Date: ‘Await‘ing DD Stacks Searching

Journal Title: Electronic Design

Volume:

Issue:

Month/Year: November 15 1984
Pages:

Article Author: Southard, J.R.
Article Title: Silicon compiler demands no

hardware expertise to fashion
custom chips

OO O

Imprint:

ILLiad TN: 1

22507/
can: 621 305 EL248

Location: chks Reposntory

CUSTOMER:

Jeffrey Siskind (qobi)
Faculty

EE

Email: qobi@purdue.edu

PURDUE

for your request’

UNIVERSITY

LIBRARIES

INTERLIBRARY LOAN
DOCUMENT DELIVERY

“Access. Knowledge. Success.

Your request for a document held by the
Purdue University Libraries |
has been filled!

- Please review this electronic document as soon as possible If you have questionsrayb.out
quality or accesszbzltty please notify Interlibrary Loan via email at docdel@purdue.edu .
Please reference the transactzon number (TN) lzsted on the szde bar above. Thank you

. NOTICE: This material may be i)rotected by copyrighf law (Title ”17, United States Code)

DESGNENTRY

Silicon compiler demands
no hardware expertise
to fashion custom chips

A functional language makes fast work of describing a
custom processor. The compiler converts the
description to an IC, and simulates its performance.

nstant expertise in VLSI chip fabrication is

the promise of all silicon compilers. Since

they automate most time-consuming and
difficult steps of IC development, they are
beginning to make custom VLSI and other
application-specific ICs a feasible option for the
system engineer.

But the level of input that each silicon com-
piler accepts varies widely. One type generates
masks from logic schematics produced on a
workstation. Another is satisfied with input at
the architectural; or block-diagram, level. A
third kind—exemplified by MetaSyn—works
directly from a funetional description of the
chip and hence requires absolutely nohardware
experience (Fig. 1). ;

Anyone with moderate programming ability
can use this compiler. As the product
evolves, even someone not involved in
the original design can easily modify

~ Jay R. Southard, Metal.ogic Corp.

Jay R. Southard is vice president and direc-
tor of technical marketing at Metalogic in
Cambridge, Mass. After receiving an MSEE
from Stanford University, he worked as a
systems designer for General Instrument and
Charles Stark Draper Laboratories. Most re-
cently he was a researcher at MIT's Lincoln
Laboratory, where he was active in the con-
ception and implementation of the MacPitts
language and compiler, which became the ba-
sis for MetaSyn.

that source specification to include enhance-
ments. Moreover, the compiler contains a high-
level simulator that lets the designer observe
the device’s internal operation and its inter-
action with a simulated environment.

The compiler is based on the MacPitts silicon
compiler, developed at the Lincoln Laboratory
of the Massachusetts Institute of Technology.
It permits the description of systems in algo-
rithmic terms rather than in the structural
terms of the hardware engineer. To clarify the
difference between the alternatives, consider
the following algorithmic fragment:

a:=a+b-—c¢
r:=r— a-+d

In other words, first replace the value of a with

~ Electronic Design - November 15, 1984 187

DESIGN ENTRY

CAE: Behavioral silicon compiler

the result of a+ b—c, and then replace the value
of rwithr — a + d. This function can have many
possible structural representations (Fig. 2).

Problem-oriented

The algorithmic approach is inherently less
expensive to use than structural approaches.
Thus it appeals to system designers who want
to solve a system problem rather than create
specific hardware; but it can upset hardware
designers, because it does not permit them to
specify and manipulate familiar hardware
structures.

Theoretically the compiler cannot offer as
great a variety of implementations as a hard-
ware designer can. Practically, it solves nearly
as many application problems, and of course, it
does so in much less time and makes much more
efficient use of silicon than do gate arrays and
standard cells.

Although the MetaSyn specification for a
chip is similar to a microprocessor program—
especially for a bit-slice machine—it differs in
several ways. Like a bit-slice microcode pro-
gram, MetaSyn code may specify that several
operations are to take place in the same clock
cycle. The resulting parallelism clearly im-
proves the algorithm’s speed. Unlike micro-
code, however, a MetaSyn specification is not
limited by some fixed, available hardware par-
allelism. Instead, the compiler automatically
creates exactly theamount and kind of parallel-
ism necessary to implement the designer’s
specification. This method also allows the algo-

rithmic specification of such implementation
techniques as pipelining.

