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Abstract
Microfluidics has enabled lab-on-a-chip technology to minia-

turize and integrate biological and chemical analyses to a single
chip comprising channels, valves, mixers, heaters, separators, and
sensors. Recent papers have proposed programmable labs-on-a-
chip as an alternative to traditional application-specific chips to
reduce design effort, time, and cost. While these previous papers
provide the basic support for programmability, this paper identifies
and addresses a practical issue, namely, fluid volume management.
Volume management addresses the problem that the use of a fluid
depletes it and unless the given volume of a fluid is distributed
carefully among all its uses, execution may run out of the fluid
before all its uses are complete. Additionally, fluid volumes should
not overflow (i.e., exceed hardware capacity) or underflow (i.e.,
fall below hardware resolution). We show that the problem can be
formulated as a linear programming problem (LP). Because LP’s
complexity and slow execution times in practice may be a concern,
we propose another approach, called DAGSolve, which over-con-
strains the problem to achieve linear complexity while maintaining
good solution quality. We also propose two optimizations, called
cascading and static replication, to handle cases involving extreme
mix ratios and numerous fluid uses which may defeat both LP and
DAGSolve. Using some real-world assays, we show that our tech-
niques produce good solutions while being faster than LP.

Categories and Subject Descriptors
D.3 [Programming Languages]: Compilers
General Terms: Algorithms, Design
Keywords: Microfluidics, Programmable lab-on-a-chip, Fluid
volume management

1  Introduction
Microfluidics is the field of handling fluids in small quantities,

typically at the scale of nano or pico liters. Microfluidics has min-
iaturized and integrated channels, valves, mixers, heaters, and sep-
arators to enable chemical and biological analyses in a single chip
called a lab-on-a-chip (LoC). LoCs enable faster, cheaper and
higher-precision analyses over the traditional bench-scale methods.
To date, LoCs have been applied in diverse industrial and academic
domains, such as drug discovery, virology, clinical applications,

genomics, biochemistry and chemical synthesis.
Thus far LoCs have been designed as application-specific chips

which closely map an assay (fluidic algorithm) to the LoC hard-
ware. Assays are analogous to conventional computer programs,
where fluids correspond to variables, and operations such as mix,
incubate, separate and sense manipulate input fluids to generate
new fluids. The application-specific approach leads to considerable
design effort, turn-around time, and cost. To address these limita-
tions, Urbanski et al. [13] pioneer the idea of programmable labs-
on-a-chip (PLoC)1, and introduce a new programming language
for microfluidics called Biostream [10]. In prior work, we pro-
posed a comprehensive instruction set called AquaCore Instruction
Set (AIS), and a microarchitecture called AquaCore [2].

While the previous papers provide the basic support for pro-
grammability, this paper identifies and addresses a practical issue,
namely, fluid volume management. The issue of fluid volume man-
agement arises because fluids have a fixed total volume, and the
use of a fluid (variable) depletes it. If there are many uses of a fluid,
the given volume of the fluid must be distributed carefully among
the uses to prevent execution from running out of the fluid before
all of the uses occur. This distribution poses a challenge when the
uses require different proportions of volumes as is the case when a
fluid is mixed with different other fluids in different ratios (e.g.,
one use for a fluid is in a mix ratio of 1:2 while another use for the
same fluid is in a mix ratio of 1:10). The destructive nature of fluid
uses is fundamentally different than that of use of variable values
in conventional computers where uses (i.e., reads) are non-destruc-
tive. This difference indicates the novelty of the problem, motivat-
ing the need for volume management. Dealing with destructive
uses is further complicated by low-level, implementation-depen-
dent details of the fluidic hardware, such as maximum capacity (of
reservoirs and functional units) and minimum fluid transport reso-
lution (imposed by the fluid transport/ handling hardware). Forcing
the programmer to handle these constraints would diminish the
practicality of PLoCs. Consequently, we handle this issue automat-
ically using a combination of the compiler and run-time system.

Biostream has proposed a reactive approach for volume man-
agement, called regeneration [10]. Regeneration allows the fluid to
run out and re-generates the fluid just before the next use by re-
executing the code fragments that produce the fluid (i.e., the back-
ward slice [11]). While elegant in theory, regeneration may place a
high or unbounded demand on LoC resources. Mimicing
unbounded resources through virtualization is feasible in conven-
tional computers, but microfluidic technology is not yet at that

1. We clarify that PLoC’s programmability is software programmability
(like microprocessors), and not burn-in programmability (like FPGAs).
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level of maturity. Even when regeneration is feasible, regeneration
re-executes fluidic instructions (in the fluidic datapath) which are
slow and are likely to incur overhead (PLoCs use a heterogeneous
organization where the datapath is fluidic and control is electronic
and orders-of-magnitude faster [10][2]). In contrast, we take the
pro-active approach of reducing the chances of running out of a
fluid (but not eliminating it, as we explain later). Thus, our
approach mostly avoids regeneration’s overhead while regenera-
tion can be used as our back-up when our approach cannot avoid
fluid running out.

The key challenge is ensuring that not only all the direct uses of
a given fluid but also all the uses of fluids indirectly derived from
the given fluid satisfy their respective usage proportions. For
instance, an assay mixes fluids a and b in some ratio to produce
fluid c and then mixes fluids a and c in some other ratio to produce
fluid d, which is later used to produce fluid e. Thus, we need to
ensure that our distribution of a’s volume among its uses results in
enough volume of d for its later use. Additionally, fluid volumes
should not overflow (i.e., exceed hardware capacity) or underflow
(i.e., fall below hardware transport resolution), and must be an
integer multiple of the minimum hardware transport resolution.
We call this volume-assignment problem Integer Volume Manage-
ment (IVol). At present, the complexity of IVol is unknown and is
left as an open question for future work. However, we show that
IVol can be cast as an integer linear programming (ILP) problem.
This formulation is our first contribution. Because ILP is NP-Hard,
and because the underlying chemistry in inherently tolerant of
minor inaccuracies in mix ratios, we provide a rational formulation
of the problem, called Rational Volume Management (RVol), and
round the resulting volume assignment to integers. To solve RVol,
we employ linear programming (LP) instead of ILP. However, for
L-bit inputs and n variables, LP has a worst-case asymptotic com-
plexity of O(n3L) [4]. While such complexity may be tolerable for
modest-size assays at compile-time, there are cases where we have
to solve this problem at run-time because volumes of some inter-
mediate fluids may not be available at compile time (e.g., the vol-
ume yielded by a separate-by-size step may not be known a
priori). In such cases, LP’s complexity may be a concern despite
the fact that run-time computations can be done in the PLoC’s fast
electronic control. While one may think that LP solvers are fast in
practice despite LP’s worst-case complexity, we show that LP is
significantly slow for real-world assays. Consequently, we wish to
rely on LP at run-time only if there are no other alternatives.

We propose one such alternative approach for RVol, called
DAGSolve, which artificially over-constrains the problem to
achieve a linear-complexity solution. Because of its artificial con-
straints, DAGSolve may, in some uncommon cases, not find a solu-
tion even though LP may. In our experiments with real-world
assays, DAGSolve was always successful, as we show in
Section 4. Therefore, DAGSolve is a more suitable run-time option
than LP. DAGSolve is our second contribution. For the uncommon
case where DAGSolve fails to find a feasible solution, we fall back
on LP, which itself may not find a solution and is backed up by
BioStream’s regeneration because it is better to provide a slow
solution than no solution.

There are corner cases, such as extreme mix ratios (e.g., mix
ratio of 1:1000) or numerous uses of a fluid (e.g., 7 uses of a fluid
that has a volume of 6 multiples of minimum hardware transport
resolution), that can defeat both LP and DAGSolve. For instance, a

mix ratio of 1:399 using hardware with maximum and minimum
capacities of 100 and 1 units, respectively, would cause either an
underflow or an overflow. To handle extreme ratios, we employ
cascading, a well-known idea in life sciences, to break an extreme
ratio into two or more cascaded ratios (e.g., break 1:399 into 1:19
followed by 1:19). Finally, because of hardware limit of maximum
capacity, numerous uses of a fluid can cause underflow even if we
produce as much volume of the fluid as possible without causing
overflow. In such cases, we produce extra volume by replicating
the backward slice of the fluid’s production. The two optimizations
of applying cascading and static replication to assays are our third
contribution.

