty sharer which does not send requests for
a long interval. During that interval, the virtual clocks of other
backlogged sharers would make progress faster than the real
clock (as the virtual clock is time scaled by the fraction of the
bandwidth assigned to each sharer). When the bursty sharer fi-
nally starts sending requests, it would be assigned virtual time
much smaller than the others sharers and can halt their progress
for an unbounded time.

Several other fair queuing schemes have been proposed with
various advantages and disadvantages. We refer the reader to
[8, 36] for a survey of other approaches. For the purpose of
this study, we have adopted Start Time Fair Queuing (SFQ)
[8]. SFQ assigns a start and finish tag to each packet using the
same formulas mentioned above. But it approximates v(t) by
the start time of the packet in service at time t. If no packet is
in service, v(t) is reset to zero. Clearly, this definition makes
the computation of v(t) much simpler. SFQ has strong bounds
on latency, guarantees fairness even under variable rate servers,
and works for arbitrary weight assignment to each sharer [8].

To apply the fair queuing techniques in the context of a
DRAM system, it is important to understand DRAM opera-
tion. In the remainder of this section, we explain the internal
operation of a DRAM system.

2.2. DRAM System

Modern DRAM is a multi-dimensional structure, with mul-
tiple banks, rows and columns. Figure 2 shows the internal
structure of a DRAM device. Each bank of memory has an ar-
ray of memory cells, which are arranged in rows and columns.
For accessing data in a DRAM bank, an entire row must be
loaded into the row buffer by a row activate command. Once
the row is in row buffer, a column access command (read or
write) can be performed by providing the column address. Now
if a different row has to be accessed, a precharge command
must be issued to write the activated row back into the mem-



ory array, before another row activate command can be issued.
Multiple DRAM devices are accessed in parallel for a single
read/write operation. This collection of devices which are op-
erated upon together is called a rank. Multiple ranks can be
placed together in a memory channel, which means that they
share the same address and data bus. Each DRAM device man-
ufacturer publishes certain timing constraints that must be re-
spected by consecutive commands to different banks within a
rank, and to the same bank. Moreover, the resource constraints
have to be respected, i.e., before a column access command
can be issued, it must be ensured that the data bus would be
free for the column access operation. Each memory channel is
managed by a memory controller, which ensures that the tim-
ing and resource constraints are met. For further details of the
inner workings of DRAM devices and controllers, we refer the
reader to other studies [31].

Most recent high-end processors and multicores have their
memory controllers integrated on chip ( [12, 15, 19]). One such
memory controller is shown in Figure 3 (the part in dotted box
is our addition and would be explained later). When a request
arrives in the memory controller, it is placed in the transac-
tion buffer. A channel scheduler selects a memory request to
be serviced from the transaction buffer and issues the required
DRAM command to the DRAM device. We would refer to
a memory reference (read or write) as a memory transaction
while DRAM operations would be referred to as commands.
For this study, we have assumed that transaction buffer has a
centralized queue instead of per bank queues. Our scheme can
be easily adapted to a transaction buffer with per bank queues.

Most real memory access schedulers implement a simple
First-Ready-First-Come-First-Serve mechanism for selecting
DRAM commands [31]. In this mechanism, the access sched-
uler selects the oldest command that is ready to be issued.
Rixner et al. [31] made the observation that this selection al-
gorithm results in suboptimal utilization of DRAM bandwidth.
For example, let us assume that DRAM system has received
three memory references, all addressed to the same bank. The
first and the third access the same DRAM row, while the sec-
ond one accesses a different row. It would be bandwidth effi-
cient to schedule the third transaction right after the first one,
as that would save us a bank precharge and row activation op-
eration. But this re-ordering would violate the original order
in which transactions were received. Some implications of
this re-ordering would be discussed in Section 3.2. Rixner et
al. [31] studied memory access scheduling in detail and pro-
posed that for efficient memory bandwidth utilization, memory
scheduler should implement the following algorithm: (a) Pri-
oritize ready commands over commands that are not ready (b)
Prioritize column access commands over other commands (c)
Prioritize commands based on their arrival order. We use this
scheduling algorithm as our base case for this study and refer
to it as Open-Bank-First (OBF) in the rest of this paper.

