
ECE 563
Programming Parallel Machines

What is our goal in this
class?

• To learn how to write programs that run in parallel

• This requires partitioning, or breaking up the program,
so that different parts of it run on different cores or
nodes

• different parts may be different iterations of a loop

• different parts can be different textual parts of the
program

• different parts can be both of the above

Normally code runs sequentially

for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

All modern processors are multi-core processors
Our programs normally run on a single core within a processor
If we can efficiently run our code on multiple processors, we can make it go faster!

a[1] = b[1] + c[1];
c[1] = a[0]
a[2] = b[2] + c[2];
c[2] = a[1]
a[3] = b[3] + c[3];
c[3] = a[3]
. . .
a[n] = b[n] + c[n];
c[n] = a[n]

We’d like to run it in parallel
for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

a[1] = b[1] + c[1];
c[1] = a[0]
a[2] = b[2] + c[2];
c[2] = a[1]
. . .
a[n/2] = b[n/2] + c[n/2];
c[n/2] = a[n/2]

a[n/2+1] = b[n/2+1] + c[n/2+1];
c[n/2+1] = a[n/2+1]
a[n/2+2] = b[n/2+2] + c[n/2+2];
c[n/2+2] = a[n/2+2]
. . .
a[n] = b[n] + c[n];
c[n] = a[n]

Core 0 Core 1

Why do we want to run in parallel
• Life was simpler when processor clock rates doubled

every couple of years or so
• Processors got faster, enabling more complicated

software, when motivated faster processors (and buying a
new machine) which motivated even more complicated
software . . .

• If something cannot go on forever, it will stop. --Stein's
Law, first pronounced in the 1980s
– Always true of exponentials
– E = 1/2*C*V2, where E is energy, C is capacitance and

V is voltage.
– Higher frequencies require higher voltages
– More cores increase C, which increases energy linearly

5

6

The solution

• Processors don’t get faster, but have more
cores

• By splitting up our program and running it
on multiple cores, it runs faster.

• Unfortunately, it is up to us to split it up
and make it run faster. Which is why we’re
here for the next two weeks.

And it’s not always legal
to run code in parallel

• And sometimes the hardware cannot
support what we want to do

• Instead of 2 cores, what if we want to run
our code on 400 cores? 4,000?

• And sometimes we run our code in parallel
and it runs slower, not faster

In this class we’ll learn

• Computer Architecture:

• What the computer looks like that runs our code,

• How computer features can affect our performance

• OpenMP and Pthreads: how to run programs in parallel
using the cores on a single chip, or on two chips

• MPI: how to run programs in parallel across multiple
nodes in a large computer

• Cuda: how to run programs in parallel on a GPU

• Speedup theory: measuring program performance

And we will do programming

• OpenMP and Pthreads: how to run programs in parallel
using the cores on a single chip, or on two chips

• MPI: how to run programs in parallel across multiple
nodes in a large computer

A short architectural
overview

Warning: gross simplifications to
follow

Multiprocessor (shared memory
multiprocessor)

• Multiple CPUs with a shared memory (or multiple cores in the same CPU)

• The same address on two different processors points to the same
memory location

• Multicores are a version of this

• If multiple processors are used, they are connected to a shared bus which
allows them to communicate with one another via the shared memory

• Two variants:

• Uniform memory access: all processors access all memory in the same
amount of time

• Non-uniform memory access: different processors may see different times
to access some memory.

A Uniform Memory Access
shared memory machine

CPU CPU CPU CPU

cache cache cachecache

bus

Memory I/O devices

All
processors

access
global

memory at
the same

speed

Multicore machines usually
have uniform memory access

Core Core Core Core

cache cache cachecache

bus

Memory I/O devices

All cores
access
global

memory at
the same

speed

CPU

Multicore machines usually
share at least one level of cache

Core Core Core Core

cache

bus

Memory I/O devices

All cores
access
global

memory at
the same

speed

CPU

A NUMA (non-uniform memory
access) shared memory machine

CPU
cache

bus

Memory

CPU
cache

Memory

CPU
cache

Memory

Global memory is spread across, and held in, the local memories
of the different nodes of the machine
Processors will access their memory faster than their
neighbors memory

Coherence is needed

Core Core Core Core

bus

cache cache cache cache

Memory
a = 4; z = 0

I/O
devices

Coherence is needed

Core Core Core Core

bus

z = 2

z=2

Memory
a = 4; z = 2,

x=?

I/O
devices

t0: z = a

Check
if a in

cache and
get from

memory if
it isn’t.