To implement our ideas, we build a simple compiler and a soft-
ware run-time system which we describe in the paper. We evaluate
our ideas on real-world assays and show that our techniques are
effective in avoiding fluid overflow and underflow.

The rest of the paper is organized as follows. Section 2 presents
some background on PLoCs and related work. Section 3 discusses
the ILP formulation, DAGSolve, and its extensions. We show our
compiled code and present our results in Section 4, and conclude
in Section 5.

2  Background
There are two primary technologies for microfluidic devices:

flow-based and droplet-based. Flow-based technologies rely on
continuous or discrete fluid manipulation, while droplet-based
technologies manipulate free-standing droplets of fluids. We focus
on flow-based devices, though our techniques may be adapted for
droplet-based LoCs.

Today’s real-world application-specific LoCs typically com-
prise of channels (for fluid transport), valves (for flow control), res-
ervoirs (for storage), input and output ports, and fluidic functional
units, such as mixers, heaters, separators and sensors. Implementa-
tion details of these components can be found in [8]. The PLoC
uses these pre-existing building blocks.
2.1 Baseline PLoC Architecture

We use AquaCore [2] as our baseline PLoC architecture, and
implement our volume management techniques based on the
AquaCore Instruction Set (AIS). Assays written in AIS are very
similar to conventional computer assembly programs, where fluids
correspond to variables, and operations such as mix, incubate, sep-
arate and sense manipulate existing fluids to generate new fluids.
Though AIS may seem similar to their computer instruction sets,
there are four key differences based on observations of real-world
assays [2].

First, because intermediate fluids produced in assays are often
used only once and usually immediately after their production,
binding the fluids to storage results in unnecessarily moving the
fluids from functional units to storage and back. To that end, AIS
employs storage-less operands which are decoupled from storage
so that fluids are transferred from one functional unit to another
without any intervening storage (similar to [6]).

Second, assays are typically specified using variable volumes,
unlike computational operands which use fixed-size data types and
rely on padding to handle other sizes. However, fluidic operands
cannot be padded easily to a fixed larger volume (by topping off) in
cases where reagent concentrations have to be maintained. Accord-
ingly, AIS instructions operate on variable volumes. All our pro-



active volume management techniques handles variable volumes.
Third, because most assays specify volumes only in a few steps

and leave operand volumes implicit, forcing every instruction to
specify its operand volume would be cumbersome. Accordingly,
AIS allows operand volumes to be implicit. In the few steps when
assays specify volumes, they usually use relative volumes. There-
fore, AIS allows operands to optionally specify relative volumes
(but also allows absolute volumes in the uncommon case). Because
the use of relative volumes combined with the destructive nature of
fluid usage can result in assays running out of a fluid, relative-vol-
ume operands give rise to the need for volume management.

Fourth, because microfluidics lacks the theoretical guarantees
of universality (i.e., the fluidic equivalent of Turing-Complete-
ness), PLoCs must turn to experimental evaluation for coverage.
While this aspect is orthogonal to this paper, we list this aspect for
completeness.

A subset of the AquaCore Instruction Set (AIS) is shown in
Table 1 (see [2] for the complete set). The operand id space
includes not only reservoirs (analogous to registers), but also func-
tional units, allowing one instruction to send its output directly to
another without having to go to storage (i.e., storage-less oper-
ands). Most instructions do not specify any volumes for their oper-
ands. For such instructions, the functional unit operates on the
implicit volume available, and allows variable volume handling.
The optional operand <rel vol> in move specifies relative vol-
umes for transfer. The relative volumes are translated to implemen-
tation specific volumes at runtime, enabling variable volume
support and increased code portability. The list includes different
flavors of separate and sense (e.g., separate.CE denotes elec-
trophoresis-based separation, separate.AF separates using
affinity to a reagent pre-loaded in the separator, sense.OD and
sense.FL denote sensing of optical density and fluorescence,
respectively).

Figure 1 shows a block diagram of the AquaCore microarchi-
tecture consisting of heterogeneous components: a dry electronic
control part and a wet fluidic datapath part. Because electronics is
mature, reliable, inexpensive and can provide control functionality,
AquaCore uses electronic control. The electronic dry part inter-
prets AIS instructions and provides control signals to the wet part,
and is implemented using a conventional microcontroller. As such,
the dry electronic control is orders of magnitude faster than the flu-
idic wet part, a difference we leverage to perform some run-time
computation in our volume management scheme without incurring
performance overhead.

The wet part consists of fluidic functional units (FFUs) (e.g.,
mixers, heaters, separators, and sensors), a set of reservoirs, and
input and output ports. These components are connected by a set of
channels. Furthermore, these components have a capacity limit,
exceeding which would cause an overflow. Note that the number of
reservoirs is fixed and limited, and current LoC technology does

not provide a dense equivalent (such as DRAM or disk), hence
careful compile-time allocation is required. Additionally, Aqua-
Core uses microfluidic valves to control fluid flow which, much
like electronic tri-state buffers, are central to enabling PLoC opera-
tion under program control. At each end of each channel is a
microfluidic pump that effects fluid transfer from one component
to another by peristalsis as described in [2]. These pumps may be
used for accurate volume metering [12], which is required to han-
dle variable volumes. Further, they impose a discrete, minimum
volume transport unit, or least count. Finally, we note that, while
several hardware techniques exist to achieve fluid transfer and
metering [8], they all exhibit some form of least count.

3  Automatic Volume Management
Recall from Section 1 that volume management is needed

because the use of a fluid results in the fluid’s depletion, and if
there are many uses of a fluid, the initial volume of the fluid must
be distributed carefully among the uses to prevent execution from
running out of fluid. Such distribution must obey the relative-vol-
ume proportions specified by the assay. Dealing with destructive
uses is further complicated by low-level, implementation-depen-
dent details of the fluidic hardware, such as maximum capacity and
minimum transport resolution.

Fundamentally, this running out occurs because real implemen-
tations have a least count. Consider an example, where fluid A is
partitioned into four portions and one of the portions is to be mixed
with fluid B in the ratio 10:1 (A:B). Then if A’s portion in this mix
is small to start with then B may underflow (i.e., the volume
needed may be smaller than the least count). Burdening the pro-
grammer with the details of avoiding such underflow would defeat
the purpose of PLoCs, and as such, an automatic scheme for vol-
ume management is required. However, because a fluid may have
multiple uses like the above example, avoiding underflow requires
automatic schemes to assign volumes such that all the uses of a
fluid can be satisfied.

One may think that the example assumes four uses of A which
is uncommon as fluids are usually used only once (Section 2.1).
However, we note that multiple uses may lead to the correctness
problem of fluid running out. As observed in computer systems
research, the common case is not everything; the uncommon case
must be correct.

While our concern is allocation of portions among uses to avoid
running out of fluids, evaporation and residue in the fluidpath may
also cause fluids to run out. Evaporation is alleviated by immersing
the fluidpath in immiscible liquids (oils in most cases) [9]. Residue
in the fluidpath is reasonably predictable and can be corrected by

• move id1, id2, <rel vol>
• move-abs id1, id2, vol
• mix id1, time
• separate.CE id1, Esep, len,

time
• separate.SIZE id1, time
• separate.AF id1, time

• incubate id, temp, time
• input id2, id1
• output id2, id1
• sense.OD id1, senseval
• sense.FL id1, senseval[]
• concentrate id1, temp, time

Table 1: A subset of AIS

Figure 1: Microarchitecture
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over-provisioning [12]. As such, our techniques ignore fluid loss.
Our problem is defined as follows. Given as assay which uses

fluids in one or more instructions, in different ratios, find an abso-
lute volume assignment for each use of each fluid, such that the
assignment: 1) satisfies the usage ratio constraints as defined by
the assay; 2) is an integer multiple of the least count hardware res-
olution; 3) does not underflow (i.e., the minimum fluid use in any
operation is greater than or equal to the least count); and 4) does
not cause an overflow (i.e., the total amount of fluid assigned in
any operation is less than the hardware maximum capacity). We
call this problem Integer Volume Management (IVol).