3. DSFQ Bandwidth Management Scheme

This section describes the implementation details of our
scheme. We start by discussing the implementation of fair
queuing in DRAM in Section 3.1. Section 3.2 discusses
the tradeoff between fairness and performance. Finally, Sec-
tion 3.3 describes the algorithm for our adaptive bandwidth al-
location policy to achieve targeted DRAM latency for a pre-
ferred sharer.

3.1. Fair Queuing for DRAM System

In this section, we explain the modifications made to the
DRAM system described in Section 2.2 to implement Start
Time Fair Queuing (SFQ). DRAM systems are significantly
different from simple queuing systems. Thus there are some
fundamental issues to be considered before adapting any queu-
ing discipline.

We explained in Section 2.2 that each memory transaction is
divided into DRAM commands (e.g., column access, row ac-
tivate, etc.) based on the state of the target DRAM bank. For
a row buffer hit, only a column access command is required,
while a row buffer miss requires precharge and row activate be-
sides column access. Thus the time taken by a DRAM transac-
tion depends on the state of bank and cannot be decided when
the transaction arrives. This creates problem for calculating
finish times using the formula mentioned in Section 2.1. One
approach to solve this problem is to delay the calculation of
finish times, until a command is issued to the DRAM device.
This approach was adopted by Nesbit et al. [27]. They noted
that by taking this approach, the commands from the same
sharer might be assigned finish tags out-of-order, as memory
commands are re-ordered for efficiency. Thus a younger com-
mand might receive a smaller start/finish tags than an older
command. In the worst case, younger commands can keep get-
ting issued, causing starvation or unexpectedly longer latencies
for some of the older commands. The calculation of start/finish
tags is further complicated by DRAM timing constraints which
are dependent on the exact configuration of the DRAM system.

We propose to solve the above mentioned problems by mak-
ing the implementation of fair queuing oblivious to the state
and timing of DRAM device. We accomplish that by treating
a DRAM transaction as a single entity (instead of composed
of a variable number of commands). Memory bandwidth is
allocated among sharers in units of transactions, instead of in-
dividual DRAM commands. Each transaction is considered to
be a request of unit size and assumed to be serviced in a unit
time. This approach simplifies the implementation of start-time
fair queuing on the DRAM system. Start-time fair queuing de-
fines the current virtual time to be the virtual start time of the
packet currently in service. In our case, there are cycles in
which none of the commands receives service due to DRAM
timing constraints. Thus we assume the current virtual time
to be the minimum start tag assigned to the currently pending
transactions. This choice ensures that the worst case service
latency of a newly backlogged sharer is bound by N-1 where



N is the number of sharers1. The finish time of the last trans-
action of each sharer is kept in a separate register and can be
updated at the time of arrival of ith transaction from sharer a
as: F a

i
= Sa

i
+ 1/φa. Thus if we support N sharers, we need

N registers to keep track of the finish tag assigned to the last
transaction of each sharer. We assume that the OS provides re-
ciprocals of weights as integers. Thus the computation of finish
tags requires simple addition. We would refer to this scheme
as DRAM-Start-Time-Fair-Queuing (DSFQ) in the rest of the
paper.

It should be noted here that the treatment of a transaction
as a single entity is only for the purposes of start tag assign-
ment. Each transaction is actually translated to multiple com-
mands, with each command prioritized based on the start tag
assigned to its corresponding transaction. One might argue that
if a sharer has more row buffer conflicts than other, it might end
up sending more commands to DRAM (as it needs precharge
and row activate besides the column access). We assert that
our scheme enforces memory reference level bandwidth shares.
But it can be easily modified to keep track of command band-
width, by updating the finish tag registers whenever a com-
mand other than column access is issued. Such a modification
will still assign start tags to transactions at their arrival and thus
would posses all the fairness properties of our scheme. We
have experimentally tested this modification and found that it
shows same results as our original scheme.

3.2. Tradeoff of Fairness and Performance

In the last section, we have provided a methodology to allo-
cate DRAM bandwidth to sharers based on their weights. If the
commands are scheduled strictly based on their start tags, the
DRAM bandwidth would not be utilized efficiently. In order
to utilize DRAM efficiently and support shares of each sharers,
we use the following algorithm for DRAM command sched-
uler: (a) Prioritize ready commands over commands that are
not ready. (b) Prioritize column access commands over other
commands. (c) Prioritize commands based on their start tags.
Note that this algorithm is similar to the one proposed by Nes-
bit et al. [27]. The only difference is that the requests are or-
dered based on their start tags, instead of the finish tags. There
is one potential problem with the above scheduling algorithm.
Consider two DRAM transactions for a same bank, one being
a row hit with larger start tag and the other a row miss with
smaller start tag. The above algorithm would serve the transac-
tion with larger start tag, as it prioritizes column access com-
mands. If there is a chain of transactions with row buffer hits
but with larger start tags, they can cause unlimited delays for
transactions with smaller start tags. Nesbit et al. [27] made a
similar observation, and proposed that after a bank has been
open for tRAS time (timing constraint of a DRAM device –
time between a row access and next precharge), it should wait
for command with oldest tag to become ready.

