
Sequential performance 
is important

• Per-node performance is important. 

• Cache and prefetch effects are an important 
way to gather per-node performance.
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Loop unrolling�

do i = 1, n 
   a[i] = b[i] + c[i] 
end do

do i = 1, n, 3 
   a[i] = b[i] + c[i] 
   a[i+1] = b[i+1] + c[i+1] 
   a[i+2] = b[i+2] + c[i+2] 
end do 

do i = n-((n-1) mod 3), n 
   a[i] = b[i] + c[i] 
end do

• Processors typically have 
several add and store units 

• Without additional 
hardware, processors 
cannot move operations 
around conditional 
branches 

• Thus, in this loop, only one 
add and one store can be 
started at a time

• In the right hand version, three 
floating point adds can be 
issued at once 

• Blue fixup code necessary 
because n not always divisible 
by the unroll factor
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Cache optimizations

• Desire is to maximizes locality and to exploit 
temporal and spatial locality via the cache. 

• Accesses from cache are tens to hundreds of times 
faster than accesses from memory, and typically the 
same speed or 2 times slower than accesses from 
registers 

• The more regular the code, the more compilers can 
do in terms of cache optimizations 
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Cache optimizations

• Loop interchange attempts to make 
accesses coincide with the way data is laid 
out in memory

do i = 1, n 
   do j = 1, n 
      a[i,j] = … 
   end do 
end do

A[col,row], array stored in 
column major order (row in 
C)

do j = 1, n 
   do i = 1, n 
      a[i,j] = … 
   end do 
end do

Interchange the loops, and data within a 
text box is reused.
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Loop tiling (page 347, Bacon, Eggers 
paper on the class web page)

Do i = 1, n 
   Do j = 1, n 
      a[i,j] = b[j,i] 
   end do 
end do

do TI = 1, n, 64 
   do TJ = 1, n, 64 
      do i = TI, min(TI+63,n) 
         do j = TJ, min(TJ+63, n) 
            a[i,j] = b[j,i] 
         end do 
      … 
end do 
      

a[I,j] accessesb[i,j] accesses

What fits in 
cache This pattern is present in matrix 

multiply, transpose, etc.

a,b[col,row], array stored 
in row major order
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Cache optimizations

• Loop fusion increases temporal locality
do I = 1, n 
   c[i] = a[i] 
end do 
do I = 1, n 
   b[i] = a[i] 
end do

If n is large enough that all of 
c[1:n], a[1:n] and b[1:n] 
won’t fit in cache, some of 
a[1:n] fetched in the first 
loop will be evicted by the 
time we need it in the 
second loop, and need to 
be refetched. 

do I = 1, n 
   c[i] = a[i] 
   b[i] = a[i] 
end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

c[1:n]

a[1:n]

b[1:n]
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Cache optimizations

• Loop fusion, like all transformations that change the 
access order of storage, need to be checked for legality

do i = 1, n 
   c[i] = a[i] 
end do 
do i = 1, n 
   b[i] = c[i+1] 
end do

For example, iteration 4 of 
the second loop reads 
c[5], which is not written 
until iteration 5 of the first 
loop.  The fused loop (on 
the right) reads stale 
values for c.

do i = 1, n 
   c[i] = a[i] 
   b[i] = c[i+1] 
end do

c[1] = a[1] 
do i = 2, n 
   c[i] = a[i] 
   b[i-1] = c[i] 
end do 
b[n] = c[n+1]

By shifting the iteration 
spaces we get a correct 
execution, but the 
transformation gets more 
complicated.
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Cache optimizations

• Prefetching attempts to get values in cache 
before they are used

do i = 1, n 
   do j = 1, n 
      a[i,j] = b[i,j] 
   end do 
end do

load a[1,1], b[1,1] 
… 
do TI = 1, n, 64 
   do TJ = 1, n, 64 
      load a[TI,TJ], b[TI,TJ] 
      do i = TI, min(TI+63,n) 
         do j = TJ, min(TJ+63, n) 
            a[i,j] = b[j,i] 
         end do 
      … 
end do      

Problems with prefetching 
• Need to fetch early 

enough to make a 
difference 

• What about page faults? 
• What if the value is 

changed between 
prefetch and use? 

• What if we evict a 
needed value from the 
cache?



Matrix multiplication and
per-node performance

• From Michael J. Quinn, Parallel
Programming in C with MPI and
OpenMP

Friday, March 27, 15



Iterative, Row-oriented 
Algorithm

Series of inner product (dot product) operations

X =
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Iterative, Row-oriented 
Algorithm

Series of inner product (dot product) operations

X =
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Performance as n 
Increases
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Small matrix issues
Note that even this is 
non-trivial to achieve.  
Well-tuned matrix 
multiplies often have a 
great deal of code 
because of blocking, etc. 
and the overhead of 
traversing this code can 
lead to slow-downs on 
smaller matrix multiplies. 