Core Core Core Core

bus

z = 2

a=?, z=? z=2

instruction to be executed

Memory
a = 4; z = 2,

x=?

I/O
devices

t0: z = a

a from
Memory

a from
memory,
loaded

into
register r2
and added

to the
core’s
cache

load reg2, from (a)
st reg2, into (z)

Core Core Core Core

bus

a=4, z=? z=2

z = 2a = 4

a added to
the shared

cache

Memory
a = 4; z = 2,

x=?

I/O
devices

t0: z = a

load reg2, from (a) a
st reg2, into (z)

Core Core Core Core

bus

a=4, z=4 z=2

z = 2a = 4

New value of z
added to the

core’s cache and
written to the

bus
Memory

a = 4; z = 2,
x=?

I/O
devices

t0: z = a

load reg2, from (a) a
st reg2, into (z)

Core Core Core Core
a=4, z=4 z=2

z = 4a = 4

bus invalidation

Old values of z
in other cores’
caches must
be invalidated
since they are
no longer the
correct value.

The new value
of z is written to
the shared
cache.

Memory
a = 4; z = 2,

x=?

I/O
devices

t0: z = a

load reg2, from (a) a
st reg2, into (z)

Core Core Core Core
a=4, z=4 z=?

z = 4a = 4

bus

The new z value
is eventually
written to memory

Memory
a = 4; z = 4,

x=?

I/O
devices

tn: x = zt0: z = a

load reg2, from (z)
st reg2, into (x)

Core Core Core Core

bus

a=4, z=4 z=?,x=?

z = 4a = 4

Memory
a = 4; z = 4,

x=?

I/O
devices

tn: x = zt0: z = a

load reg2, from (z)
st reg2, into (x)

Core Core Core Core

bus

a=4, z=4 z=4, x=?

z = 4a = 4
get z

from the
cache

Memory
a = 4; z = 4,

x=?

I/O
devices

load reg2, from (z)
st reg2, into (x)

tn: x = zt0: z = a

and
eventually to

Memory

Core Core Core Core

bus

a=4, z=4 z=4, x=4

z = 4a = 4x = 4

Memory
a = 4; z = 4,

x=4

I/O
devices

x to
shared
cache

Shared
cached x
to the
bus

load reg2, from (z)
st reg2, into (x)

tn: x = zt0: z = a

load reg2, from (z)
st reg2, into (x)

tn: x = z

Core Core Core Core

bus

a=4, z=4 z=4, x=4

z = 4a = 4x = 4

Memory
a = 4; z = 4,

x=4

I/O
devices

invalidation

Whenever a write is made to memory by a core, an invalidation signal is
sent to all of the other cores’ caches. This is true even if the other cores
don’t have a copy of the written variable, since only the core knows what is
in its cache.

tn: x = zt0: z = a

Core Core Core Core

bus

a=4, z=4 z=4, x=4

z = 4a = 4x = 4

Memory
a = 4; z = 4,

x=4

I/O
devices

tn: x = zt0: z = a

Core Core Core Core

bus

a=4, z=4 z=4, x=4

z = 4a = 4x = 4

Memory
a = 4; z = 4,

x=4

I/O
devices

Hardware makes sure a core/processor reads the
latest value assigned to memory (cache coherence)

tn: x = zt0: z = a

Core Core Core Core

bus

a=4, z=4 z=4, x=2

z = 4a = 4x = 2

Memory
a = 4; z = 4,

x=2

I/O
devices

What if x=z executes before z=a?

Software has to make sure operations occur in the
right order across threads/processors

A little more detail on
caches

• When a value is brought into the cache, the
processor doesn’t just bring that value in

• It brings in an entire cache line of values

• Cache lines are typically 4 to 8 words long,
or 16 to 32 bytes long

• This can help and hurt performance

Memory brought into cache by lines

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

W0 W1 W2 W3

Cache line 0
Core 1 cacheCore 0 cache

Core 0
accesses W0
to read

If Core 0
accesses W0,
W1, W2, and
W3, only one
memory
access
needed!

Memory brought into cache by lines

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

W0 W1 W2 W3

Cache line 0

W8 W9 W10 W11

Cache line 2
Core 1 cacheCore 0 cache Core 1

accesses W9
to read

Many caches can hold the same line for
reading

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

W0 W1 W2 W3

Cache line 0

W8 W9 W10 W11

Cache line 2
Core 1 cacheCore 0 cache Core 0

accesses W9
to read

W8 W9 W10 W11

Cache line 2

Only one cache can hold a line for
writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

W0 W1 W2 W3

Cache line 0

W8 W9 W10 W11

Cache line 2
Core 1 cacheCore 0 cache

W8 W9 W10 W11

Cache line 2
invalidate

Core 0
accesses W9
to write

Core 1’s line
is invalidated

Only one cache can hold the same line
for writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache
Let Core 0
write W0,
Core 1 W1,
Core 0 W2,
and Core 1
W3.