We propose a more general and flexible solution to this

1The worst case occurs when every sharer has a pending transaction with
the same start tag as the transaction with the smallest start tag

problem. Whenever a DRAM command is issued, if it does
not belong to a transaction with the minimum start tag, we in-
crement a counter. If the counter reaches a specified threshold,
the memory scheduler stops scheduling commands from trans-
actions other than the one with minimum start tag and waits
for those commands to become ready. Once a command from
the transaction with smallest start tag is issued, the thresh-
old counter is reset. This threshold value is called starvation
prevention threshold (SPT). The scheduling policy mentioned
above without such a threshold violates the latency bounds of
SFQ. However, the introduction of SPT limits the increase in
latency bound to a constant additive factor because at most SPT
requests can be served before falling back to the SFQ ordering.

The optimal SPT value is environment- and workload-
dependent. For example, if the processor is used in a situation
where providing performance isolation is the key concern, a
smaller threshold should be used. On the other hand, if effi-
ciently utilizing the DRAM bandwidth is the primary goal, a
higher threshold is desired. It should be noted that the efficient
DRAM bandwidth utilization is not always correlated with bet-
ter overall performance. In some cases, stricter enforcement
of SFQ ordering between transactions (i.e., smaller thresholds)
results in better performance. This is because the advantage
of improved DRAM bandwidth utilization due to larger thresh-
olds is over-shadowed by the increase in latency observed by
starved transactions. Thus we propose to make this threshold
adjustable by operating systems. Our results in Section 5.1
show that the optimal value of threshold varies from one bench-
mark mix to another and extreme (very high or very small) val-
ues of threshold hurt performance.

3.3. Adaptive Policy

The introduction of fair queuing allows us to control the rel-
ative share of each sharer in the DRAM bandwidth. But it does
not provide any control over the actual latencies observed by
memory references in the DRAM. The latency observed by a
memory reference in DRAM depends on a lot of factors includ-
ing the length of the sharer’s own queue, its bank hit rate, the
bank hit rate of other sharers, etc. Moreover, as the requests
from different sharers are interleaved, their bank hit/miss rate
would be different as some misses might be caused by inter-
ference with other sharers. Thus we cannot guarantee specific
performance levels for any sharers, unless we pessimistically
allocate shares for them (provisioning for worst case scenar-
ios). Such worst case provisioning is not suitable for general
purpose computing platforms [27].

We propose to solve the above mentioned problem by im-
plementing a feedback based adaptive policy in the operating
system or hypervisor. For this study, we restrict our policy to
achieving target latency for only one of the sharers (extension
of the policy to support target latencies for multiple sharers is
part of the future work, see Karlsson et al. [17] for a discussion
on such an algorithm). The adaptive policy tweaks the weight
assigned to the target sharer (based on the feedback) to get the
desired latency. The feedback can be obtained by performance



counters provided by processors. For this study, we assumed
that performance counters for “average latency observed by re-
quests from a processor” are available. It is expected that such
counters would be made available since memory controllers are
on-chip now. If such counters are not available, a feedback pol-
icy can be implemented to achieve target instructions per cycle
(IPC).

(* sharei,t− Share of sharer i during interval t *)
(* latencyi,t− Average latency of sharer i during interval t *)
(* slopei,t− Rate of change of delay with change in share for sharer
i during interval t *)
(* α− Forgetting factor *)

Initialization:

1. for all i:
sharei,0 := 100

n

At end of each epoch t:

1. (* Calculate the slope for prioritized sharer p *)

slopep,t :=
latencyp,t−latencyp,t−1

sharep,t−sharep,t−1

2. if slopep,t > 0 then:
slopep,t := slopep,t−1

3. (* Calculate the share for the next interval *)

sharep,t+1 := sharep,t +
(goalp−latencyp,t)

slopep

4. (* Calculate EWMA of calculated share *)
sharep,t+1 := (α ∗ sharep,t+1) + ((α − 1) ∗ sharep,t)

