
Basic OpenMP

What is OpenMP

• An open standard for shared memory programming in C/C+
+ and Fortran

• supported by Intel, Gnu, Microsoft, Apple, IBM, HP and
others

• Compiler directives and library support

• OpenMP programs are typically still legal to execute
sequentially

• Allows program to be incrementally parallelized

• Can be used with MPI -- will discuss that later

Basic OpenMP Hardware
Model

CPU CPU CPU CPU

cache cache cachecache

bus

Memory I/O devices

Uniform
memory
access
shared

memory
machine is
assumed

Fork/Join Parallelism

• Program execution starts with a single
master thread

• Master thread executes sequential code

• When parallel part of the program is
encountered, a fork utilizes other worker
threads

• At the end of the parallel region, a join kills
or suspends the worker threads

Parallel execution using
threadsmaster

thread
fork spawns
or wakes up
worker threads

join at end of omp
parallel pragma

Green is parallel execution
Red is sequential
For efficiency, worker
threads are suspended, not
killed, at the end of the
execution

reuses
same

threads
from
last
fork

Where is the work in
programs?

• For many programs, most of the work is in loops

• C and Fortran often use loops to express data
parallel operations

• the same operation applied to many
independent data elements

for (i = first; i < size; i += prime)
marked[i] = 1;

What can run in parallel?
Consider the loop:

for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

i = 1
a[1] = b[1] + c[1]
c[1] = a[0]

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

i = 3
a[3] = b[3] + c[3]
c[3] = a[2]

Note that data is produced in one iteration and
consumed in another.

Let each iteration execute
in parallel with all other
iterations on its own
processor

time

What can run in parallel?

Consider the loop:
for (i=1; i<n; i++) {

a[i] = b[i] + c[i];
c[i] = a[i-1]

}

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

i = 3
a[3] = b[3] + c[3]
c[3] = a[2]

What if the processor executing iteration i=2 is delayed for
some reason? Disaster - the value of a[2] to be read by
iteration i=3 is not ready when the read occurs!

time

cores or processors

Cross-iteration dependences
Consider the loop:

for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

i = 1
a[1] = b[1] + c[1]
c[1] = a[0]

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

i = 3
a[3] = b[3] + c[3]
c[3] = a[2]

A dependence that goes from one iteration to
another is a cross iteration, or loop carried dependence

Orderings that must be
enforced to ensure the
correct order of reads and
writes are called
dependences.

time

Cross-iteration dependences
Consider the loop:

for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

i = 1
a[1] = b[1] + c[1]
c[1] = a[0]

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

i = 3
a[3] = b[3] + c[3]
c[3] = a[2]

We will generally refer to a loop as serial or not parallelizable if
dependences do not span the code that is to be run in
parallel.

Loops with cross iteration
dependences cannot be
executed in parallel unless
mechanisms are in place to
ensure dependences are
honored.

time

Cross-iteration dependences
Consider the loop:

for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i]

}

i = 1
a[1] = b[1] + c[1]
c[1] = a[1]

i = 2
a[2] = b[2] + c[2]
c[2] = a[2]

i = 3
a[3] = b[3] + c[3]
c[3] = a[3]

We will generally refer to a loop as parallel or parallelizable if
dependences do not span the code that is to be run in
parallel.

Loops without cross iteration
dependences can run in parallel,
because out-of-order execution
of iterations doesn’t affect what
is read or written in an
iteration.

time

Where is parallelism found?

• Most work in most programs, especially numerical
programs, is in a loop

• Thus effective parallelization generally requires
parallelizing loops

• Amdahl’s law (discussed later in the course) says
that, for example, if we parallelize 90% of a program
we will get, at most, a speedup of 10X, 99% a
speedup of 100X. To effectively utilize 1000s of
processors, we need to parallelize 99.9% or more of
a program!

OpenMP Pragmas

• OpenMP expresses parallelism and other
information using pragmas

• A C/C++ or Fortran compiler is free to ignore a
pragma -- this means that OpenMP programs have
serial as well as parallel semantics

• outcome of the program should be the same in
either case

• #pragma omp <rest of the pragma> is the general
form of a pragma

pragma for parallel for

• OpenMP programmers use the parallel for pragma
to tell the compiler a loop is parallel

#pragma omp parallel for
for (i=0; i < n; i++) {

a[i] = b[i] + c[i];

Syntax of the parallel for
control clause

• start is an integer index variable

• rel-op is one of {<, <=, >=, >}

• val is an integer expression

• incr is one of {index++, ++index, index--, --index,
index+=val, index-=val, index=index+val,
index=val+index, index=index-val

• OpenMP needs enough information from the loop to run
the loop on multiple threads

for (index = start; index rel-op val; incr)

Each thread has an
execution context

• The execution context contains

• static and global variables - shared

• heap allocated storage - shared

• variables on the stack belonging to functions called
along the way to invoking the thread - shared

• a thread-local stack for functions invoked and block
entered during the thread execution - private

• Each thread must be able to access all of the storage it
references

shared among threads
private to a thread

Example of context

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Consider the program below:

Variables v1, v2, v3 and v4, as
well as heap allocated storage,
are part of the context of the
parallel for.