Before describing our volume management schemes, we note
that in the absence of unlimited fluidic hardware resources our
techniques can only minimize, but not eliminate, the possibility of
underflow, just like a computer program can cause underflow in
floating-point arithmetic. Such underflow cannot be prevented by
the system and the assay must be rewritten to avoid underflow.

In general, there are two fundamental ways to address this
problem: either by pro-actively and conservatively using fluids
such that they last for the entire assay (if possible); or by reactively
regenerating fluids that are exhausted. Reactive approaches may
incur overhead due to regeneration’s re-execution which runs on
the slow fluidpath, as described in Section 1. We adopt the pro-
active approach which reduces the chances of underflow and thus
the number of times regeneration is needed. We fall back on regen-
eration when underflow is not avoided by our approach.

Volume management amounts to computing absolute volumes
as long as two factors are known statically: (a) the number of uses
of all fluids in an assay and (b) the output volumes (relative to the
input) of all assay steps. However, if either of these factors is
unknown statically and can be determined only at run-time, then
computing the absolute volumes becomes more involved. The
number of uses is statically known for straight line code and not
known for assays with control flow. While volumes of fluids in
most steps are known or are computable at compile time (e.g., the
volume in a mixture is in general the sum of volumes of the com-
ponents and thermal expansion of fluids due to heating is usually
too insignificant to alter volumes), there are exceptions that need
online volume measurement. For instance, when mixing or heating
alters the fluids’ chemical nature, or, more commonly, in the case
of separations where the volume of the output is unknown at com-
pile time. Such exceptions are known to the compiler or assay
writer, and we assume that the corresponding operation can be
flagged (e.g., using an opcode variant) so that the volumes can be
measured at run-time [3].

We discuss our proposed solutions in three parts. First, we
describe our DAG internal representation (Section 3.1) and our
algorithms for the statically-known case (Section 3.2-Section 3.3).
Second, we present extensions to DAGSolve that handle corner
cases of in Section 3.4. Finally, we extend the base algorithms to
support statically-unknown cases in Section 3.5.
3.1 Assay DAG Representation

We represent an assays as a simple directed acyclic graph
(DAG) defined as follows. Nodes represent operations (typically
volume-aggregating operations such as mixes) and edges represent
true dependence among the operations. The edges are annotated
with values to denote the ratio in which the source fluids is used in
the operation. Input nodes have no in-bound edges and final output

nodes have no outbound edges. Figure 2 shows a simple assay and
its corresponding DAG. Because all fluid uses are known and
because there are no unknown output volumes (relative to input) in
the assay, the DAG corresponds to the statically-known case.
Assays with loops are also represented as DAGs whenever the
loops can be unrolled completely, as we see later.
3.2 Integer Volume Management (IVol) and ILP Formulation

The problem of Integer Volume Management (IVol) is one of
assigning volumes in integer multiples of least-count to the various
uses of fluids to satisfy the assay constraints (mix ratios, number of
uses) and the hardware constraints (maximum capacity and least-
count). We have attempted to determine the complexity of IVol and
tried casting it as some well-known problems. For example, one
may think that volume management can be cast as a network flow
problem. However, network flow problems have the key require-
ment of flow conservation at intermediate nodes (i.e., the sum of
all outputs of a node is equal to the sum of it’s inputs), while in our
case, each intermediate node potentially violates such requirement
because all the produced fluid need not be used. We show later in
Section 3.3 that imposing flow conservation still does not make the
problem amenable to casting as a network flow problem. As such,
determining the complexity of IVol is left as an open question for
future work.

We show that IVol can be cast as an integer linear programming
problem (ILP). We describe the ILP formulation (constraints and
objective function) in the context of our DAG representation (say
G(V,E)). The variables representing the volumes in nodes and
edges are subject to the following classes of constraints with the
number of constraints for each type shown parenthetically. (1)
Minimum volume constraints ensure that no volume is smaller than
the least count (one constraint per edge, |E| constraints in all). In
addition to the least count constraint, there may be additional min-
imum volume constraints for fluid functional units (e.g. separa-
tors). (2) Maximum capacity constraints limit the sum of volumes
assigned to edges entering a node to the node’s hardware capacity
(one constraint per node, |V| constraints in all). (3) Non-deficit con-
straints ensure that the use of a fluid (the sum of volumes of out-
bound edges) at a node does not exceed the volume of the fluid,
which is the sum of volumes of inbound edges (one constraint for
every non-output node, |V| constraints at most). (4) Ratio con-
straints ensure that volumes of the inbound edges are in the speci-
fied mix ratio (one constraint for each node corresponding to a
mix, |V| constraints at most). (5) Relative node output to input, for
nodes representing instructions such as separates, where the output
volume of a node is not necessarily equal to the sum of its inputs,
rather a relative fraction of the total input (one constraint for each
node of the fractional output type, |V| constraints at most). Though
any feasible volume assignment that satisfies the above constraints
is adequate to remove underflow, we set the objective function to
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L = mix B:C in ratio 2:1
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N = mix L:C in ratio 2:3
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maximize the sum of all output volumes to maximize the output
production. In some cases, the solution may be skewed to produce
very little of one output fluid and much more of another output
fluid if such outputs maximize the sum of all output volumes. To
avoid such skew, we add one optional set of constraints called Rel-
ative output-to-output constraints, where output volumes are set to
be within a fixed percentage of each other (twice the number of
constraints as output nodes, |V| constraints at most). Note that for
simplicity we bound the relative ratio of all outputs with respect to
one output instead of bounding every possible pair which would
result in O(V2) constraints). Figure 3 shows the optimization func-
tion and set of constraints derived from the assay shown in
Figure 2.

One drawback to using ILP to solve IVol is that ILP is NP-
Hard. An alternate approach to solving IVol is to use LP (polyno-
mial complexity) to provide a non-integer solution and then round
the result to an integer, which we call Rational Volume Manage-
ment (RVol). One may think that practical ILP solvers are fast in
practice and that the asymptotic worst-case complexity difference
between ILP and LP may not necessarily translate to execution
time reduction for our specific problems at typical problem sizes.
However, we show later in Section 4.3 that the ILP solver we used
is significantly slower than the LP solver for some of our bench-
marks.

Simple rounding of the RVol results to the nearest integers may
cause inaccuracies in mix ratios. Rounding up causes more input
fluids to be consumed and rounding down causes less output fluids
to be produced, both of which may lead to underflow. Fortunately,
the underlying chemistry is inherently tolerant of small impreci-
sions in mix ratios, given that usual operating volumes are in the
order of nanoliters and the least count is in the order of picoliters.
We did not observe such underflow problems in practice and the
errors for our benchmarks were below 2%. As such, we defer
investigation of more sophisticated rounding techniques to the
future.

While the LP-based solution to the RVol problem is feasible,
we make two observations to motivate a more efficient algorithm
for RVol. First, while the polynomial execution time of LP-based
RVol may seem tractable for compile-time volume assignment,
volume assignment must occur at run-time for statically-unknown
cases, as mentioned in Section 1. LP has worst-case complexity of
O(n3L), where n is the number of variables and L is the number of
bits in the binary representation of the variables [4]. Because
worst-case asymptotic complexity may not be an accurate indica-
tor of practical execution times, we show in Section 4.3 that LP
can still be significantly slow for large assays. Second, as PLoCs
become more widespread and their programmability matures,

composition of assays will lead to larger assays, resulting in a cor-
responding increase in the input to the LP problem. Next we
describe our linear-complexity RVol algorithm that overcomes the
above problems.
3.3 DAGSolve

To overcome the high complexity of our LP formulation to
solve RVol, we make the key observation that, by adding some arti-
ficial constraints, the problem of fluid volume management can be
solved in linear complexity, occasionally sacrificing a feasible
solution that would be found by LP. To that end, we propose DAG-
Solve, a linear time algorithm for fluid volume management, and
fall back on LP when DAGSolve fails to find a feasible volume
assignment.