5. (* Divide the remaining shares among the rest of the sharers
equally *)
for all i 6= p:

sharei,t+1 :=
100−sharep,t+1

n−1

Figure 4. Adaptive Policy Algorithm

The algorithm used by our feedback based latency control
policy is described in Figure 4. It starts out by assigning equal
weights to all sharers. At the end of each epoch, it calcu-
lates “the rate of change of average latency with the change in
share”, called slope, during the last interval. Since the latency
should decrease with the increase in share, the slope should be
negative. But under certain conditions, the slope might come
out to be positive. For example, consider an epoch in which the
share of a sharer was increased. But during the same epoch,
some new sharers become heavily backlogged. In such situ-
ations, the slope might come out to be positive. In our algo-
rithm, we discard the positive slope and use the slope calcu-
lated previously instead. Based on the value of slope, we cal-
culate the amount of change in share required to achieve the
desired latency. In order to make sure that the transient condi-
tions in an epoch do not cause the algorithm’s response (share)
to change drastically, we keep the past history of shares by cal-
culating an exponentially weighted moving average (EWMA)
of shares [10]. We use a smoothing factor α, which controls
the weightage given to the past history. The value of α should

System 1 chip, 8 processors per chip
Processor Technology 65 nm, 0.5ns cycle time

Processor configuration 4-wide, 64 instruction window
and 128 ROB entries,
1KB YAGS branch predictor

L1 I/D cache 128KB, 4-way, 2 cycles
L2 cache 4MB, 16-way shared,

8-way banked, 9 cycles
DRAM configuration 1GB total size, 1 channel, 2 ranks,

8 banks, 32 Transaction Buffer
entries, open page policy

Disk Latency Fixed 10ms

Table 1. Simulated configuration

be chosen in such a way that the algorithm is quick enough to
respond to changing conditions, but keeps enough history to
have a stable response. Our experimental results show that a
value of 80 for α provides a good compromise of stability and
responsiveness. After we have calculated the share of the target
sharer, we divide the rest of the bandwidth equally among the
rest of the sharers.

Dynamically adjusting weights for the adaptive policy in-
troduces a problem: the sharer which was assigned a small
weight in the previous epoch would have its finish tag registers
and start tags of pending transactions set to high values. That
would mean that the sharer would be de-prioritized (at least for
some time) during the next epoch too, even if its weight is in-
creased. Incorrect start tags of pending transactions is not a sig-
nificant problem for DRAM, as the DRAM transaction queue
size is bounded (32 for this study). Time required for serving
the pending transactions would be a very small fraction of the
total epoch time (see Zhang et al. [38] for similar arguments).
For finish tag registers, we propose a simple solution: when-
ever the weights of sharers are updated, the finish tag register
for each sharer is reset to the maximum of all finish tags. Thus
all new memory transactions would get start tags which would
be based on their new weight assignment.

For the implementation of this adaptive policy, we selected
epoch length of 2 million cycles. We found the execution time
of the algorithm to be 15 microseconds on average; thus
the timing overhead of the adaptive scheme is only 1.5%. Our
results in Section 5.2 show that the adaptive policy successfully
achieves the target latencies.

Summary: We have proposed a scheme which enforces OS
specified shares, uses the DRAM bandwidth efficiently, avoids
starvation and is flexible. We have also suggested a policy for
adjusting weights to achieve target memory latency for a prior-
itized sharer. Next, we describe the experimental methodology
used to evaluate our scheme.

4. Methodology

We used the Simics [21]-based GEMS [22] full system
simulation platform for our simulations. The simulated sys-
tem runs an unmodified Solaris operating system version 5.9



Workload Benchmarks Benign
Mix1 ammp, mcf, lucas, parser, vpr, twolf applu
Mix2 facerec, equake, swim, gcc, mgrid, gap apsi
Mix3 equake, mcf, ammp, swim, lucas, applu vpr
Mix4 vpr, facerec, gcc, mgrid, parser, gap fma3d
Mix5 parser, gap, apsi, fma3d, perbmk, crafty art