The new compiler goes a step beyond the way
in which application programs are usually opti-
mized. If a function’s speed of execution is crit-
ical, it is usually coded in machine language. If
it is even more critical and the computer hasa
writable control store, the function may be con-
verted into microcode.The.compiler goes be-
yond microcode. The application’s critical algo-
rithms need only be added to the processor’s
MetaSyn specification. The compiler then gen-
erates hardware that not only implements the
old computer, but also the critical functionsata

higher level of parallelism than available with l

microcode.
Two kinds of simulation

Before synthesizing the IC layout, the new
compiler’s high-level simulator mimics the de-
vice’s behavioral specification. For this pur-
pose, the compiler uses two kinds of simulation:
interactive input with execution monitoring
and system-level simulation.

The user interface of the compiler’s simula-
tor consists of a set of windows that monitor the
high-level elements of the design: registers,
processes, labeled instruction states, 170 ports,
and other elements. Because these are also the
elements of the compiler’s behavioral specifica-
tion, it is a simple matter for the designer toob-
serve these elements and to use a mouse to
modify their values (Fig. 3).

For simulation of a chip design—say, a pro-

UGB
workstation 4 B LA

- interaction . .0 . interaction . =
Behavior Logic

1. The MetaSyn silicon compiler starts chip design a stage earlier than othef
CAE software, It translates algorithmic descriptions of circuit behavior—not
block diagrams—into logic hardware and ultimately into masks for fabti-

cating ICs.

188 Electronic Desian » November 15 1984

cessor—in the context of a complete system, the
simulator creates several Lisp functions that
can be used by other simulated system com-
ponents to drive and sense the processor’s ports
and signals. This environment simulation thus
deals with the same elements as the interactive
simulator and the initial specification.

For example, the simulated processor can be
connected to a simulated environment consist-

ing largely of a memory that can contain a pro-
gram for the simulated chip. The compiler si-
mulates the processor and its environment
concurrently, and the results can be monitored
on the windows. Meanwhile interactive oper-
ation is simultaneously possible.

System-level simulation is also useful for
control, signal-processing, and general system
applications. In addition, the environment can

~ '[— 5] _ ~s)

ke] a2 S @

=] 3 s L, s

a =] T + 4 8 = - 2

b— g _ 8 5] | = |8

°] - b
e RE

i

DA A eSS A AR

2. This circuit stores five values (a, b, ¢, d, and r) in master-siave
registers and then funnels them through the adder-subtractors se-
lected by multiplexers under the direction of the control box. It is

T et | «d‘w_ T e e ¥ e

not immediately obvious, however, that this layout is one of the .
many structural equivalents of the algorithm a:=a + b — ¢ and
ri=r—a-+d.
‘(. L . S e L “ AT S \N :
| Registers Flags Ports -| Signals i
AAC=-18 AUN =T CONSOLE. SWITCHES = 0 | CLOCK = F
%_’7?10 - :f’”' ELAG = F| DATA =18 START = F |
= = ADDRESS = 130 STOP =F :*
LASTPC =126 | INTEN=F MA.TEMP = UNDEFINED ' | INT.REQ = F :
JMA = 255 AC.TEMP = UNDEFINED | peser = F i
| MB = UNDEFINED , | READ =T
‘| WRITE = F :
LTEMP = F
- | (sense 1ast.pc) Put Get . * Environment
‘ a;g ‘ XY Helplis Quit -}
Current Clock Cycle: 19 - : :
Processes .
MAIN = (INTERPRET) "~
Experimental MetaSyn 1.0 Simulator SO S A
\. L: Clock once, M: Clock specified, R: Clock specified without display, update.

3. During simulation the register contents, flags, ports, and other
internal functions of the designed chip can be followed on the

£ Screen. The effects of changes to the description are displayed

? within a few minutes at most. ,

Electronic Design - November 15, 1564 189 G

DESIGN ENTRY

CAE: Behavioral silicon compiler

produce a set of test vectors that mimic the en-
vironment, as well as the simulated chip, so
that the chip, when fabricated, can be tested
with standard automatic equipment.

Inside the compiler

A silicon compiler is a complex piece of soft-
ware (Fig. 4). The input “source” description
goes first through a prepass stage that checks
for syntax errors, expands macros, and if the
simulation option is in force, produces the Lisp
functions for the simulator. Then the hardware
components—registers, integer operators, log-
ic gates, flags or pads—and their interconnec-
t_ions are “extracted” from the source specifica-
tion. :

The components are grouped into major
modules: registers and integer operators as

4. From the user’s input, the compiler extracts infor-
n}alion related first to simulation and then to spe-
cific processor functions. After placement and rout-
ing, it produces a CIF tape.