DAGSolve over-constrains RVol by adding the two following
constraints. First, we constrain the output volumes (say A, B and
C) to be in some relative proportion to each other (say Va:Vb:Vc)
while LP allows the outputs to be any volume. Note that this con-
straint does not fix the absolute volume of any output. Second,
whereas LP imposes only the non-deficit constraint that can cap-
ture feasible solutions that may have excess fluids, we add a no-
excess, flow-conservation constraint as well. Effectively, the flow-
conservation constraint forces the generated volume for each inter-
mediate fluid to be equal to the total volume of its uses.

Recall that the key distinction between the volume assignment
problems and network flow problems was that flow conservation
was not necessary in volume assignment. We reconsidered using
the network flow approach after artificially introducing flow con-
servation. Some aspects of the problem, such as achieving a mix-
ratio, can be expressed as multi-commodity network flow (MCNF)
given absolute volumes. However, our problem requires the com-
putation of absolute volumes from relative volumes. Further, each
node in an assay creates a new fluid (commodity) due to mixing,
heating or similar alteration. Therefore, each commodity traverses
a single level in our DAG, unlike MCNFs. As such, we did no pur-
sue the network-flow approach.

Our DAGSolve algorithm uses the above two additional set of
constraints to reduce RVol to a simple propagation algorithm on
the DAG. DAGSolve starts with the final relative output volumes
(the first additional constraint), then performs a backward pass on
the DAG to assign relative volumes to all nodes and edges, such
that all the assay constraints (ratio constraints and relative output-
to-input constraints) and the flow-conservation constraint (the sec-
ond additional constraint) are satisfied. Then a forward pass
assigns real absolute volumes which impose the hardware con-
straints (least count and maximum capacity) on the solution. The
pseudocode for the algorithm is shown in Figure 4.

We define a node’s Vnorm as a measure of the fluid volume at
the node relative to other nodes. Because Vnorm is a relative mea-
sure, all nodes’ Vnorm value should be normalized to a common
node or set of nodes. To that end, we choose this set of nodes to be
the output nodes (leaf nodes), and apply the first artificial con-
straint of setting all output nodes’ Vnorm = 1 (i.e., each output is
normalized to itself and all the output volumes are equal). Though
the Vnorms could be set to arbitrary values to produce outputs in
arbitrary ratios without any other changes to the algorithm, unless
we have information to prefer production of one output fluid over
another, we initialize all output volumes to be equal. Similarly, we
define an edge’s Vnorm as the volume of the fluid associated with

Figure 3: ILP formulation
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f = sum(M,N)
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all 1:1 ratios)
r - s = 0
t - u = 0
v - w = 0
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the edge normalized to the volumes of the final output fluids. Vnorm
calculation proceeds in reverse topological order of the DAG and
updates the values for edges and nodes (Figure 4, lines 3-7). Each
node is assigned a Vnorm equal to the sum of its outbound edges’
values (Figure 4, line 5) and then each inbound edge is updated as
the product of the original edge value (the original ratio) and the
node value (Figure 4, line 7). Note that setting each node’s Vnorm
to the sum of the outbound edges’ values is our second artificial
constraint requiring flow-conservation of fluids at intermediate
nodes.

Figure 5 shows the application of DAGSolve to the example
given in Figure 2. Node L is assigned 1/3 + 2/5 = 11/15 and edges
B-L and C-L are updated as 2/3*11/15 = 22/45 and 1/3*11/15 = 11/
45. Figure 5(a) shows the updated values for all the nodes and
edges. A node’s Vnorm may be less than one (e.g., node K) or more
(e.g., node B) depending on their relative volumes with respect to
output volume.

The next step is to assign absolute volumes based on nodes’
Vnorm (Figure 4, lines 8-11) and the hardware constraints. To avoid
overflow (i.e., to satisfy the maximum capacity constraint), we
assign the node with the largest Vnorm (node B in our example) a
volume equal to the default machine-dependent maximum (e.g.,
100 nl). To ensure that the original ratios specified by the assay are
honored, each other node and edge is assigned a fraction of the
default maximum equal to the ratio of its Vnorm to the largest Vnorm
(Figure 4, lines 10-11). Figure 5(b) shows the dispensed volumes
for all the nodes and edges.

If the ratio of the largest Vnorm to a smallest Vnorm is less than
the ratio of the default maximum to the least count, the smallest
Vnorm will underflow because its absolute volume will be less than
the least count. However, this failure in DAGSolve could be the
result of the additional constraints imposed by DAGSolve and does
not imply that there is no feasible solution. An LP solver solving

the original LP formulation (Section 3.2) without the additional
constraints could still discover a feasible solution. Thus, we fall
back on LP whenever our above approach leads to underflow.

In comparison with the worst-case O(n3L) complexity of LP,
DAGSolve is of linear complexity as it visits each node and edge
twice. Our results (Section 4) show that there is a significant differ-
ence in execution time (~80x). Thus, the use of DAGSolve as a
preferred technique that may sometimes fail combined with the
backing of a more robust, but slow LP solution can be viewed as a
volume management hierarchy. One may think that adding the
same artificial constraints to the LP formulation may, in practice,
increase the efficiency of LP. However, we show in Section 4.3 that
while LP does benefit in some cases from the additional con-
straints, the gap between DAGSolve and LP (with additional con-
straints) performance remains large (~60x).
3.4 Extensions to DAGSolve

Recall from Section 1, some corner cases of extreme mix ratios
or numerous uses of a fluid may arise for which neither DAGSolve
nor LP may produce feasible volume assignments. In this section,
we discuss two techniques that modify the DAG to address the
above two problems. The modified DAGs are re-processed through
the same volume management hierarchy consisting of DAGSolve
and LP. Figure 6 illustrates how the volume management hierarchy
(on the left) interacts with our techniques to handle extreme mix
ratios and numerous uses (on the right). We discuss extreme mix
ratios first and numerous uses next.
3.4.1 Handling Extreme Mix Ratios — Cascading

Mix ratios that exceed the ratio of the least count to the maxi-
mum hardware capacity are infeasible to execute, and defeat DAG-
Solve, LP, and even regeneration. For instance, a mix ratio of A and
B in a ratio of 1:1000, where the ratio of the least count to maxi-
mum capacity is 1:100 would cause either (1) an underflow of A if
we set the volume of B to the hardware maximum, or (2) an over-
flow of B if we set A as the least count. Such extreme ratios have
traditionally been handled by cascaded mixing where a desired
mix ratio is achieved as a combination of two or more cascaded
mix operations, each of which has a less skewed mix ratio. For
example, a single A-B mixture of 1:99 can be achieved by first
mixing C= A-B in the ratio 1:9, followed by C-B in the ratio of 1:9.
(It may be more intuitive to think of the above example as creating
a 1-part-in-100-parts mix by first creating a 1-part-A-in-10-parts
mixture (say C) and then creating another 1-part-C-in-10-parts
final mixture). Observe that the above example creates 10 parts of
C and uses only 1 part which implies excess production, which is
allowed in the LP formulation (non-deficit constraint in

Figure 4: DAGSolve Algorithm

DAGSolve{
1. Build DAG from assay
2. Set leaf nodes’ Vnorm to 1 and others to 0

//Vnorm calculation
3. foreach node N in reverse topol. order of DAG
4. foreach outbound edge E for N
5. N.Vnorm := N.Vnorm + E.Vnorm
6. foreach inbound edge E for N
7. E.Vnorm := E.ratio * N.Vnorm

//Dispensing
8. Max_Vnorm := maximum node Vnorm
9. foreach node N and edge E in DAG
10. N.volume := (N.Vnorm*max_default)/Max_Vnorm
11. E.volume := (E.Vnorm*max_default)/Max_Vnorm
}