Table 2. Workloads

and simulates a 8-core CMP. Each core is modeled by OPAL
module in GEMS. OPAL simulates an out-of-order processor
model, implements partial SPARC v9 ISA, and is modeled af-
ter MIPS R10000. For our memory subsystem simulation, we
use the RUBY module of GEMS which is configured to simu-
late an MOESI directory-based cache coherence protocol. We
use a 4-way 128KB L1 cache. The L2 cache is 8-way banked,
with a point-to-point interconnect between the L2 banks and
L1. For the L2 cache, we used a modification of cache replace-
ment scheme to support fairness as suggested by cache fair-
ness studies [18, 29, 34]. This replacement scheme enforces
per processor shares in the L2 cache (we set equal shares for
all processors). This scheme ensures that the shared cache is
used efficiently while still providing performance isolation be-
tween sharers. We used CACTI-3.0 [32] to model the latency
of our caches and DRAMsim memory system simulator [35]
to model the DRAM system. We modified DRAMsim to im-
plement the transaction scheduling policies studied in this pa-
per. DRAMsim was configured to simulate 667 MHz DDR2
DRAM devices, with timing parameters obtained from the Mi-
cron DRAM data-sheets [24]. We used open page policy for
row buffer management (row buffer kept open after a column
access), instead of closed page policy (row buffer closed af-
ter each column access), as our base case command scheduling
policy exploits row buffer hits. Table 1 lists the key parameters
of the simulated machine.

We used five multiprogrammed workloads for this study as
shown in Table 2. These workloads include the most memory
intensive applications from SPEC 2000 suite as mentioned by
[39]. In order to test the effectiveness of our performance iso-
lation policy, we use a kernel that acts as a DRAM bandwidth
hog. The hog creates a matrix bigger than the cache space
and accesses its elements in such a way that its each access is a
miss. For the experiments with hog, it replaces the benchmark
listed as “Benign” (Table 2) in the mixes. For our simulations,
caches are warmed up for 1 billion instructions and the work-
loads are simulated in detail for 100 million instructions. In or-
der to isolate the results of our benchmarks from OS effects, we
reserve one (out of eight) core for the OS and run benchmarks
on the remaining 7 cores. We simulate the adaptive policy in-
side the simulator without modifying the operating system.

5. Results

The two primary results of our experiments are:

1. Our fair queuing mechanism offer better performance
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Figure 5. Worst-case Sharer Service Latencies
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Figure 6. Average Sharer Service Latencies

isolation compared to FQ-VFTF proposed by Nesbit et
al. [27]. The improvements are visible in both fairness
(improvement in maximum sharer service latency) and
performance (21% improvement in IPC).

2. The feedback-driven adaptive policy achieves latencies
within 12% of the target. The policy shows a behavior
which is stable and responsive with the smoothing factor
of 80.

We elaborate on these two results in the remainder of this sec-
tion.

5.1. Performance Isolation

In this section, we will present results for experiments per-
formed to study the performance isolation or fairness capabil-
ities of different transaction scheduling policies. In these ex-
periments, hog is included as a sharer and the share (φ) of
each sharer is set to be equal. In order to analyze the fairness
and/or starvation behavior of different transaction scheduling
policies, we measured sharer service latencies for each DRAM
command. Sharer service latency for ith command from sharer
a is calculated as follows:

sharer service latencya
i = t−MAX(arrivalai − last servicea)
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Figure 7. Normalized IPC

where t is the time that the command is issued, arrivala
i

is
the arrival time for the command, and the last servicea is the
time when the last command from the same sharer was issued.

The strength of a fair queuing algorithms is often repre-
sented using the worst case latencies observed by sharers under
that policy [3], as it highlights the possibilities of starvation.
We adopt the same approach and present the maximum (worst
case) sharer service latencies of different transaction schedul-
ing policies for all benchmarks in Figure 5. It can be observed
that the OBF policy has extremely high sharer service latencies.
In Section 3.2, we introduced SPT as a measure to avoid star-
vation and expect small values of SPT to avoid starvation. The
results in Figure 5 clearly show that behavior. On average, the
worst case service latencies increase with an increase in SPT
value. One can notice that for some mixes (Mix1, Mix3 and
Mix5), the relationship between worst case service latency and
SPT is not monotonic, i.e., a higher SPT has a smaller worst
case latency. The worst case latency depends on the dynamics
of the system and the worst case is not guaranteed to happen
always. It can be observed that FQ-VFTF has high worst case
sharer service latencies, in some cases even higher than OBF
and 15 times higher than DSFQ3 on average. There are multi-
ple reasons behind this behavior (they were mentioned earlier
in Section 2.1 and in Section 3.1). First, FQ-VFTF assigns fin-
ish tags to commands of a sharer out-of-order, and second, a
bursty sharer can cause longer latencies for other sharers once
it becomes backlogged.

