
Sequential performance
is important

• Per-node performance is important.

• Cache and prefetch effects are an important
way to gather per-node performance.

21

Loop unrolling�

do i = 1, n
 a[i] = b[i] + c[i]
end do

do i = 1, n, 3
 a[i] = b[i] + c[i]
 a[i+1] = b[i+1] + c[i+1]
 a[i+2] = b[i+2] + c[i+2]
end do

do i = n-((n-1) mod 3), n
 a[i] = b[i] + c[i]
end do

• Processors typically have
several add and store units

• Without additional
hardware, processors
cannot move operations
around conditional
branches

• Thus, in this loop, only one
add and one store can be
started at a time

• In the right hand version, three
floating point adds can be
issued at once

• Blue fixup code necessary
because n not always divisible
by the unroll factor

22

Cache optimizations

• Desire is to maximizes locality and to exploit
temporal and spatial locality via the cache.

• Accesses from cache are tens to hundreds of times
faster than accesses from memory, and typically the
same speed or 2 times slower than accesses from
registers

• The more regular the code, the more compilers can
do in terms of cache optimizations

23

Cache optimizations

• Loop interchange attempts to make
accesses coincide with the way data is laid
out in memory

do i = 1, n
 do j = 1, n
 a[i,j] = …
 end do
end do

A[col,row], array stored in
column major order (row in
C)

do j = 1, n
 do i = 1, n
 a[i,j] = …
 end do
end do

Interchange the loops, and data within a
text box is reused.

24

Loop tiling (page 347, Bacon, Eggers
paper on the class web page)

Do i = 1, n
 Do j = 1, n
 a[i,j] = b[j,i]
 end do
end do

do TI = 1, n, 64
 do TJ = 1, n, 64
 do i = TI, min(TI+63,n)
 do j = TJ, min(TJ+63, n)
 a[i,j] = b[j,i]
 end do
 …
end do

a[I,j] accessesb[i,j] accesses

What fits in
cache This pattern is present in matrix

multiply, transpose, etc.

a,b[col,row], array stored
in row major order

25

Cache optimizations

• Loop fusion increases temporal locality
do I = 1, n
 c[i] = a[i]
end do
do I = 1, n
 b[i] = a[i]
end do

If n is large enough that all of
c[1:n], a[1:n] and b[1:n]
won’t fit in cache, some of
a[1:n] fetched in the first
loop will be evicted by the
time we need it in the
second loop, and need to
be refetched.

do I = 1, n
 c[i] = a[i]
 b[i] = a[i]
end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

c[1:n]

a[1:n]

b[1:n]

26

Cache optimizations

• Loop fusion, like all transformations that change the
access order of storage, need to be checked for legality

do i = 1, n
 c[i] = a[i]
end do
do i = 1, n
 b[i] = c[i+1]
end do

For example, iteration 4 of
the second loop reads
c[5], which is not written
until iteration 5 of the first
loop. The fused loop (on
the right) reads stale
values for c.

do i = 1, n
 c[i] = a[i]
 b[i] = c[i+1]
end do

c[1] = a[1]
do i = 2, n
 c[i] = a[i]
 b[i-1] = c[i]
end do
b[n] = c[n+1]

By shifting the iteration
spaces we get a correct
execution, but the
transformation gets more
complicated.

27

Cache optimizations

• Prefetching attempts to get values in cache
before they are used

do i = 1, n
 do j = 1, n
 a[i,j] = b[i,j]
 end do
end do

load a[1,1], b[1,1]
…
do TI = 1, n, 64
 do TJ = 1, n, 64
 load a[TI,TJ], b[TI,TJ]
 do i = TI, min(TI+63,n)
 do j = TJ, min(TJ+63, n)
 a[i,j] = b[j,i]
 end do
 …
end do

Problems with prefetching
• Need to fetch early

enough to make a
difference

• What about page faults?
• What if the value is

changed between
prefetch and use?

• What if we evict a
needed value from the
cache?

Matrix multiplication and
per-node performance

• From Michael J. Quinn, Parallel
Programming in C with MPI and
OpenMP

Friday, March 27, 15

Iterative, Row-oriented
Algorithm

Series of inner product (dot product) operations

X =

Friday, March 27, 15

Iterative, Row-oriented
Algorithm

Series of inner product (dot product) operations

X =

Friday, March 27, 15

Iterative, Row-oriented
Algorithm

Series of inner product (dot product) operations

X =

Friday, March 27, 15

Iterative, Row-oriented
Algorithm

Series of inner product (dot product) operations

X =

Friday, March 27, 15

Iterative, Row-oriented
Algorithm

Series of inner product (dot product) operations

X =

Friday, March 27, 15

Iterative, Row-oriented
Algorithm

Series of inner product (dot product) operations

X =

Friday, March 27, 15

Iterative, Row-oriented
Algorithm

Series of inner product (dot product) operations

X =

Friday, March 27, 15

Performance as n
Increases

Friday, March 27, 15

Small matrix issues
Note that even this is
non-trivial to achieve.
Well-tuned matrix
multiplies often have a
great deal of code
because of blocking, etc.
and the overhead of
traversing this code can
lead to slow-downs on
smaller matrix multiplies.