Figure 5: DAGSolve Example
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Section 3.2), but is expressly prohibited in the DAGSolve algo-
rithm due to the flow conservation constraint. Without such excess
production, cascading in DAGSolve would fail to avoid underflow
in case of extreme mix ratios. However, introducing a priori
unknown excess production leads to unknown amount of discarded
output which would prevent the direct backward computation of
Vnorms from known output volumes. In contrast, LP can handle
excess production because such unknown discarded outputs corre-
spond to independent slack variables in the LP formulation. Fortu-
nately, we make the key observation that the fraction of the output
volume to be discarded can always be computed a priori. In the
example above, we know that exactly 9/10 parts of C’ are dis-
carded. Consequently, DAGSolve can incorporate this special case
of excess production. The DAG transformation for excess handling
in the case of the example is shown in Figure 7. We replace the
original extreme-ratio mix node (C) with two cascaded mixes. At
the intermediate node of the cascade (C’), we add an excess node
and an edge from the intermediate node to the excess node that
both have a Vnorm equal to 0.9*Vnorm(C’). DAGSolve is modified
slightly to handle excess nodes as a special case. Unlike ordinary
nodes/edges whose Vnorms are computed in a backward pass, the
Vnorms of the excess edge and excess node are computed after their
source node’s Vnorm is known.

In general, we use cascading only if the assay has no feasible
volume assignment with the direct mix, as shown in Figure 6,
When an extreme mix ratio (say 1:R) prevents feasible volume
assignment, we apply cascading as follows. We initially attempt a
cascade of two mixes, where each mix is equivalent to
1: , and the amount discarded at the intermediate node
is / . If one level of cascading is insufficient to
eliminate extreme mix ratios, we iteratively deepen the cascading
by using three mixes each equal to 1: and so on, until a
suitable non-extreme mix-ratio is achieved. Finally, note that cas-
cading has the negative side-effects of increasing the demand on
the PLoC’s fluid-path resources (e.g., functional units and reser-
voirs), and of increasing the number of uses of the fluid with the
larger contribution in the original mix. (In the example in Figure 7,
C’ requires an additional mix and uses of B increase to two from
one.) In extreme cases, the increase of fluid uses due to cascading
may cause underflow, which may require static replication
(Section 3.4.2) as a solution as shown in Figure 6.

While Biostream [10] also relies on allowing excess production
for their mix instructions, their approach is fundamentally different
from ours in that they allow mixing only in a 1:1 ratio, and discard
half of the output of the mix while we allow variable volume (and
ratio) mixes. Because of their fixed-ratio mixing, achieving arbi-
trary mix ratios always requires cascading (except for 1:1 mixing),
which executes on the slow fluid path, while our approach requires
cascading only for uncommon cases of extreme mix ratios.

Finally, we note that though we allow cascading and excess
production by default, there maybe cases where cascading mixes

and producing/discarding excess fluid is disallowed because of
safety, cost, regulation, or even correctness. For such fluids (identi-
fied by the programmer) we do not allow excess production.
3.4.2 Handling Numerous Uses — Static Replication

Because of the hardware limit of maximum capacity, numerous
uses of a fluid (naturally or induced by cascading) can cause
underflow even if we produce as much volume of the fluid without
causing overflow. For such cases, where certain highly-used fluids
must be produced in excess of hardware capacity, we employ static
code replication to replicate part of the backward slice of the
fluid’s production. Various traditional compiler techniques for
determining the backward slice of a variable exist [11].

In our context, static replication of the backward slice achieves
pro-active generation of fluid in excess of what a single reservoir
can hold by creating multiple instances of the same fluid. We repli-
cate the numerous-usage node and distribute the original outbound
uses as evenly as possible between the replicas. Once replication is
complete, we re-run DAGSolve to produce new Vnorm values for
the new graph. If an underflow still occurs, we replicate another
level in the DAG, effectively replicating the predecessor-nodes’
predecessors. Replication continues in an iterative fashion until the
underflow is eliminated. Because replication increases the demand
on the PLoC’s fluid-path resources (like cascading), the replicated
code may exceed the PLoC’s resources. In such cases, compilation
fails. We follow this iterative procedure instead of one-shot repli-
cation of the entire backward slice because such one-shot replica-
tion may cause compilation failure even in cases where the
iterative procedure succeeds. Finally, note that static replication is
merely a graph transformation, and the LP formulation may be
applied on the new DAG as well.

Because our replication is static, the additional demand for
fluid-path resources is known a priori and accounted for at com-
pile time. Thus, we can determine statically if the modified DAG
fits within the PLoC’s resources, as shown in Figure 6. In contrast,
Biostream’s reactive regeneration places a run-time demand for the
resources that cannot be planned for and thus, may be hard to sat-
isfy. Because cascading and static replication place extra demand
on the resources, we fall back on these two schemes as a final
option to avoiding underflow, as shown in Figure 6.
3.5 Statically-Unknown Case

Our volume management schemes so far assume that both the
volumes output at every assay step and the number of uses are
known statically. However, either of these quantities may be
known only at run time, as discussed before. We extend DAGSolve
to handle each such uncertainty — unknown volume first and
unknown use next, and show how these alterations easily apply to
LP.

To handle statically-unknown volumes, we delay the volume
assignment step from compile time to run time while keeping
Vnorm calculation at compile time to reduce run-time overhead. To
compute Vnorm, we cut the outbound edges of the unknown-vol-
ume nodes. Consequently, these nodes become similar to final out-
put nodes, while the sink of each cut edge becomes similar to an
input node. While the natural input nodes are unconstrained in that
the input volumes can be anything up to the default maximum,
these artificial input nodes’ volumes are constrained to be equal to
the output of the unknown-volume instruction, which is measured
at run time. The edge cutting may partition the DAG into several
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partitions to each of which we apply DAGSolve. While we calcu-
late the Vnorm of the nodes and edges of all the partitions as before,
there is one difference in the final step of absolute volume assign-
ment (i.e., application of the hardware constraints) due to con-
strained inputs. Assigning the default maximum to the node with
the largest Vnorm may require more than the available volume at a
constrained input. To handle that case, we compute the minimum
ratio of each input’s Vnorm and the available input volume for each
constrained input once the volume is measured. Consequently,
nodes and edges are assigned volumes by scaling their Vnorm with
this ratio.

While the above method handles unknown-volume nodes, such
nodes may prevent applying DAGSolve to normal, known-volume
instructions. Consider the output of a normal, known-volume
instruction, node X in Figure 8(a). Node X has two uses, one of
which transitively feeds an unknown-volume instruction (node U,
shown as a hashed node). At the time of X’s execution U’s execu-
tion has not even begun, and as such, U’s outbound edge volumes
cannot yet be determined. However, an earlier use of X (the X-Y
edge in Figure 8(a)) needs to be assigned some volume without
waiting for the later unknown use. Thus, unknown-volume instruc-
tions prevent us from assigning volumes on the basis of transitive
use. To handle this problem, we partition the DAG at compile time
by cutting the outbound edges of nodes that transitively lead to an
unknown-volume node and marking the edges as constrained
inputs. As before, the known-volume instruction node is treated as
if it were a final output node, and we compute the Vnorm for the
partitioned DAG. At run time, we divide conservatively the
known-volume instruction output into N equal portions, if there are
N uses of the output fluid (here we assume all the uses are known
and handle unknown-uses next). We then apply the above method
for constrained inputs to assign volumes. Figure 8(b) shows the
DAG in Figure 8(a) after cutting Y-U and the outbound edges of X,
with X’, X’’, and U’ representing constrained inputs. X’ and X’’
each get half the volume of X and U’ gets the run-time output of U.
One slight refinement to the above conservative strategy is that if a
partition gets more than one of the N uses, say m uses, then we can
replace the m constrained inputs (of 1/N each) with a single con-
strained input of m/N.

