
ECE 563 
Programming Parallel Machines



What is our goal in this 
class?

• To learn how to write programs that run in parallel

• This requires partitioning, or breaking up the program, 
so that different parts of it run on different cores or 
nodes 

• different parts may be different iterations of a loop 

• different parts can be different textual parts of the 
program

• different parts can be both of the above



Normally code runs sequentially

for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

All modern processors are multi-core processors
Our programs normally run on a single core within a processor
If we can efficiently run our code on multiple processors, we can make it go faster! 

a[1] = b[1] + c[1];
c[1] = a[0]
a[2] = b[2] + c[2];
c[2] = a[1]
a[3] = b[3] + c[3];
c[3] = a[3]
. . .
a[n] = b[n] + c[n];
c[n] = a[n]



We’d like to run it in parallel
for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

a[1] = b[1] + c[1];
c[1] = a[0]
a[2] = b[2] + c[2];
c[2] = a[1]
. . .
a[n/2] = b[n/2] + c[n/2];
c[n/2] = a[n/2]

a[n/2+1] = b[n/2+1] + c[n/2+1];
c[n/2+1] = a[n/2+1] 
a[n/2+2] = b[n/2+2] + c[n/2+2];
c[n/2+2] = a[n/2+2]
. . .
a[n] = b[n] + c[n];
c[n] = a[n]

Core 0 Core 1



Why do we want to run in parallel
• Life was simpler when processor clock rates doubled 

every couple of years or so 
• Processors got faster, enabling more complicated 

software, when motivated faster processors (and buying a 
new machine) which motivated even more complicated 
software . . .  

• If something cannot go on forever, it will stop. --Stein's 
Law, first pronounced in the 1980s 
– Always true of exponentials 
– E = 1/2*C*V2, where E is energy, C is capacitance and 

V is voltage. 
– Higher frequencies require higher voltages 
– More cores increase C, which increases energy linearly
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The solution

• Processors don’t get faster, but have more 
cores

• By splitting up our program and running it 
on multiple cores, it runs faster.

• Unfortunately, it is up to us to split it up 
and make it run faster.  Which is why we’re 
here for the next two weeks.



And it’s not always legal 
to run code in parallel

• And sometimes the hardware cannot 
support what we want to do

• Instead of 2 cores, what if we want to run 
our code on 400 cores? 4,000?

• And sometimes we run our code in parallel 
and it runs slower, not faster



In this class we’ll learn

• Computer Architecture:

• What the computer looks like that runs our code,

• How computer features can affect our performance

• OpenMP and Pthreads: how to run programs in parallel 
using the cores on a single chip, or on two chips

• MPI: how to run programs in parallel across multiple 
nodes in a large computer

• Cuda: how to run programs in parallel on a GPU

• Speedup theory: measuring program performance



And we will do programming

• OpenMP and Pthreads: how to run programs in parallel 
using the cores on a single chip, or on two chips

• MPI: how to run programs in parallel across multiple 
nodes in a large computer



A short architectural 
overview

Warning: gross simplifications to 
follow



Multiprocessor (shared memory 
multiprocessor)

• Multiple CPUs with a shared memory (or multiple cores in the same CPU)

• The same address on two different processors points to the same 
memory location

• Multicores are a version of this

• If multiple processors are used, they are connected to a shared bus which 
allows them to communicate with one another via the shared memory

• Two variants:

• Uniform memory access: all processors access all memory in the same 
amount of time

• Non-uniform memory access: different processors may see different times 
to access some memory. 



A Uniform Memory Access  
shared memory machine

CPU CPU CPU CPU

cache cache cachecache

bus

Memory I/O devices

All 
processors 
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global 

memory at 
the same 

speed



Multicore machines usually 
have uniform memory access

Core Core Core Core

cache cache cachecache

bus

Memory I/O devices

All cores 
access 
global 

memory at 
the same 

speed

CPU



Multicore machines usually 
share at least one level of cache

Core Core Core Core

cache

bus

Memory I/O devices

All cores 
access 
global 

memory at 
the same 

speed

CPU



A NUMA (non-uniform memory 
access) shared memory machine

CPU
cache

bus

Memory

CPU
cache

Memory

CPU
cache

Memory

Global memory is spread across, and held in, the local memories 
of the different nodes of the machine
Processors will access their memory faster than their 
neighbors memory



Coherence is needed

Core Core Core Core

bus

cache cache cache cache

Memory
a = 4; z = 0

I/O 
devices



Coherence is needed

Core Core Core Core
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z = 2

z=2
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x=?

I/O 
devices



t0: z = a

Check 
if a in 

cache and 
get from 

memory if 
it isn’t.

Core Core Core Core

bus

z = 2
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Memory
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I/O 
devices



t0: z = a

a from 
Memory

a  from 
memory, 
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t0: z = a

load reg2, from (a) a
st reg2, into (z) 

Core Core Core Core
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t0: z = a

load reg2, from (a) a
st reg2, into (z) 

Core Core Core Core
a=4, z=4 z=2

z = 4a = 4

bus invalidation

Old values of z 
in other cores’ 
caches must 
be invalidated 
since they are 
no longer the 
correct value.