A good matrix multiply library routine needs to be good 
from small (4x4) to big matrix multiplies.  DGEMM is 388 
lines of code
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Reason for bad large matrix performance:
Matrix B Gets Too Big for Cache

Computing a row of C requires
accessing every element of B
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Really two problems

1. Arrays are too large to fit into cache

2. Layout of arrays combined with access order 
is not cache friendly

Fixing either of these would solve the problem

Friday, March 27, 15



Row order layout with C

Arrays laid out in memory with row 0 first, 
then row 1, then row, . . ., then row n-1

row 0 row 1

col 0 col 3 col 6 col 0 col 3 col 6
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Row order layout with C
Accessing rows in order stored in memory leads 
to cache friendly behavior

Cache line is accessed repeatedly after being 
brought into the cache.   This corresponds to the 
“A” access in the previous slide

Each cache line 
contains several 
array elements
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Accessing columns with 
row order layout

Accessing data 
against order 
stored in memory 
can lead to cache-
unfriendly access.

Let the cache line hold n array elements, and let c be 
the length of a column.  Then n*c > size of the cache 
will result in cache unfriendly accesses 
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Things are initially ok

Let the green 
cache lines be 
lines that have 
been placed into 
cache

Let #lines = (size of cache) / line size.  Then the #lines+1 
access will likely cause a cache line to be evicted.

. . . . . . . . . . . . . . .

Friday, March 27, 15



But lines will be evicted

Let the green 
cache lines be 
lines that have 
been placed into 
cache

Let #accesses = (size of cache) / line size.  Then the 
#accesses+1 access will likely cause a cache line to be 
evicted.

. . . . . . . . . . . . . . .

evicted!
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Many evictions (and 
misses) occur

Each miss causes 
an access to take 
tens to hundreds 
of cycles

. . . . . . . . . . . . . . .
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Each new column reloads 
data

When the next 
column is fetched, 
grabbing the first 
elements will evict 
other cache lines.

This results in ~1 miss per element accessed.  For 
matrix multiply, n3 operations mean n3 fetches overall.  
Would prefer to have n2 (size of the data) fetches, and 
n2/line size misses

. . . . . . . . . . . . . . .

Friday, March 27, 15
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Cache optimizations

• Desire is to maximizes locality and to exploit 
temporal and spatial locality via the cache.

• Accesses from cache are tens to hundreds of 
times faster than accesses from memory, and 
typically the same speed or 2 times slower than 
accesses from registers

• The more regular the code and subscript 
functions, the more compilers can do in terms of 
cache optimizations 
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Loop interchange can help

. . . . . . . . . . . . . . .

for (i = ... ) {
   for (j = ... ) {
      a[j,i] = ...
   }
}

Becomes ...
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Loop interchange can help

for (j = ... ) {
   for (i = ... ) {
      a[j,i] = ...
   }
}

This is not always legal and doesn't always help
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When is it legal?  Tail is a write, and head 
is the read of the written array element.  
Read of data follows write in the 
iteration space.  blue lines are iteration 
orders.

for (i=1; i < n; i++)
   for (j=2; j < n; j++)
      a[i][j] = a[i-1][j-2]

j = 2 3 4 5 

a1,2=a0,0 a1,3=a0,1 a1,4=a0,2 a1,5=a0,3

a2,2=a1,0 a2,3=a1,1 a2,4=a1,2 a2,5=a1,3

a3,2=a2,0 a3,3=a2,1 a3,4=a2,2 a3,5=a2,3

a4,2=a3,0 a4,3=a3,1 a4,4=a3,2 a4,5=a3,3

i = 1 

2 

3 

4 
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After interchange, i and j axes switched  
Tail is a write, and head is the read of the 
written array element.  Read of data 
follows write in the iteration space.

for (j=2; i < n; i++)
   for (i=1; j < n; j++)
      a[i][j] = a[i-1][j-2]

i = 1 2 3 4 

a1,2=a0,0

a1,3=a0,1

a1,4=a0,2

a1,5=a0,3

a2,2=a1,0

a2,3=a1,1

a2,4=a1,2

a2,5=a1,3

a3,2=a2,0

a3,3=a2,1

a3,4=a2,2

a3,5=a2,3

a4,2=a3,0

a4,3=a3,1

a4,4=a3,2

a4,5=a3,3

j = 2 

3 

4 

5 
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Legal because the read that happened 
after the write in the original loop still 
happens after the write.

for (j=2; i < n; i++)
   for (i=1; j < n; j++)
      a[i][j] = a[i-1][j-2]

i = 1 2 3 4 

a1,2=a0,0

a1,3=a0,1

a1,4=a0,2

a1,5=a0,3

a2,2=a1,0

a2,3=a1,1

a2,4=a1,2

a2,5=a1,3

a3,2=a2,0

a3,3=a2,1

a3,4=a2,2

a3,5=a2,3

a4,2=a3,0

a4,3=a3,1

a4,4=a3,2

a4,5=a3,3

j = 2 

3 

4 

5 
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When is it illegal?  Tail is a write, and 
head is the read of the written array 
element.  Read of data follows write in 
the iteration space.  blue lines are 
iteration orders.