Layout

Extract
-+ data-path, control,’
flags, pins,
. and sequencer

Data-path |

layout

fibrary

1

Placement and routing
major modules

Caltech
intermediate
Format (CIF)

partof the data-path module, logicgates as part
of the control module, and so forth. Next each
group of components is laid out with data-path,
control, flag, and pad module generators. Since
most of the interconnections are between the
components of a module—between the reg-
isters and the operators of the data path, for
example—much of the routing has now been
done. Finally, the major modules are placed and
routed to create the final layout in CIF (Caltech
Intermediate Format).

Proof of the pudding

Over the past few years more than 50 Mac-
Pitts and MetaSyn examples have been gener-
ated, ranging from simple counters and shifters
to signal-processing chips, computer periph-
eral controllers, and such microprocessors as
an 8080 and a PDP-8. Even a neural network
simulator has been built from MacPitts-
generated chips. For simplicity, consider a
stripped-down, 32-bit microprocessor called

FRISC (Fanatically Reduced Instruction Set
Computer) as an example.

The FRISC processor is based on a flexible
and simple instruction set. It is specified in lit-
tle more than three pages of text. However, as
will be shown, the basic FRISC processor can be
easily tailored to special-purpose applications
and algorithms. When compiled, the FRISC
specification produces the IC layout of Figure 5.

Asseen in a pinout diagram (Fig. 5), the com-
puter interfaces with its environment through
a 32-bit bidirectional data bus and a 32-bit ad-
dress bus. In addition, the microprocessor uses
the Read and Write signal lines to control mem-
ory access. Interrupt Request and Interrupt
Acknowledge lines handle interrupts, and a
Reset line triggers power on reset. The comput-
er is a stack-oriented machine with 4-bit-long
instructions packed eight to a word.

The microprocessor contains five internal
registers, although, as in any stack machine, a
FRISC programmer will not be able to access

DESIGN ENTRY

CAE: Behavioral silicon compiler

them directly. Specifically p is a program
counter; s, a stack pointer; a, the top-of-stack
cache; b, the next-on-stack cache; and i, an in-
struction register. The core processor imple-
ments a few simple instructions (see the table,
opposite). Because of the flexibility of the com-
piler, it is easy to expand, reduce, or modify this

—— Read
Write
‘m—elMermpk Request

Mﬁ-bl
-

FRISC [imerupt Acknowledge
{Fanatically ' LT TR
O Reduced
e ; e inséguction Set
. 4 :
. . i mputer} P :
32 "'—-—Ground 5
R N I ———Clock

peo—fesat -

S. The 32-bit FRISC chip that MetaSyn will compile
has two buses and eight other pins.

minimal set of instructions.

To implement FRISC, a straightforward mi. :
crocodelike sequence will be used. The codewil
be broken up into reset, instruction-fetch,
instruction-decode, and instruction-execution se¢-
tions.

Back to state one

A MetaSyn machine with more than onein-
struction state must have a reset input signal
that always returns the machine to its firstin-
struction state. Thus Power On Reset (PRST)is
the first state; it can be used to initialize the
program counter (register p) with the datain
memory location 0 and to initialize the stack
pointer (register s) with the data in memoryle-
cation 1. The state is defined as:

PRST

(par (setq address 0)(setq read t)(setq p data)
(par (setq address 1)(setq read t)(setq s data)

This code fragment specifies two clock cycles

i

e

In the first cycle, the address port output isset The MetaSyn par instruction specifies that all
t0o0, the read signal is asserted (set totrue),and three setq clauses operate in paraliel in the

m- .
sl | thepregister is set from the data port. Inthe same clock cycle.
¢h, second instruction cycle, the value in memory The following code segment checks for an in-
- location 1 is accessed and read into register s. terrupt request, and if none is pending, loads
FRISC instruction decoding
i | Instruction word* Operation _ Comment
1l 0000000000000000 : NOP Instruction fetch
in- XXOOGOCXXX000 1 ADD Add top-of-stack elements
) i - OOOOXKXXXXX00 10 - . INC increment top-of-stack
he XXOOOOXXXXXX0011 PDSI Push immediate data on stack
. JOOKXXXXXXXX0 100 LT™ Load from memary onto stack
L { XOOOXXKXXX010 1 ST™ Store into memory from stack
ck XOOXXXXXXXXXX0 110 SUB | Subtract top-of-stack elements
lo- OO X0 111 SHFT Shift top-of-stack right one bit -
i OCOOOXXXXX1000 IF Conditional jump
OO X1001 GO Unconditional jump
XOOOOOXXXXX1010 CALL Subroutine call
) XOOCOOOKAKXX 1011 RET Return from subroutine
l)} § * X = don't care = - .
Bits 0 to 15 are not shown; their value equals that of bits 16 to 27