The new value 
of z is written to 
the shared 
cache.

Memory
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x=?

I/O 
devices



t0: z = a

load reg2, from (a) a
st reg2, into (z) 

Core Core Core Core
a=4, z=4 z=?

z = 4a = 4

bus

The new z value 
is eventually 
written to memory

Memory
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I/O 
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tn: x = zt0: z = a

load reg2, from (z)
st reg2, into (x) 
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tn: x = zt0: z = a

load reg2, from (z)
st reg2, into (x) 

Core Core Core Core
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Memory
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load reg2, from (z)
st reg2, into (x) 

tn: x = zt0: z = a

and 
eventually to 

Memory
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load reg2, from (z)
st reg2, into (x) 

tn: x = zt0: z = a

load reg2, from (z)
st reg2, into (x) 

tn: x = z

Core Core Core Core

bus
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z = 4a = 4x = 4

Memory
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x=4

I/O 
devices

invalidation

Whenever a write is made to memory by a core, an invalidation signal is 
sent to all of the other cores’ caches.  This is true even if the other cores 
don’t have a copy of the written variable, since only the core knows what is 
in its cache.



tn: x = zt0: z = a
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tn: x = zt0: z = a
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Hardware makes sure a core/processor reads the 
latest value assigned to memory (cache coherence)



tn: x = zt0: z = a

Core Core Core Core

bus

a=4, z=4 z=4, x=2

z = 4a = 4x = 2

Memory
a = 4; z = 4, 

x=2

I/O 
devices

What if x=z executes before z=a?  

Software has to make sure operations occur in the 
right order across threads/processors



A little more detail on 
caches

• When a value is brought into the cache, the 
processor doesn’t just bring that value in

• It brings in an entire cache line of values

• Cache lines are typically 4 to 8 words long, 
or 16 to 32 bytes long

• This can help and hurt performance



Memory brought into cache by lines
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Memory brought into cache by lines
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Many caches can hold the same line for 
reading
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Only one cache can hold a line for 
writing
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Only one cache can hold the same line 
for writing
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Only one cache can hold the same line 
for writing
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Only one cache can hold the same line 
for writing
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Only one cache can hold the same line 
for writing

memory
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Only one cache can hold the same line 
for writing

memory
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Many caches can hold the same line for 
writing
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Only one cache can hold the same line 
for writing
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Only one cache can hold the same line 
for writing

memory
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The problem with this

• All the invalidation and re-accessing the cache 
line takes time

• This makes program execution slower

• This can happen when, for example, the even 
iterations of a loop execute on one core and 
the odd iterations execute on another

• We’ll talk more later about how to avoid this.



Other cache facts
• Most general purpose processors have 3 levels of 

cache (numbers for Intel Haswell, are different for 
different processors and models.

• Level 1 is the fastest, ~4 cycles to access, ~32K 
bytes.  Level 1 cache is in a core

• Level 2 is the next fastest, ~12 cycles to access, 
~256K bytes.  Level 2 cache is in a core

• Level 3 is the next fastest, ~36 cycles to access, 
~256K bytes.  Level 3 is shared among cores



Other cache facts (2)

• When a cache is full, and another line x needs to 
be accessed

• A line y in the cache is selected to be evicted

• The line y is evicted

• The line x is put where line y used to be



How to make caches 
work for us

• Accesses of code running on a core should access words 
close to the last word accessed.  This reduces the number of 
lines accessed, and the number of lines that need to be held.

• Accessing the same line repeatedly before the cache is full also 
reduces the number of lines that need to be brought in

• More details on how to do this when we actually start talking 
about programming

• Using caches well can make programs run 10X faster!



A programming model must 
provide a way of specifying 

• what parts of the program execute in parallel with one 
another 

• how the work is distributed across different cores

• the order that reads and writes to memory will take 
place

• that a sequence of accesses to a variable will occur 
atomically or without interference from other threads.

• And, ideally, it will do this while giving good performance 
and allowing maintainable programs to be written.



OpenMP

• Open Multi-Processor

• targets multicores and multi-processor 
shared memory machines

• An open standard, not controlled by any 
manufacturer

• Allows loop-by-loop & region-by-region 
parallelization of sequential programs.



What executes in parallel?

c = 57.0;
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

c = 57.0
#pragma omp parallel for
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

• pragma appears like a comment to a non-OpenMP 
compiler

• pragma requests parallel code to be produced for 
the following for loop



processors, nodes, 
processes and threads

A processor is a physical piece of 
hardware with one or more cores 
that executes instructions



processors, nodes, processes and threads

A node is one or more processors 
along with associated devices (disk 
drive, memory, i/o cards, 
communication cards, etc.