A good matrix multiply library routine needs to be good
from small (4x4) to big matrix multiplies. DGEMM is 388
lines of code

Friday, March 27, 15

Reason for bad large matrix performance:
Matrix B Gets Too Big for Cache

Computing a row of C requires
accessing every element of B

Friday, March 27, 15

Really two problems

1. Arrays are too large to fit into cache

2. Layout of arrays combined with access order
is not cache friendly

Fixing either of these would solve the problem

Friday, March 27, 15

Row order layout with C

Arrays laid out in memory with row 0 first,
then row 1, then row, . . ., then row n-1

row 0 row 1

col 0 col 3 col 6 col 0 col 3 col 6

Friday, March 27, 15

Row order layout with C
Accessing rows in order stored in memory leads
to cache friendly behavior

Cache line is accessed repeatedly after being
brought into the cache. This corresponds to the
“A” access in the previous slide

Each cache line
contains several
array elements

Friday, March 27, 15

Accessing columns with
row order layout

Accessing data
against order
stored in memory
can lead to cache-
unfriendly access.

Let the cache line hold n array elements, and let c be
the length of a column. Then n*c > size of the cache
will result in cache unfriendly accesses

Friday, March 27, 15

Things are initially ok

Let the green
cache lines be
lines that have
been placed into
cache

Let #lines = (size of cache) / line size. Then the #lines+1
access will likely cause a cache line to be evicted.

.

Friday, March 27, 15

But lines will be evicted

Let the green
cache lines be
lines that have
been placed into
cache

Let #accesses = (size of cache) / line size. Then the
#accesses+1 access will likely cause a cache line to be
evicted.

.

evicted!

Friday, March 27, 15

Many evictions (and
misses) occur

Each miss causes
an access to take
tens to hundreds
of cycles

.

Friday, March 27, 15

Each new column reloads
data

When the next
column is fetched,
grabbing the first
elements will evict
other cache lines.

This results in ~1 miss per element accessed. For
matrix multiply, n3 operations mean n3 fetches overall.
Would prefer to have n2 (size of the data) fetches, and
n2/line size misses

.

Friday, March 27, 15

21

Cache optimizations

• Desire is to maximizes locality and to exploit
temporal and spatial locality via the cache.

• Accesses from cache are tens to hundreds of
times faster than accesses from memory, and
typically the same speed or 2 times slower than
accesses from registers

• The more regular the code and subscript
functions, the more compilers can do in terms of
cache optimizations

Friday, March 27, 15

Loop interchange can help

.

for (i = ...) {
 for (j = ...) {
 a[j,i] = ...
 }
}

Becomes ...

Friday, March 27, 15

Loop interchange can help

for (j = ...) {
 for (i = ...) {
 a[j,i] = ...
 }
}

This is not always legal and doesn't always help

Friday, March 27, 15

When is it legal? Tail is a write, and head
is the read of the written array element.
Read of data follows write in the
iteration space. blue lines are iteration
orders.

for (i=1; i < n; i++)
 for (j=2; j < n; j++)
 a[i][j] = a[i-1][j-2]

j = 2 3 4 5

a1,2=a0,0 a1,3=a0,1 a1,4=a0,2 a1,5=a0,3

a2,2=a1,0 a2,3=a1,1 a2,4=a1,2 a2,5=a1,3

a3,2=a2,0 a3,3=a2,1 a3,4=a2,2 a3,5=a2,3

a4,2=a3,0 a4,3=a3,1 a4,4=a3,2 a4,5=a3,3

i = 1

2

3

4

Friday, March 27, 15

After interchange, i and j axes switched
Tail is a write, and head is the read of the
written array element. Read of data
follows write in the iteration space.

for (j=2; i < n; i++)
 for (i=1; j < n; j++)
 a[i][j] = a[i-1][j-2]

i = 1 2 3 4

a1,2=a0,0

a1,3=a0,1

a1,4=a0,2

a1,5=a0,3

a2,2=a1,0

a2,3=a1,1

a2,4=a1,2

a2,5=a1,3

a3,2=a2,0

a3,3=a2,1

a3,4=a2,2

a3,5=a2,3

a4,2=a3,0

a4,3=a3,1

a4,4=a3,2

a4,5=a3,3

j = 2

3

4

5

Friday, March 27, 15

Legal because the read that happened
after the write in the original loop still
happens after the write.

for (j=2; i < n; i++)
 for (i=1; j < n; j++)
 a[i][j] = a[i-1][j-2]

i = 1 2 3 4

a1,2=a0,0

a1,3=a0,1

a1,4=a0,2

a1,5=a0,3

a2,2=a1,0

a2,3=a1,1

a2,4=a1,2

a2,5=a1,3

a3,2=a2,0

a3,3=a2,1

a3,4=a2,2

a3,5=a2,3

a4,2=a3,0

a4,3=a3,1

a4,4=a3,2

a4,5=a3,3

j = 2

3

4

5

Friday, March 27, 15

When is it illegal? Tail is a write, and
head is the read of the written array
element. Read of data follows write in
the iteration space. blue lines are
iteration orders.