Seagate downsizes the Winchester again. The company that

introduced the first 5%4” Winchester now offers a new low-cost standard

the 3%%” ST112. } |

\ It packs 12.76MB (unformatted) into the industry-standard

~ifootprint—ijust 4” wide, 5.75” long — —

-2and 1.625” high. It weighs only 2%
pounds, uses only 12 watts of power

 (typical), and withstands a 40G

shock. Average access time is a fast

65Smsec. All of which makes it perfect

for portables and desktops.

" Seagate is committed to remaining the industry

leader. We deliver more drives than anyone. We have the

- iproduct choice, volume, quality, and price to meet your

- fequirements. Call Seagate. You'll get immediate attention.

 Unformatted capacity (MB) -

CIRCLE 98

DESIGN ENTRY
CAE: Behavioral silicon compiler

instruction register i, with the data in the
memory location addressed by register p:

instruction-fetch

interrupt-request (go interrupt))
(cond (('t pi-red (setq address p)

(setq read 1)
(setq i data)
(setqp (1t pM)

In MetaSyn parlance, cond resembles a case

i g subexpres-
h branch of cond is @ SUDEAEL
SS“temegi-'d d by the first expressmﬁxe?thm
sion, g‘:_ : xample’s two brangl anc'h are
€ ch.O. exp ss10 swlth}nt ° ;rdis true
remaining Jel, but onlyif th gue fore, th
executedinPAIE0 0 are false son
v10 a tru n—fetc y Y,
nd previovse ciate of inS nd, if itis
first inst rupt Redv st$ d goes t
checks th the i struction o el integrrupt1
true, a . jon s nditlol:la.’
he i n sp cift-

J—

tion register iis read in from the memory loc:
tion pou_lted to by the program counter, registe
p. In a single clock cycle, the address port iss
top, _the rgad control signal is asserted, and the
i rfiglsiﬁ' is set from the data port ’

n addition, this instruction .

]) state also con.
ic)?llltil:fr?g/l CI?USSE {seta p(1+ p)), which uses tlI:e
program cilflntin (g)erator 1+ to Incrementt

r. ; :
€cause p 1s a register, it cay

be used as the source for address during theey '\
]

c
can be Countedu(:'rll.etl(l)t;l()(:k

that p can e th

Rebed nough buses
operator and the addrez(s) b: tione incremexslot

r
Case of the z¢yq register
Now that gp ;
_ an i

ter, 1ts foyur al\rslsn:u(:t‘l por
coded to pagg c oy Lie

esides i . N
ont 1t b nthei reg, '
o] tq th

Its must he g |
v 08 gp.
appropriate i

oz struction execution subroutine (see the table, right-most position of these zeros is the least
Tister p.193). significant bit.) _
is set’ As the instruction in the four low-order bits While shifting the i register for the next clock
dthe is executed, it is shifted out of the i register. cycle, FRISC simultaneously executes the con-
When that register equals zero, the current in- dition or cond statement that will actually
con- struction word is exhausted, and a newone decode the current instruction. Each of the
§ the must be fetched. Thus the instruction-decode guards within cond conducts a check for a dif-
tthe state must also check for the special case of the ferent op code, but the op codes are all checked
tcan l all-zero 1 register. simultaneously.
- The instruction decode begins: The first guard specified is for the all-zero in-
“the instruction-decode struction. The clause (=0i) uses the built-in =0
par- . : function, which then tests its integer argument
nti (par ﬁ?,:,qd l(((=> Q>|; 4(gg)instrucﬁon_fetch» (in this case, i). A Boolean value of true is re-
oiler ((eq? i 1 (32 10)) (call ADD)) turned if the integer equals zero; any other
580 (((eq? i2 (32 10)) (callINC) integer yields a false. If the value is true, the
et [Naturally there are more instructions, but matching go expression is executed.
these suffice to demonstrate the basic imple- If i is not zero, the next guard tests the four
mentation. The code first shifts theiregister,so low-order instruction bits, as specified by
. that at the b.egin’ning of the next instruction (eq?i1(3210)
g state the register’s content will be replaced by i i s .
de- the same word, shifted to the right by four Again, eq? is a built-in function that takes a
in- places and filled from the left with zeros. (The field of bits out of an integer (in this case, i) and

N Seagate establishes the new stan
drives—the ST225. Here is the 25.52MB

ideal for storage-intensive desktop systems

y | power dissipation and high shock resistance-
guarantees immediate volume

|, delivery and high quality at very

1 competitive prices.