One or more nodes form a system



• In the early days of 
computing and on specialized 
machines, one “program” 
runs on the machine at a 
time

• It has access to the raw 
hardware and communicates 
with the hardware directly

• This is not very useful -- only 
one person or job can use 
the machine at a time  

processors, nodes, processes and threads

A Digital Equipment Corporation 
PDP-8 (programmable data processor)
Early low-cost mass produced computer



• An operating system allows multiple jobs and/or users to access 
the machine at the same time

• The OS virtualizes the machine -- each job sees the machine 
as entirely its own

• The OS protects each job from other jobs

• Virtual memory allows each job to act as if it has access to the 
entire address space of memory.  This is done by having the OS, 
with help from the hardware, map program addresses into small 
parts of real DRAM addresses.  Physical DRAM serves as a 
cache and disk as the backing store.  

processors, nodes, processes and threads



Virtual memory
• An operating system allows 

multiple jobs and/or users 
to access the machine at 
the same time

• The OS virtualizes the 
machine -- each job sees 
the machine as entirely 
its own

•  

DRAM

OS

access 
address 
0X56 in 
the job

Job 0

access 
address 
0X56 in 
the job

Job N

0x1024

Virtual memory translation

0x597



• The keyboard, printers, disk drives, intra-system network, 
inter-system network (the internet), etc.

• The name for a single job that has a single virtualized 
image of the system is a process

• Browser, email program, program you have written, 
Word, VI, emacs, are all processes, and all can be 
active and sharing the system

• Via time-sharing/multiplexing of processes, all can appear 
to us to be running simultaneously, even with a single 
core

processors, nodes, processes and threads



• For our purposes, the most important aspect of a process is 
that its address space is separate from other processes 
address spaces

• Cannot communicate directly with other processes

• this is not entirely accurate as unices and other OSes 
support shared memory segments among processes

• Not commonly used by programmers for parallel 
programming, more commonly used by systems programs

• Communication among processes requires sending messages 
via OS (often sockets are used)

• MPI (Message passing interface) is a common way to send 
messages

processors, nodes, processes and threads



• But sometimes we want multiple “things” running at the same 
time to be able to communicate and share memory locations, 
e.g., values of variables

• Threads allow this to happen

• Threads are usually managed by the OS, but a given thread is 
owned by a process

• All threads owned by the process share the virtualized 
resources given to the process by the OS.  In particular, all 
threads owned by a process share the same address space.

• This allows threads to communicate via memory, which is usually 
faster than communicating via messages

• Threads run on a core

•  Every process has a main thread that runs the processes’ code

processors, nodes, processes and threads



Threads and processes -- summary
• Threads and processes are typically operating system entities and 

concepts

• A process has its own address space and owns a typically virtualized 
copy of the machine when executing 

• processes may own one or more threads

• A thread shares its address space with it’s owning process and all 
other threads owned by the same process

• each thread has its own copy of registers

• local variables can be created that are accessible only by the 
thread

• threads are the fundamental building block of parallel shared 
memory programs



Two main levels of parallelism

• Thread level

• Parallelism is across threads

• Typically within a node

• We will look at systems later in the class that support thread 
level parallelism across nodes

• We will use OpenMP and Pthreads to exploit thread level 
parallelism 

• Process level parallelism

• Parallelism is across processes

• Typically across nodes

• We will use MPI (Message Passing Interface) to exploit thread 
level parallelism



Typical thread level 
parallelism using OpenMPmaster 

thread

fork, e.g. omp 
parallel pragma

join at end of 
omp parallel pragma

Green is parallel execution
Red is sequential
Creating threads is not free -- 
would like to reuse them 
across different parallel 
systems



How is the work distributed across 
different cores?

c = 57.0
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

• Split the loop into chunks of contiguous iterations 
with approximately t/n iterations per chunk

• Thus, if 4 threads and 100 iterations, thread one 
would get iterations 0:24, thread 2 25:49, and so 
forth

• Other scheduling strategies supported and will be 
discussed later.



The order that reads and writes to 
memory occur

c = 57.0
#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}
#pragma omp parallel for schedule(static) 
for (j=0; j < n; j++) {

a[j] = c[j] + a[j]*b[j]
}

• Within an iteration, access to data appears in-order
• Across iterations, no order is implied.  Races lead to undefined 

programs
• Across loops, an implicit barrier prevents a loop from starting 

execution until all iterations and writes (stores) to memory in the 
previous loop are finished

• The barrier is associated with the green i loop
• Parallel constructs execute after preceding sequential constructs finish

barrier



Relaxing the order that reads and writes 
to memory occur

c = 57.0
#pragma omp parallel for schedule(static) nowait 
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}
#pragma omp parallel for schedule(static) 
for (j=0; j < n; j ++) {

a[j] = c[j] + a[j]*b[j]
}

The nowait clause allows a thread that finishes its part of the green i loop 
to begin executing its iterations of the blue j loop without waiting for 
other threads to finish their iterations of the green i loop.

Static says how the iterations of the loop are split among different 
threads.



Accessing variables without interference 
from other threads

#pragma omp parallel for 
for (i=0; i < n; i++) {

a = a + b[i]
}

Dangerous -- all iterations are 
updating a at the same time -- 
a race (or data race). 

#pragma omp parallel for 
for (i=0; i < n; i++) {
#pragma omp critical

a = a + b[i];
}

Not particularly useful, but 
correct -- critical pragma 
allows only one thread to 
execute the next statement at 
a time.   Can be very inefficient!

We will learn better ways to 
do this.



Next -- OpenMP in 
more detail