for (i=1; i < n; i++)
 for (j=0; j < n; j++)
 a[i][j] = a[i-1][j+2]

j = 0 1 2 3

a1,0=a0,2 a1,1=a0,3 a1,2=a0,4 a1,3=a0,5

a2,0=a1,2 a2,1=a1,3 a2,2=a1,4 a2,3=a1,5

a3,0=a2,2 a3,1=a2,3 a3,2=a2,4 a3,3=a2,5

a4,0=a3,2 a4,1=a3,3 a4,2=a3,4 a4,3=a3,5

i = 1

2

3

4

Friday, March 27, 15

When is it illegal? After the interchange,
the write, which used to come before
the read, now comes after the read. blue
lines are iteration orders. Red edges are
what should be the execution order.

for (i=1; i < n; i++)
 for (j=0; j < n; j++)
 a[i][j] = a[i-1][j+2]

i = 1 2 3 4

a1,0=a0,2

a1,1=a0,3

a1,2=a0,4

a1,3=a0,5

a2,0=a1,2

a2,1=a1,3

a2,2=a1,4

a2,3=a1,5

a3,0=a2,2

a3,1=a2,3

a3,2=a2,4

a3,3=a2,5

a4,0=a3,2

a4,1=a3,3

a4,2=a3,4

a4,3=a3,5

j = 0

1

2

3

Friday, March 27, 15

What causes the illegal behavior? It is
that the distance traveled from read to
write on the i and j loop iteration spaces
is (1,-2). After interchange, it is (-2,1), or
backwards in the interchanged iteration
space.

for (i=1; i < n; i++)
 for (j=0; j < n; j++)
 a[i][j] = a[i-1][j+2]

j = 0 1 2 3

a1,0=a0,2 a1,1=a0,3 a1,2=a0,4 a1,3=a0,5

a2,0=a1,2 a2,1=a1,3 a2,2=a1,4 a2,3=a1,5

a3,0=a2,2 a3,1=a2,3 a3,2=a2,4 a3,3=a2,5

a4,0=a3,2 a4,1=a3,3 a4,2=a3,4 a4,3=a3,5

i = 1

2

3

4

Friday, March 27, 15

When it doesn't help

.

What helps
this (B)

hurts this
(A)

Friday, March 27, 15

Do the computation in chunks

.

In a compiler
perform the
tiling
transformation

or can program a
recursively blocked
algorithm (shown
later)

Friday, March 27, 15

Two common ways to do this

.

Friday, March 27, 15

33

Loop tiling (page 347, Bacon,
Graham paper)

Do i = 1, n
 Do j = 1, n

 a[i,j] = b[j,i]
 end do
end do

do TI = 1, n, 64
 do TJ = 1, n, 64

 do i = TI, min(TI+63,n)
 do j = TJ, min(TJ+63, n)

 a[i,j] = b[j,i]
 end do
 …
end do

a[I,j] accessesb[i,j] accesses

What fits in
cache This pattern is present in matrix

multiply, transpose, etc.

a,b[col,row], array stored
in row major order

Friday, March 27, 15

Blocked matrix multiply

• Replace scalar multiplication with matrix
multiplication

• Replace scalar addition with matrix
addition

34

Friday, March 27, 15

35

X =

Friday, March 27, 15

36

X =

Friday, March 27, 15

37

X =

Friday, March 27, 15

38

X =

Friday, March 27, 15

39

X =

Friday, March 27, 15

40

X =

Friday, March 27, 15

41

X =

Friday, March 27, 15

42

X =

Friday, March 27, 15

43

X =

Friday, March 27, 15

44

X =

Friday, March 27, 15

45

X =

Friday, March 27, 15

46

X =

Friday, March 27, 15

Recursively block until
B small enough

1 2

3 4

1 2

3 4

1 2

3 4

Friday, March 27, 15

Recursively block until B small
enough to fit into cache

1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4

Friday, March 27, 15

1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2

1 2

1 2

1 2

1 2

1 2

Recursively block until B small
enough to fit into cache

Friday, March 27, 15

Layout in memory

1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2 3 4 2 2 2 2 3 3 3 3 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Friday, March 27, 15

Layout in memory

1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2 3 4 2 2 2 2 3 3 3 3 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

a pagea page

Friday, March 27, 15

Comparing Sequential
Performance

On modern
processors,
recursively
blocked
algorithms can
achieve 90% of
peak
performance

The generalized technique is to use space filling curves.
Often these are Hilbert Curves.

Friday, March 27, 15

Prefetching often requires rethinking data layout

A

B I

C F J M

D E G H K L N O

A pre-order traversal of the tree
Visit each node

Visit it’s left sub-tree
Visit it’s right sub-tree

Heap allocation

• Depending on where free space is, the nodes may be
scattered throughout memory

• This is true even if the nodes are allocated in pre-order
order.

• Cache behavior and pre-fetching will be poor

Lay it out in an array
A

B I

C F J M

D E G H K L N O

A B C D E F G H I J K L M N O