Nobody delivers like Seagate.

| We ship more drives than anyone.

! And every drive is backed by the

dard in mid-capacity half-height
(unformatted) capacity that’s
and portables. With low

Plus proven technology

team in the |
quality, and
d watch

! largest, most responsive Winchester suppOrt

i industry. We have the product choice, volume,
| price to meet your requirements. Call Seagate: An
us respond. -

|

CIRCLE 99

DESIGN ENTRY

CAE: Behavioral silicon compiler

compares the bits to another integer. A value of
true resultsif thebits are equal and falseif they
are not. Thus this branch is executed only if the
lowest four bits of i are equal to 1 (the op code
for a FRISC ADD instruction).

If the branch is executed, control is trans-
ferred on the next clock cycle tothe MetaSyn in-
struction state labeled ADD . Since this transfer
comes about by means of a MetaSyn call in-
struction, the code atlabel ADD should end with
a MetaSyn return instruction, in order to pass
control to instruction-decode +1 (the next state
after instruction-decode).

If the low-order four bits are not 0001 but
0010, then the current FRISC instruction is INC,
and control is dispatched to that instruction
state, and so on.

Ready for execution

Itis iqlportant to realize that the compiler
automatically generates the hardware to im-
plement the specified parallelism; no further

guidance from the designer is needed.
To see how FRISC executes an instruction,
consider how, for example, increment is coded:

INC
(par (setqa(1+ a))
(return))

The functions par and 1+ are already familiar.
In this case, the latter is called upon to operate
on the top-of-stack cache, a. Incidentally, this
top-of-stack increment and the program
counter increment can physically share the
same hardware, since the two increments oceur
during different instruction states—but the
compiler will worry about all that. Simulta-
neously with the top-of-stack increment, con-
trol returns to the instruction-decode + 1 state
via the return operation.

Once the specification for the computer has
been completed, the designer should simulate it
interactively by setting and observing the pro-
cessor’s 1/0 pins, or by running a FRISC pro-

e

grami
tobet
tainin
in the

All
week,
pages
syste:
factu
vital.
thefa
ande
singl¢
the 1
out {
singl
Thy:
also-
const

Th
sisto

1 W W e @D LT

gramin a simulated memory. The test program
to be used sums the elements of a vector con-
taining the first six even integers.

in the chips

All told, the FRISC project took less thana
week, including the specification of about three
pages of MetaSyn code and two pages for the
system simulation program. But the manu-
fgcturabi!ity and size of the FRISC chip is also
vital. Of course, chip size is very dependent on
thefabrication technology. A safe, inexpensive,
and conservative technology would be a 4-gm
single-level metal NMOS process. In this case,
the 10,000-transistor, 32-bit FRISC chip turns
out to be 7.7 by 9.3 mm. By going to a 3-um,
single-level metal process, the size gets closer to
7by 6 mm—easily producible. The compiler
also supplies statistics and estimated power

- consumption,

_The chip’s density, as measured in tran-
sistors per square millimeter, may appear low,

—-—"‘g—;

but that parameter is nearly irrelevant. Far
more important is functional density. For ex-
ample, ROM, PLAs, and random logic are, for
many purposes, logically interchangeable. The
ROM implementation has the best transistor
density, while random logic provides the same
function with the fewest transistors. Very like-
ly (depending on the function implemented),
the PLA will emerge with the best functionality
per square millimeter. Similarly, FRISC—or
any other design—should be measured by func-
tional density.

Build a better chip

One interesting aspect of a compiled chiplike
FRISCis the ease with which it can be con-
verted into a 16-bit processor (or any multiple
of 4 bits) by a change in just one number in the
specification. For the 16-bit computer in the
4-um single-level metal NMOS process, the size
is 6.9 by 6.0 mm (Fig. 6).

Now that a FRISC prototype exists, itis time

)

e

»

nd ¢} 8 linear voice coil actuator |
X1
IPtoven

| W{ieﬂgate

“iremeryg,

in the industry. A standard

‘ime) Seagate’s new ST4000 Series offers high performance (40msec average access

mvol:rrxlld a choice of capacities (26, 38, 51MB, unformatted) never before available

Yandard
of mul.