for (i=1; i < n; i++)
   for (j=0; j < n; j++)
      a[i][j] = a[i-1][j+2]

j = 0 1 2 3 

a1,0=a0,2 a1,1=a0,3 a1,2=a0,4 a1,3=a0,5

a2,0=a1,2 a2,1=a1,3 a2,2=a1,4 a2,3=a1,5

a3,0=a2,2 a3,1=a2,3 a3,2=a2,4 a3,3=a2,5

a4,0=a3,2 a4,1=a3,3 a4,2=a3,4 a4,3=a3,5

i = 1 

2 

3 

4 
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When is it illegal?  After the interchange, 
the write, which used to come before 
the read, now comes after the read.  blue 
lines are iteration orders.  Red edges are 
what should be the execution order.

for (i=1; i < n; i++)
   for (j=0; j < n; j++)
      a[i][j] = a[i-1][j+2]

i = 1 2 3 4 

a1,0=a0,2

a1,1=a0,3

a1,2=a0,4

a1,3=a0,5

a2,0=a1,2

a2,1=a1,3

a2,2=a1,4

a2,3=a1,5

a3,0=a2,2

a3,1=a2,3

a3,2=a2,4

a3,3=a2,5

a4,0=a3,2

a4,1=a3,3

a4,2=a3,4

a4,3=a3,5

j = 0 

1 

2 

3 
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What causes the illegal behavior?  It is 
that the distance traveled from read to 
write on the i and j loop iteration spaces 
is (1,-2).  After interchange, it is (-2,1), or 
backwards in the interchanged iteration 
space.

for (i=1; i < n; i++)
   for (j=0; j < n; j++)
      a[i][j] = a[i-1][j+2]

j = 0 1 2 3 

a1,0=a0,2 a1,1=a0,3 a1,2=a0,4 a1,3=a0,5

a2,0=a1,2 a2,1=a1,3 a2,2=a1,4 a2,3=a1,5

a3,0=a2,2 a3,1=a2,3 a3,2=a2,4 a3,3=a2,5

a4,0=a3,2 a4,1=a3,3 a4,2=a3,4 a4,3=a3,5

i = 1 

2 

3 

4 
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When it doesn't help

. . . . . . . . . . . . . . .

What helps 
this (B)

hurts this 
(A)
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Do the computation in chunks

. . . . . . . . . . . . . . .

In a compiler 
perform the 
tiling 
transformation

or can program a 
recursively blocked 
algorithm (shown 
later)
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Two common ways to do this

. . . . . . . . . . . . . . .

Friday, March 27, 15
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Loop tiling (page 347, Bacon, 
Graham paper)

Do i = 1, n
 Do j = 1, n

      a[i,j] = b[j,i]
   end do
end do

do TI = 1, n, 64
 do TJ = 1, n, 64

 do i = TI, min(TI+63,n)
 do j = TJ, min(TJ+63, n)

 a[i,j] = b[j,i]
         end do
      …
end do

a[I,j] accessesb[i,j] accesses

What fits in
cache This pattern is present in matrix 

multiply, transpose, etc.

a,b[col,row], array stored 
in row major order
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Blocked matrix multiply

• Replace scalar multiplication with matrix 
multiplication

• Replace scalar addition with matrix 
addition

34
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X =
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X =
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X =
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X =
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X =
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X =
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X =
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X =
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X =
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X =
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X =
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X =
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Recursively block until 
B small enough

1 2

3 4

1 2

3 4

1 2

3 4
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Recursively block until B small 
enough to fit into cache

1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4
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1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2

1 2

1 2

1 2

1 2

1 2

Recursively block until B small 
enough to fit into cache
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Layout in memory

1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2 3 4 2 2 2 2 3 3 3 3 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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Layout in memory

1 2

3 4

1 2

3 4

1 2

3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2 3 4 2 2 2 2 3 3 3 3 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

a pagea page
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Comparing Sequential 
Performance

On modern 
processors, 
recursively 
blocked 
algorithms can 
achieve 90% of 
peak 
performance

The generalized technique is to use space filling curves.  
Often these are Hilbert Curves.
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Prefetching often requires rethinking data layout

A

B I

C F J M

D E G H K L N O

A pre-order traversal of the tree 
Visit each node 

Visit it’s left sub-tree 
Visit it’s right sub-tree



Heap allocation

• Depending on where free space is, the nodes may be 
scattered throughout memory


• This is true even if the nodes are allocated in pre-order 
order.


• Cache behavior and pre-fetching will be poor



Lay it out in an array
A

B I

C F J M

D E G H K L N O

A B C D E F G H I J K L M N O