Only one cache can hold the same line
for writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache

Core 0 writes
W0

W0 W1 W2 W3

Cache line 0

Only one cache can hold the same line
for writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache

Core 1 writes
W1

W0 W1 W2 W3

Cache line 0
W0 W1 W2 W3

Cache line 0

invalidate

Only one cache can hold the same line
for writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache

Core 1 writes
W1

W0 W1 W2 W3

Cache line 0

Only one cache can hold the same line
for writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache

Core 0 writes
W2

W0 W1 W2 W3

Cache line 0
W0 W1 W2 W3

Cache line 0
invalidate

Many caches can hold the same line for
writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache

Core 0 writes
W2

W0 W1 W2 W3

Cache line 0

Only one cache can hold the same line
for writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache

Core 1 writes
W3

W0 W1 W2 W3

Cache line 0

W0 W1 W2 W3

Cache line 0

invalidate

Only one cache can hold the same line
for writing

memory

W0 W1 W2 W3

Cache line 0

W4 W5 W6 W7

Cache line 1

W8 W9 W10 W11

Cache line 2
W12 W13 W14 W15

Cache line 3

W8 W9 W10 W11

Cache line 2

Core 1 cacheCore 0 cache

Core 1 writes
W3

W0 W1 W2 W3

Cache line 0

The problem with this

• All the invalidation and re-accessing the cache
line takes time

• This makes program execution slower

• This can happen when, for example, the even
iterations of a loop execute on one core and
the odd iterations execute on another

• We’ll talk more later about how to avoid this.

Other cache facts
• Most general purpose processors have 3 levels of

cache (numbers for Intel Haswell, are different for
different processors and models.

• Level 1 is the fastest, ~4 cycles to access, ~32K
bytes. Level 1 cache is in a core

• Level 2 is the next fastest, ~12 cycles to access,
~256K bytes. Level 2 cache is in a core

• Level 3 is the next fastest, ~36 cycles to access,
~256K bytes. Level 3 is shared among cores

Other cache facts (2)

• When a cache is full, and another line x needs to
be accessed

• A line y in the cache is selected to be evicted

• The line y is evicted

• The line x is put where line y used to be

How to make caches
work for us

• Accesses of code running on a core should access words
close to the last word accessed. This reduces the number of
lines accessed, and the number of lines that need to be held.

• Accessing the same line repeatedly before the cache is full also
reduces the number of lines that need to be brought in

• More details on how to do this when we actually start talking
about programming

• Using caches well can make programs run 10X faster!

A programming model must
provide a way of specifying

• what parts of the program execute in parallel with one
another

• how the work is distributed across different cores

• the order that reads and writes to memory will take
place

• that a sequence of accesses to a variable will occur
atomically or without interference from other threads.

• And, ideally, it will do this while giving good performance
and allowing maintainable programs to be written.

OpenMP

• Open Multi-Processor

• targets multicores and multi-processor
shared memory machines

• An open standard, not controlled by any
manufacturer

• Allows loop-by-loop & region-by-region
parallelization of sequential programs.

What executes in parallel?

c = 57.0;
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

c = 57.0
#pragma omp parallel for
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

• pragma appears like a comment to a non-OpenMP
compiler

• pragma requests parallel code to be produced for
the following for loop

processors, nodes,
processes and threads

A processor is a physical piece of
hardware with one or more cores
that executes instructions

processors, nodes, processes and threads

A node is one or more processors
along with associated devices (disk
drive, memory, i/o cards,
communication cards, etc.

One or more nodes form a system

• In the early days of
computing and on specialized
machines, one “program”
runs on the machine at a
time

• It has access to the raw
hardware and communicates
with the hardware directly

• This is not very useful -- only
one person or job can use
the machine at a time  

processors, nodes, processes and threads

A Digital Equipment Corporation
PDP-8 (programmable data processor)
Early low-cost mass produced computer

• An operating system allows multiple jobs and/or users to access
the machine at the same time

• The OS virtualizes the machine -- each job sees the machine
as entirely its own

• The OS protects each job from other jobs

• Virtual memory allows each job to act as if it has access to the
entire address space of memory. This is done by having the OS,
with help from the hardware, map program addresses into small
parts of real DRAM addresses. Physical DRAM serves as a
cache and disk as the backing store.  

processors, nodes, processes and threads

Virtual memory
• An operating system allows

multiple jobs and/or users
to access the machine at
the same time

• The OS virtualizes the
machine -- each job sees
the machine as entirely
its own

•  

DRAM

OS

access
address
0X56 in
the job

Job 0

access
address
0X56 in
the job

Job N

0x1024

Virtual memory translation

0x597

• The keyboard, printers, disk drives, intra-system network,
inter-system network (the internet), etc.