€ at such low cost. The ST4000 Series defines the new cost/performance
that today is helping to make the new generation

osed
&s hag bIOOp servo, the ST4000

€en engineered with
Ulacturable technology.

Cé;angiqg the way the industry thin

Product , € deliver more drives than anyone. We have |
“hoice, volume, quality, and price to meet your

Call Seagate. You can rely on our performance.

ks about high performance

DESIGN ENTRY

CAE: Behavioral silicon compiler

to think about improvements. For example, it
might be good to overlap the processes for
fetching, decoding, and executing instructions,
thus implementing a form of pipelining. Alter-
natively, an application might suggest an addi-
tion to the FRISC instruction set. Designers
often do this in microcoded processors by add-
ing the new instruction to the microcode; how-
ever, the new instruction can use only the
existing hardware resources. But when a new
instruction iscoded in MetaSyn, it mayresultin
new, more suitable hardware for the new in-
struction. For example, an instruction to sum
the elementsin a vector could be included. Such
an instruction might be called vector-sum . It
takes as the vector’s base address the data in
the top-of-stack element. The next element will
contain the length of the vector.

When vector-sum is completed, these two
values are popped off the stack, and the sum is
pushed on top of the stack. During execution of
vector-sum, the a register serves as the current

address in the vector, and b holds the vector’s
remaining count. No register is needed to hold
each element as it comes in from memory, since
FRISC can be made to add directly from the
data port. To keep the running sum, however, a
new register, called vs (for vector sum), be-
comes necessary.

Just add nine lines

To implement the vector-sum instruction,
FRISC’s instruction-decode section must be
modified and new code added to the instruction-.
execution section. One way to implement the
latteris:

vector-sum
(cond ((= 0 b) (setq b vs)
(go pop))
(t (setq b (1-b))
(setq address a)
(setq read 1)
(setq vs (+ vs data))
(setqa(1+ a))
(go vector-sum)))

The MetaSyn code for the instruction con-
sists of a single instruction state. First the code
checks for the end-of-loop condition—that is,
whether all elements of the vector have been
summed. This is done by means of an = 0 oper-
ator, as previously used in the instruction-
decode section. If the summing has been com-
pleted, the result is placed on the stack, and the
stackis cleaned up—in other words, the vector’s
start and length value are removed by ajump to
thg pop instruction code. Since that code ends
withreturn, control returns to instruction-
decode + 1.

If the sum is not completed, the memory lo-
cation addressed by the a register is read while
the current value of the vector length, stored in
the b register, is simultaneously decremented
Viathe built-in MetaSyn operator 1—. Contrary
towhat happens in a normal reading operation,
the actual data from the memory is not stored,

ut is added to the value in vs, the running sum
register. At the same time the current vector

element address (in register a) is incremented
for the next time through the loop. Again, be-
cause of the implied register timing, the value
in the register will not change until the begin-
ning of the next instruction state, so that
address is maintained constant during the
memory reading process. The final expression
in this branch of cond sends control back to the
vector-sum label for the next instruction state.

A good trade

When compiled, the 16-bit computer chip,
complete with vector summing, measures 7.5 by
6.2 mm in area, or 12% larger than the original

16-bit FRISC. In return, it executes a vector

sum more than 10 times faster than the old chip
could—with software alone.

The redesign of FRISC involves one other
cost—namely, the additional design time. In
this ease, the modification is so simple that it
takes about 2 man-hours to modify the FRISC
MetaSyn specification, create a vector-sum test

DESIGN ENTRY
CAE: Behavioral silicon compiler

program, and test the design using the MetaSyn
simulator. Two more hours of compilation time
is needed to produce the layout. - e

Speedy compilation .

- Although the overall design time is most im-
portant, the compiler’s actual CPU time is also
of interest. There are two kinds of compilation
time: the time from specification to interaction
with the simulator, called “compilation to
simulation,” and the time to create the layout.

Compilation to simulation is very important,
since it represents the innermost design loop.
The largest designs compile to simulation in a
few minutes, and theinteractive response times

are hardly affected by the size of the design.

As to layout time, small designs have com
piled in a few minutes to half an hour; thelarg-
est designs, such as the FRISC chip, can take
from two to four hours. These times apply tothe
August 1984 version of the MetaSyn compile
running on a Symbolices 3600 Lisp machine with
474 Mbytes of disk storage and 1 Mword of
semiconductor RAM.op ~ 7 LRl

How useful? =
Immediate design application
Within the next year _ e s
Not applicable -~~~