It should be noted here that the worst case behavior is not
representative of performance, as it might occur only rarely.
For performance, average or common case behavior is consid-
ered more relevant. Thus we shift our focus to average sharer
service latencies. Figure 6 plots average sharer service laten-
cies for different transaction scheduling mechanisms. OBF re-
sults in the worst latency of all mechanisms (68.7 cycles) on
average, while DSFQ3 shows best latency (36.8 cycles). It
should be noted here that the average sharer latency of DSFQ1

is slightly higher than DSFQ3. The reason is that DSFQ1

strictly enforces DRAM command ordering, and does not uti-
lize the DRAM system very efficiently. FQ-VFTF has aver-
age sharer service latency of 44.4 cycles on average, which
is 17.1% worse than DSFQ3. It should also be noted that

FQ-VFTF has better sharer service latencies on average than
DSFQ20 (which was not true for worst case sharer service la-
tencies). This shows that FQ-VFTF has better average case
behavior than its worst case behavior.

Figure 7 shows the normalized IPC of all benchmarks with
different transaction scheduling mechanisms. It can be ob-
served that performance trends are similar to the average sharer
service latency. DSFQ3 gets the best performance on average,
followed by DSFQ1 and DSFQ5. DSFQ3 improves perfor-
mance by 158% over OBF and by 21.7% over FQ-VFTF. FQ-
VFTF shows better performance than DSFQ20 and improves
performance by 102% over OBF. It should be noted that the
best performing policy is different for different mixes. For
Mix1 and Mix3, DSFQ5 performs the best. In case of Mix2 and
Mix4, DSFQ3 has the best performance, while DSFQ1 works
best for Mix5. That confirms the observations we made in Sec-
tion 3.2. In some cases, serving request in the exact order dic-
tated by start tags can hurt performance, as it would increase
the number of bank conflicts (as shown by Mix1, Mix2, Mix3

and Mix4 for DSFQ1). In other cases, prioritizing ready com-
mands and row buffer hits can hurt the performance as the la-
tency of other requests increases, as can be seen in Mix5. In
general, we observed that SPT values in the 1 to 5 range are
ideal choices if SPT is to be statically chosen. One may also
consider a feedback-based adaptive approach (similar to the
one described in Section 3.3) for automatically tuning the SPT
for any application mix. We do not study adaptive SPT tuning
in this paper.

5.2. Adaptive Policy

In this section, we will present results for the adaptive pol-
icy explained in Section 3.3. For these experiments, we replace
hog by the benchmarks listed as Benign in Table 2. We restrict
ourselves to Mix1, Mix2 and Mix3 for these experiments, as the
other two mixes do not have a significant level of contention
in memory. The target latency is set to be 600 cycles for
these experiments. We selected one benchmark from each mix
(lucas, swim and ammp for Mix1, Mix2 and Mix3 respec-
tively) as the prioritized application. In our simulations with-
out adaptive policy, we noticed that lucas, swim and ammp
had average memory latencies of 1267, 504 and 1273 cycles
in their respective mixes. Thus the target latencies are lower
than the observed latencies for lucas and ammp and higher
for swim. We made this choice to study the capability of the
adaptive algorithm for both kind of targets. A target higher
than actual latency can be useful, if the targeted sharer can be
de-prioritized to improve the latencies of other contenders. We
chose DSFQ5 as the underlying transaction scheduling mech-
anism for these experiments. We performed our experiments
with different values of smoothing factor (α in Figure 4) and
found that the smoothing factor of 80 provides a good com-
promise between agility and stability of the algorithm.

Figure 8 plots the memory latencies achieved by the adap-
tive policy for the three selected benchmarks. It can be ob-
served that the algorithm reaches the target latencies in 3
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Figure 8. Latency Achieved by Adaptive Scheme

epochs for all the three mixes. For Mix2 and Mix3, there is
a small overshoot. In the case of Mix1, the latency starts to
increase after reaching the target (due to increased number of
DRAM requests) but the algorithm detects that change and ad-
justs the share accordingly. The algorithms sets the shares of
lucas, swim, and ammp to 35%, 9% and 37% respectively
in the steady state (share numbers are not shown in interest of
space). The algorithm achieves average latencies within 12%,
2.5% and 9% of the target latency for the three benchmarks.
That results in an IPC improvement of 64% and 38.5% for
lucas and ammp respectively; and a slight reduction in IPC of
swim with a little increase in the performance of other bench-
marks in Mix2.