• The name for a single job that has a single virtualized
image of the system is a process

• Browser, email program, program you have written,
Word, VI, emacs, are all processes, and all can be
active and sharing the system

• Via time-sharing/multiplexing of processes, all can appear
to us to be running simultaneously, even with a single
core

processors, nodes, processes and threads

• For our purposes, the most important aspect of a process is
that its address space is separate from other processes
address spaces

• Cannot communicate directly with other processes

• this is not entirely accurate as unices and other OSes
support shared memory segments among processes

• Not commonly used by programmers for parallel
programming, more commonly used by systems programs

• Communication among processes requires sending messages
via OS (often sockets are used)

• MPI (Message passing interface) is a common way to send
messages

processors, nodes, processes and threads

• But sometimes we want multiple “things” running at the same
time to be able to communicate and share memory locations,
e.g., values of variables

• Threads allow this to happen

• Threads are usually managed by the OS, but a given thread is
owned by a process

• All threads owned by the process share the virtualized
resources given to the process by the OS. In particular, all
threads owned by a process share the same address space.

• This allows threads to communicate via memory, which is usually
faster than communicating via messages

• Threads run on a core

• Every process has a main thread that runs the processes’ code

processors, nodes, processes and threads

Threads and processes -- summary
• Threads and processes are typically operating system entities and

concepts

• A process has its own address space and owns a typically virtualized
copy of the machine when executing

• processes may own one or more threads

• A thread shares its address space with it’s owning process and all
other threads owned by the same process

• each thread has its own copy of registers

• local variables can be created that are accessible only by the
thread

• threads are the fundamental building block of parallel shared
memory programs

Two main levels of parallelism

• Thread level

• Parallelism is across threads

• Typically within a node

• We will look at systems later in the class that support thread
level parallelism across nodes

• We will use OpenMP and Pthreads to exploit thread level
parallelism

• Process level parallelism

• Parallelism is across processes

• Typically across nodes

• We will use MPI (Message Passing Interface) to exploit thread
level parallelism

Typical thread level
parallelism using OpenMPmaster

thread

fork, e.g. omp
parallel pragma

join at end of
omp parallel pragma

Green is parallel execution
Red is sequential
Creating threads is not free --
would like to reuse them
across different parallel
systems

How is the work distributed across
different cores?

c = 57.0
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

• Split the loop into chunks of contiguous iterations
with approximately t/n iterations per chunk

• Thus, if 4 threads and 100 iterations, thread one
would get iterations 0:24, thread 2 25:49, and so
forth

• Other scheduling strategies supported and will be
discussed later.

The order that reads and writes to
memory occur

c = 57.0
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}
#pragma omp parallel for schedule(static)
for (j=0; j < n; j++) {

a[j] = c[j] + a[j]*b[j]
}

• Within an iteration, access to data appears in-order
• Across iterations, no order is implied. Races lead to undefined

programs
• Across loops, an implicit barrier prevents a loop from starting

execution until all iterations and writes (stores) to memory in the
previous loop are finished

• The barrier is associated with the green i loop
• Parallel constructs execute after preceding sequential constructs finish

barrier

Relaxing the order that reads and writes
to memory occur

c = 57.0
#pragma omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}
#pragma omp parallel for schedule(static)
for (j=0; j < n; j ++) {

a[j] = c[j] + a[j]*b[j]
}

The nowait clause allows a thread that finishes its part of the green i loop
to begin executing its iterations of the blue j loop without waiting for
other threads to finish their iterations of the green i loop.

Static says how the iterations of the loop are split among different
threads.

Accessing variables without interference
from other threads

#pragma omp parallel for
for (i=0; i < n; i++) {

a = a + b[i]
}

Dangerous -- all iterations are
updating a at the same time --
a race (or data race).

#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

a = a + b[i];
}

Not particularly useful, but
correct -- critical pragma
allows only one thread to
execute the next statement at
a time. Can be very inefficient!

We will learn better ways to
do this.

Next -- OpenMP in
more detail