Note that the above conservative strategy (including the refine-
ment) with its potential for underflow is needed only for the
instructions whose transitive use DAG includes unknown-volume
instructions. All other instructions can be handled better via DAG-
Solve. If the programmer can provide hints on approximate output
volume relative to input volume at the unknown-volume instruc-
tion, the portion per use can be adjusted accordingly instead of the
default of equal portions across uses. In DAGSolve we model such
a hint as a node whose output shrinks the input volume in the spec-
ified ratio. We also note that such a node is trivially compatible

with the LP formulation mentioned before.
Next, we handle unknown uses, which occur due to control-

flow in the assay (if-then-else and loop constructs). To handle if-
then-else, we conservatively include both if and else paths in our
DAG and apply DAGSolve (similar to standard dataflow analyses
in modern compilers). Loops with statically-known number of iter-
ations can be unrolled that many times and handled by DAGSolve.
One may think that instead of unrolling, one could apply DAG-
Solve to the body of the loop and then scale the input volumes by
the number of iterations. However, if the loop has loop-carried
dependencies where fluids from different iterations are mixed in
ratios, such simple scaling will not work.

For loops whose iterations are not known even at loop entry
(e.g., while loops), there are two options: (1) The programmer pro-
vides a hint of the upper bound on the number of iterations for a
loop. We simply unroll the loop that many times and apply DAG-
Solve. (2) While the programmer may not know the number of
iterations, she may know the minimum volumes that the loop
should output for successful completion of the assay. These mini-
mum volumes can be used in the case of loops with independent
iterations. For such loops, we make two changes to DAGSolve
before applying it to the loop body. First, instead of assigning the
largest Vnorm to the default maximum, we pick the output node
with the smallest Vnorm and assign it the programmer-specified
volume. All other nodes and edges are scaled as per the ratio of
their Vnorm and that of the chosen output node. This process gives
us the volumes of the input fluids needed for one iteration to pro-
duce the specified output volumes in that iteration. The assumption
here is that as much of the input fluids is produced as possible
(over-provisioning may be achieved by static replication), and each
iteration takes as much as needed from this initial volume. This
strategy, however, is a departure from DAGSolve where intermedi-
ate nodes produced only as much fluid as needed. Accordingly, the
second change is that we break up the assay at loops and treat
nodes outputting fluids to loops as if they were final output nodes.

Finally, the per-iteration input volumes are valid only if the
loop iterations are independent. In the presence of loop-carried
dependencies, the specified output volumes would be reached after
multiple iterations and as such, input volumes cannot be calculated
from one iteration as done above. For such loops, we fall back on
the first option of the programmer specifying an upper bound on
the number of iterations. Note that programmer-provided hints or
bounds, could be from any source including, but not limited to,
human expertise, profiling runs and prediction.

While we have described our approach for handling the stati-
cally-unknown cases in DAGSolve, the same approach works if we
need to use LP, by applying the same DAG transformations and
adding the same constraints. Like DAGSolve, LP can also reduce
its run-time overhead by solving all but the constrained inputs at
compile time and then incrementally solving the constrained
inputs at run time.

4  Results
We evaluate our volume management scheme in two parts: (1)

avoiding underflow in RVol using DAGSolve on some real-world
assays and (2) the error of our simple rounding. We also compare
the execution times of DAGSolve and LP, and show the number of
times regeneration is triggered assuming no volume management.Figure 8: Statically-unknown Case
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We first describe the assays and our experimental infrastructure,
and then present our results.
4.1 Infrastructure and Benchmarks

We define a simple high-level language to specify the assays.
Our syntax is similar to the specification format used in conven-
tional assays. We use the names of common operations (e.g., mix,
separate, incubate) as key words which are accompanied by the
relevant parameters such as operand fluids, temperature, and time
duration of operation. Figure 9(a) through Figure 11(a) show three
assays written in our language. The variable it corresponds to the
output of the previous statement. We do not describe our language
in any more detail due to space limitation. We construct a compiler
to translate the high-level assays into the AquaCore Instruction Set
(AIS) (Section 2.1). The usual steps of parsing, intermediate repre-
sentation, register allocation, and code generation are similar to
those of a conventional compiler. We show the compiler-generated
AIS code in Figure 9(b) through Figure 11(b). Our compiler
implements DAGSolve (the statically-known case) without cascad-
ing and replication which we perform manually. For LP, we use
Matlab’s linprog command, which is based on LIPSOL (Linear
Interior Point Solver) [14].

Figure 9 shows the source and the AIS code for detecting the
concentration level of glucose in a given sample using an optical
sensor [9]. The assay uses a calibration step to obtain a best-fit
curve of known amounts of dilutions of a standard glucose concen-
tration. The sample’s reading is placed on this curve to obtain the
concentration. The numbers in the move and mix instructions are
the relative volumes and number of seconds of mixing, respec-
tively (as discussed in Section 2.1).

Figure 10 shows the source and AIS code for a glycomics assay
(study of sugar molecules in proteins) [7]. The assay first concen-
trates the proteins containing glycans (sugar molecules) by an

affinity separation using lectin as the affinity matrix. Then, the gly-
cans are cleaved from the proteins by mixing with a solution of
PNGan F enzyme, and the extracted glycans are once more sepa-
rated from the proteins using liquid chromatography (we add
separate.LC to AIS for this purpose). To enhance future analy-
sis and measurements, the effluent is permethylated using sodium
hydroxide. Finally, the effluent undergoes chromatography, mak-
ing it ready for external measurements such as mass spectrometry.

Figure 11 shows an assay to study the impact of inhibitors on
enzyme kinetics [5]. Four different dilutions of enzyme, substrate
and inhibitor are created. Then, all combinations of the dilutions
are mixed and incubated and the optical density is sensed. The
optical sensor gives an indication of enzyme activity at that spe-
cific dilution, for that specific substrate, in the presence of that spe-
cific inhibitor dilution. Because the number of loop iterations are
known at compile time, we fully unroll the loops.
4.2 DAGSolve’s Solution Quality

We evaluate DAGSolve on our benchmarks in terms of DAG-
Solve’s goal of avoiding overflow and underflow. For all of our
benchmarks, we assume a default maximum of 100 nl. Recent
results on polydimethylsiloxane (PDMS) valves (a common type
of valve used in microfluidic devices) show that a least count of
100 pl is feasible [12].

glucose{
input s1, ip1;Glucose
input s2, ip2;Reagent
input s3, ip3;Sample

move mixer1, s1, 1
move mixer1, s2, 1
mix mixer1, 10
move sensor2, mixer1
sense.OD sensor2, Result1
move mixer1, s1, 1
move mixer1, s2, 2
mix mixer1, 10
move sensor2, mixer1
sense.OD sensor2, Result2
move mixer1, s1, 1

move mixer1, s2, 4
mix mixer1, 10
move sensor2, mixer1
sense.OD sensor2, Result3
move mixer1, s1, 1
move mixer1, s2, 8
mix mixer1, 10
move sensor2, mixer1
sense.OD sensor2, Result4
move mixer1, s3, 1
move mixer1, s2, 1
mix mixer1, 10
move sensor2, mixer1
sense.OD sensor2, Result5
}

ASSAY glucose START

fluid Glucose, Reagent, Sample;
fluid a, b, c, d, e;
VAR Result[5];
a = MIX Glucose AND Reagent IN RATIOS 1 : 1 FOR 10;
SENSE OPTICAL it INTO Result[1];
b = MIX Glucose AND Reagent IN RATIOS 1 : 2 FOR 10;
SENSE OPTICAL it INTO Result[2];
c = MIX Glucose AND Reagent IN RATIOS 1 : 4 FOR 10;
SENSE OPTICAL it INTO Result[3];
d = MIX Glucose AND Reagent IN RATIOS 1 : 8 FOR 10;
SENSE OPTICAL it INTO Result[4];
e = MIX Sample AND Reagent IN RATIOS 1 : 1 FOR 10;
SENSE OPTICAL it INTO Result[5];
END