The above results show that the adaptive algorithm is sta-
ble, responsive and achieves the target latencies. It can also be
observed that such an adaptive algorithm can be used for ef-
fective prioritization, as it improves the IPC by up to 64% for
one of the benchmarks. We also performed some experiments
in which the latency target was too low to be achieved. In such
cases, the adaptive policy settled at the closest achievable la-
tency to target.

6. Related Work

Memory bandwidth management for chip multiprocessors
have recently attracted attention of researchers. Nesbit et
al. [27] proposed a scheme for providing QoS in the mem-
ory controller of a CMP. They implemented fair queuing, but
they used real time, instead of virtual time in their calculation
of finish tags. They base this choice on the argument that a
thread which has not been backlogged in the past should be
given higher share if it becomes backlogged. We noticed that
if such a thread has a bursty behavior, it can cause starvation for
other threads (as shown in our results in Section 5.1). Hence
we make the case that if a thread does not use excess band-
width at the cost of other threads, it should not be penalized.
This notion has been widely accepted in networking commu-
nity [8]. Moreover, in their scheme, finish tag is assigned to
each command and is calculated using the actual time taken by
the command (which is not known until a command is issued).
Thus in their scheme, memory references are not assigned fin-

ish tags in their arrival order. We make the observation that this
can cause starvation and unexpectedly long latencies for some
memory references (See Section 3.1 for further details). Nesbit
et al.suggest that their scheme provides QoS but concede that
it cannot guarantee any limits on the overall latency observed
by memory references. Our scheme not only solves the above
mentioned problems, but also simplifies the implementation of
the hardware mechanism.

Iyer et al. [14] used a simple scheme for DRAM band-
width allocation, and refereed to the work by Nesbit et al. [27]
for more sophisticated DRAM bandwidth management mech-
anism. Moscibroda et al. [25] studied the fairness issues in
DRAM access scheduling. They defined the fairness goal to
be “equalizing the relative slowdown when threads are co-
scheduled, relative to when the threads are run by themselves”.
Thus their scheme has additional overhead for keeping track
of row buffer locality of individual threads. Natarajan et
al. [26] studied the impact of memory controller configura-
tion on the latency-bandwidth curve. Zhu et al. [39] proposed
the memory system optimizations for SMT processors. There
have been many proposals discussing memory access ordering
[11, 23, 30, 31]. We have used an aggressive memory access
ordering scheme as our base case in this study.

Some memory controller proposals provide methods of
supporting hard real time guarantees on memory latencies
[9, 20, 33]. These schedulers either rely on knowing the mem-
ory access pattern and are not suitable for general purpose sys-
tems or compromise efficiency for providing QoS. Our scheme
is flexible as it lets the OS choose the right balance between
efficiency and QoS. Moreover, it is based on feedback based
control and do not make any assumptions about arrival pattern
of memory requests. Feedback based control of weights in fair
queuing is studied in other contexts [16, 38]. Our adaptive
scheme is designed using the observations made by these stud-
ies. (The design of a basic feedback-based control algorithm is
not claimed as our contribution).

7. Conclusion

In this paper, we proposed a scheme for managing the
DRAM bandwidth. Our scheme is simple, fair and efficient.



Simplicity is achieved by treating each memory request as a
unit of scheduling (instead of composed of multiple DRAM
commands). The simplicity of our scheme enables fairness by
allowing us to use start time fair queuing with proven bounds
on worst case latency. The scheme utilizes DRAM efficiently
as it schedules commands to maximize row buffer hits, unless
such scheduling order starts conflicting with fairness goals. En-
forcing DRAM bandwidth shares is not adequate to achieve
predictable memory access latencies. Thus we introduced an
adaptive algorithm which adjusts the weight assignment of
sharers to achieve desired latencies.

Our results show that our scheme provides very good av-
erage and worst case sharer service latencies. It shows a per-
formance improvement of 21% on average over FQ-VFTF. Our
adaptive policy achieves latencies within 12% of the target, and
results in performance improvement of up to 64%. In future,
we plan to explore more sophisticated adaptive policies, which
try to achieve target latencies for multiple sharers.
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