Figure 9: Glucose Assay
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glycomics{
input s1, ip1 ;buffer1a
input s2, ip2 ;sample
input s3, ip3 ;lectin
input s4, ip4 ;buffer1b
input s5, ip5 ;buffer2
input s6, ip6 ;buffer3a
input s7, ip7 ;C_18
input s8, ip8 ;buffer3b
input s9, ip9 ;buffer4
input s10, ip10 ;NaOH
input s11, ip11 ;buffer5

move mixer1, s1
move mixer1, s2
mix mixer1, 30
move separator1.matrix, s3
move separator1.pusher, s4
move separator1, mixer1
separate.AF separator1, 30
move mixer1,separator2.out1
move mixer1, s5
mix mixer1, 30

move heater1, mixer1
incubate heater1, 37, 30
move mixer1, heater1, 1
move mixer1, s6, 10
mix mixer1, 30
move separator2.matrix, s7
move separator2.pusher, s8
move separator2, mixer1
separate.LC separator2, 30
move mixer1,separator2.out1,1
move mixer1, s9, 100
move mixer1, s10, 1
mix mixer1, 30
move mixer1, s6
mix mixer1, 30
move separator2.matrix, s7
move separator2.pusher, s8
move separator2, mixer1
separate.LC separator2, 2400
move mixer1,separator2.out1
move mixer1, s11
mix mixer1, 30
}

Figure 10: Glycomics Assay

ASSAY glycomics START

fluid buffer1a, buffer1b, buffer2; --buffer2 has PNGanF
fluid buffer3a, buffer3b, buffer4, buffer5;
fluid sample, lectin, C_18, NaOH;
fluid effluent,effluent2,effluent3, waste,waste2,waste3;

MIX buffer1a AND sample FOR 30;
SEPARATE it MATRIX lectin USING buffer1b FOR 30 INTO effluent
AND waste;
MIX effluent AND buffer2 FOR 30;
INCUBATE it AT 37 FOR 30;
MIX it AND buffer3a IN RATIOS 1:10 FOR 30;
LCSEPARATE it MATRIX C_18 USING buffer3b FOR 30 INTO
effluent2 AND waste2;
MIX effluent2 AND buffer4 AND NaOH IN RATIOS 1:100:1 FOR 30;
MIX it AND buffer3a FOR 30;
LCSEPARATE it MATRIX C_18 USING buffer3b FOR 2400 INTO
effluent3 AND waste3;
MIX effluent3 AND buffer5 FOR 30
END

(a)

(b)



The glucose assay (Figure 9) has five uses of the reagent, four
of glucose and one of the sample. We show the DAG for this assay
and the Vnorm generated by DAGSolve in Figure 12(a) and the
actual volumes in Figure 12(b). The smallest volume dispensed is

3.3 nl which is well above the least count. Because all the volumes
and fluid uses are statically known, not only the Vnorm calculations
but also the volume assignments occurs at compile time and thus,
there is no run-time overhead for this assay.

The glycomics assay (Figure 10) consists of a sequence of mix
and separate operations. Because the assay has three separations
which produce statically-unknown volumes (Section 3.5), DAG-
Solve’s final volume assignment step is done at run time. The DAG
is partitioned at the unknown-volume nodes resulting in four parti-
tions, as shown in Figure 13. Buffer 3a (in the second and third
partitions) is used in two partitions and hence the corresponding
input node is split into two constrained-input nodes each of which
gets half the default maximum (i.e., 50 nl). The three nodes X1, X2,
and X3 represent the constrained inputs corresponding to the
unknown volumes generated by the separates. Because the sepa-
rate’s output volumes are unknown, we show only the Vnorm and
not the final volumes. While most of the Vnorm are reasonably large
numbers, the X2 input to the third partition has a Vnorm of 1/204
which may be a concern. If X2’s separation output volume in the
second partition is high then there would be no underflow; other-
wise, we would need more of X2’s separation output, for which
BioStream’s regeneration would have to be triggered.

Due to the unknown-volume instructions, only the first parti-
tion’s volumes may be computed at compile time, while the
remaining partitions’ volumes must be calculated at run-time. We
show later that the run-time overhead of this computation is a few
milliseconds on a 750-MHz processor, and is acceptable given that
fluidic instructions take seconds to execute.

The enzyme assay (Figure 11), creates four different dilutions
for each of the enzyme, substrate and inhibitor using the same dilu-
ent. Thus, the diluent is used twelve times. All combinations of the
resultant dilutions are mixed so that each dilution is used sixteen
times. Because the DAG for this assay is large and symmetric, we
show only the enzyme-diluent part of the DAG in Figure 14(a).
With the output Vnorm set to 1, all the dilutions’ Vnorm equal 16/3 ~
5.3 (the dilutions are the middle nodes in Figure 14(a) and each
dilution is used in 16 mixes in the ratio of 1:1:1). The maximum
Vnorm is for the diluent fluid (Vnorm = 54). DAGSolve results in 9.8
nl for all the dilutions (Vnorm of 5.3 normalized to the maximum
Vnorm of 54 and scaled to 100 nl). Each dilution is split 16 times
into 0.6 nl volumes to give the final volumes of 1.8 nl.

One of the dilutions corresponds to the 1:999 mix of the
enzyme and diluent. As stated above, the dilution’s volume is 9.8

ASSAY enzyme_test START
VAR inhibitor_diluent, enzyme_diluent, substrate_diluent;
VAR i, j, k, temp, RESULT[4][4][4];
fluid Diluted_Inhibitor[4], Diluted_Enzyme[4];
fluid Diluted_Substrate[4];
fluid inhibitor, enzyme, diluent, substrate;

inhibitor_diluent = 1; enzyme_diluent = 1;
substrate_diluent = 1; temp = 1;
FOR i FROM 1 TO 4 START --inhibitor
Diluted_Inhibitor[i] = MIX inhibitor AND diluent

IN RATIOS 1:inhibitor_diluent FOR 30;
temp = temp * 10;
inhibitor_diluent =  temp - 1;

ENDFOR
temp = 1;
FOR j FROM 1 TO 4 START --enzyme
Diluted_Enzyme[j] = MIX enzyme AND diluent

IN RATIOS 1:enzyme_diluent FOR 30;
temp = temp * 10;
enzyme_diluent = temp - 1;

ENDFOR
temp = 1;
FOR k FROM 1 TO 4 START --substrate
Diluted_Substrate[k] = MIX substrate AND diluent

IN RATIOS 1:substrate_diluent FOR 30;
temp = temp * 10;
substrate_diluent = temp - 1;

ENDFOR
FOR i FROM 1 TO 4 START --inhibitor
FOR j FROM 1 TO 4 START --enzyme
FOR k FROM 1 TO 4 START --substrate

MIX Diluted_Inhibitor[i] AND Diluted_Enzyme[j] AND
Diluted_Substrate[k] FOR 60;

INCUBATE it AT 37 FOR 300;
SENSE OPTICAL it INTO RESULT[i][j][k];

ENDFOR
ENDFOR
ENDFOR
END

enzyme_test{
input s1, ip1;inhibitor
input s2, ip2;diluent
input s4, ip3;enzyme
input s6, ip4;substrate

dry-mov inh_dil, 1
dry-mov enzyme_dil, 1
dry-mov subs_dil, 1
dry-mov temp, 1
loop0: index i: 1->4
move mixer1, s1, 1
move mixer1, s2, inh_dil
mix mixer1, 30
dry-mov r0, temp
dry-mul r0, 10
dry-mov temp, r0
dry-sub r0, 1
dry-mov inh_dil,r0
move s3(i), mixer1
dry-mov temp, 1
loop1: index j:1->4
move mixer1, s4, 1
move mixer1, s2, enzyme_dil
mix mixer1, 30
dry-mov r0, temp
dry-mul r0, 10
dry-mov temp, r0
dry-sub r0, 1
dry-mov enzyme_dil, r0
move s5(j), mixer1

dry-mov temp, 1
loop2: index k: 1->4
move mixer1, s6, 1
move mixer1, s2, subs_dil
mix mixer1, 30
dry-mov r0, temp
dry-mul r0, 10
dry-mov temp, r0
dry-sub r0, 1
dry-mov sub_dil,r0
move s7(k), mixer1

loop3: index i:1->4
loop4: index j:1->4
loop5: index k:1->4
move mixer1, s3(i)
move mixer1, s5(j)
move mixer1, s7(k)
mix mixer1, 60
move heater1, mixer1
incubate heater1, 37, 300
move sensor2, heater1
dry-mov t4, i
dry-mul t4, 16
dry-mov t5, j
dry-mul t5, 4
dry-add t5, t4
dry-mov t6, k
dry-add t6, t5
sense.OD sensor2,RESULT(t6)

}

(a)

(b)

Figure 11: Enzyme Assay
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Figure 12: Glucose Assay DAG



nl and the enzyme input to the mix is 9.8 pl which is the minimum
dispensing volume in this assay. While this dispense step under-
flows, all other steps dispense about 100 pl or more staying at or
above the least count. The underflow is not surprising considering
(1) the extreme mix ratio of 1:999 used in this assay, and (2) the
many uses of the diluent fluid. In fact, we found that LP also fails
to avoid this underflow. To address this underflow, we apply the
optimizations of cascading and static replication (Section 3.4). As
we discuss below, both optimizations are needed to avoid the
underflow because both problems of extreme ratios and many uses
are there.

We cascade each of the 1:999 mixes to three 1:9 mixes (shown
in bold in Figure 14(b)). Each of the newly-created intermediate
nodes is assigned a Vnorm of 16/3, equal to that of the original
extreme ratio node. For each cascaded mix, the diluent is used two
more times (increasing the total number of uses from 12 to 18),
and its Vnorm increases to 81. The underflowing volume of 9.8 pl
initially assigned to the 1:999 mix changes to 123 pl, correspond-
ing to the volume assigned to the 1:9 mix for the first node in the
cascade. Though the initial underflow is eliminated, there is a new
underflow corresponding to the 1:99 mix ratio where the minimum

dispensed volume is 65.6 pl now. This underflow occurs due to the
extreme mix ratio and due to the increased use of the diluent, and
may be removed by increasing the diluent volume via static repli-
cation, or by cascading the 1:99 mix. We first examine static repli-
cation and replicate the diluent input node three times so that the
problematic mix receives higher volume (similar to using three
input instructions to three different reservoirs). Each replica is used
in one set of dilutions — one for enzyme, one for substrate, and
one for inhibitor. In this dilution, the diluent’s Vnorm reduces by a
factor of 3 from 81 with no replication (Figure 14(a)) to 81/3 = 27
with replication (Figure 14(b)). Accordingly, the minimum dis-
pensed volume increases by a factor of 3 from 65.5 pl to 196 pl,
eliminating all underflow in the assay. Note that because the dilu-
ent’s Vnorm is the maximum, reduction in the Vnorm results in
increase in actual volumes due to the inverse relationship of vol-
umes with the maximum Vnorm.

We also tried the option of using replication without cascading
which resulted in underflow with the minimum dispensed volume
of 29.5 pl corresponding to the 1:999 mix ratio.

Recall from Section 3.3 that DAGSolve (and LP) provide a
solution to RVol. To achieve our initial goal of solving the IVol
problem, we round the results of the rational volume assignment to
the closest integer multiple of the least-count. Such rounding did
not cause any overflow/underflow for our assays. However,
because such rounding can introduce errors in mix ratios, we eval-
uate its effect on our benchmarks using a maximum volume of 100
nl and least count of 0.1 nl. Averaged across the glucose and
enzyme assays, the error was no more than 2%. (We do not include
rounding error for the glycomics assay as the assay depends on
statically unknown volume.)
4.3 Run Times

Table 2 shows the execution times of DAGSolve and LP, the
number of constraints generated by LP, and the number of times
regeneration is triggered assuming no volume management. Each
execution time includes the processing time of generating the con-
straints from the internal DAG representation and for executing the
algorithm (DAGSolve or LP). The execution times are from runs
on a 750 MHz Intel PIII processor with 256 MB memory (each
number is averaged over 10 runs to account for OS-related varia-
tions). For the glycomics assay, we show the total run time of all
the four partitions of the DAG (resulting from the statically
unknown separation steps in this assay).

For our assays, while DAGSolve is about 80 times faster than
LP, even LP takes less than one second. This run-time is acceptable
not only for compile-time solvable assays but also for run-time
solutions like the glycomics assay which has separation steps with
unknown volumes. Thus, both schemes incur little overhead com-
pared to fluidic instruction execution times of several seconds.

To explore DAGSolve’s complexity advantage over LP, we
increase the enzyme assay’s problem size. Instead of four dilu-
tions, we perform ten dilutions for each of the enzyme, substrate
and inhibitor. The results are shown under the assay name
Enzyme10 in Table 2. LP’s run time increases to more than 20 min-
utes, while DAGSolve remains under 2 seconds, confirming that
DAGSolve scales better than LP for large problem sizes. Though
the LP solution for this example can be computed at compile time,
such overhead when incurred at run time would be significant,
even if fluidic instructions take several seconds to execute.

Figure 13: Glycomics assay DAG
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To eliminate the possibility that DAGSolve’s speedups were
solely due to the additional constraints, we evaluate the effects of
adding DAGSolve’s additional constraints (flow conservation and
output equalization) to the LP formulation. Though the additional
constraints result in some improvement in LP’s run time, even in
the best case (glucose assay), LP remained significantly slower
than DAGSolve with a minimum slowdown of 60x (as compared
to 80x without the additional constraints).

Without volume management, regeneration is required twice
for the simple glucose assay, and 85 times for the enzyme assay.
With DAGSolve, there are no regenerations. The number of regen-
erations for the glycomics assay is not shown because the number
depends on the volume output at each separation. However, if the
separation steps in glycomics produce low volumes, then regenera-
tion may be required even with DAGSolve. Overall, our pro-active
approach reduces the need for regeneration which executes on the
slow fluidic path, and may require extra fluidic resources. Thus,
our approach achieves low run-time overhead and low resource
requirement for volume management.

Finally, we compare LP and ILP. For ILP, we used the integer
mode for the Matlab extension of LP Solve 5.5 [1]. Though the
ILP solver achieved similar execution times as the LP solver for
the glucose assay, the ILP solver ran for hours without generating a
solution for the enzyme assay, whereas the LP solver completed in
0.73 seconds.

5  Conclusions
We identified and addressed a practical issue, namely, fluid vol-

ume management, in programmable labs-on-a-chip (PLoC). Vol-
ume management addresses the problem that the use of a fluid
depletes it and unless the given volume of a fluid is distributed
carefully among all its uses, execution may run out of the fluid
before all its uses are complete. Additionally, fluid volumes should
not overflow (i.e., exceed hardware capacity) or underflow (i.e.,
fall below hardware resolution). We showed that the problem can
be formulated as a linear programming problem (LP). Because
LP’s complexity and slow execution times in practice may be a
concern, we proposed another approach, called DAGSolve, which
over-constrains the problem to achieve linear complexity while
maintaining good solution quality. We also proposed two optimiza-
tions, called cascading and static replication, to handle cases
involving extreme mix ratios and numerous fluid uses which may
defeat both LP and DAGSolve. We showed that our techniques
produce good solutions for some real-world assays while being
faster than LP.

Our techniques relieve the PLoC programmer from not only

assay-specific details of mix ratios and number of uses but also
low-level hardware details of maximum capacity and resolution.
Our goal is to raise the level of abstraction in lab-on-a-chip tech-
nology as modern programming languages and compilers have
done for computer technology.
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Table 2: DAGSolve, LP, and Regeneration
Assay DAGSolve

(s)
LP (s) LP

constraints
Regen.
count

Glucose ~ 0 0.08 49 2
Glycomics 0.003 0.28 84 --
Enzyme 0.016 0.73 872 85
Enzyme10 1.57 1211 11258 1313
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