Context before call to f1

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2

Context right after call to f1

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T2 *v5 = malloc(sizeof(T2));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

Context at start of parallel for

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

t0 stack
index: i

t1 stack
index: i

Note private loop index variables.
OpenMP automatically makes the

parallel loop index private

Context after first iteration of the
parallel for

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

t0 stack
index: i
v4
v5

t1 stack
index: i
v4
v5 T2

T2

Context after parallel for finishes

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

T2

T2

A slightly different example -- after each
thread has run at least 1 iteration

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T2 *v5 = malloc(sizeof(T2));
v2 = (T1) v5

}}

v2 points to one of the
T2 objects that was
allocated.
Which one? It depends.

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

T2

T2
t0 stack

index: i
v4
v5

t1 stack
index: i
v4
v5

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T2 *v5 = malloc(sizeof(T2));
v2 = (T1) v5

}}

v2 points to the T2
allocated by t0 if t0
executes the statement
v2=(T1) v5; last statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

T2

T2

After each thread has run at least 1
iteration

t0 stack
index: i
v4
v5

t1 stack
index: i
v4
v5

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T2 *v5 = malloc(sizeof(T2));
v2 = (T1) v5

}}

v2 points to the T2
allocated by t1 if t1
executes the statement
v2=(T1) v5; last

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

t0 stack
index: i
v4, v5

t1 stack
index: i
v4, v5

T2

T2

After each thread has run at least 1
iteration

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T2 *v5 = malloc(sizeof(T2));
v2 = (T1) v5

}}

v2 points to the T2
allocated by t1 if t1
executes the statement
v2=(T1) v5; last

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

t0 stack
index: i
v4, v5

t1 stack
index: i
v4, v5

T2

T2

A slightly different example -- after each
thread has run at least 1 iteration

A problem with this is that there is a
race on the assignment to the v2
variable

Races are bad, to be avoided, never to be
done except in the rarest of conditions

Another problem with this code

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

statics and globals: v1

heap
...

...

T1

global stack
main: v2
foo: v3

T2

T2

T2

T2

T2

T2

T2

T2

T2

There is a memory leak!

Querying the number of
processors (really cores)

• Can query the number of physical processors

• returns the number of cores on a multicore
machine without hyper threading

• returns the number of possible hyperthreads on a
hyperthreaded machine

int omp_get_num_procs(void);

Setting the number of threads

• Number of threads can be more or less than the number of
processors (cores)

• if less, some processors or cores will be idle

• if more, more than one thread will execute on a core/
processor

• Operating system and runtime will assign threads to cores

• No guarantee same threads will always run on the same
cores

• Default is number of threads equals number of cores
controlled by the OS image (typically #cores on node/
processor)

int omp_set_num_threads(int t);

Making more than the
parallel for index private

int i, j;
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Either the i or the j loop can
run in parallel.

We prefer the outer i loop,
because there are fewer
parallel loop starts and
stops.

Forks and joins are
serializing, and we know
what that does to
performance.

Making more than the
parallel for index private

Either the i or the j loop can
run in parallel.

To make the i loop parallel
we need to make j private.

Why? Because otherwise
there is a race on j!
Different threads will be
incrementing the same j
index!

int i, j;
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Making the j index private
• clauses are optional parts of pragmas
• The private clause can be used to make variables

private
• private (<variable list>)

int i, j;
#pragma omp parallel for private(j)
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

When is private needed?

• If a variable is declared in a parallel construct
(e.g., a parallel for) no private is needed.

• Loop indices of parallel for is private by default.

#pragma omp parallel for
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

j is private here because it is
declared inside the parallel i loop

When is private needed?

• What if we want a variable that is private by
default to be shared?

• Use the shared clause.

#pragma omp parallel for shared(t)
for (int i=0; i<n; i++) {
 int t;

for (int j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Initialization of private variables

double tmp = 52;
#pragma omp parallel for firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
tmp is initially 52 for all threads within the loop

• use the firstprivate clause to give the private the value the
variable with the same name, controlled by the master
thread, had when the parallel for is entered.

• initialization happens once per thread, not once per
iteration

• if a thread modifies the variable, its value in subsequent
reads is the new value

Initialization of private variables

double tmp = 52;
#pragma omp parallel for firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
z = tmp;

• What is the value at the end of the loop?

Recovering the value of private variables
from the last iteration of the loop

double tmp = 52;
#pragma omp parallel for lastprivate(tmp) firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
z = tmp;

• use lastprivate to recover the last value written to the
private variable in a sequential execution of the program

• z and tmp will have the value assigned in iteration i = n-1

• note that the value saved by lastprivate will be the value the
variable has in iteration i=n-1. What happens if a thread other
than the one executing iteration i=n-1 found the max value?

Let’s solve a problem
• Given an array a we would like the find the

average of its elements

• A simple sequential program is shown below

• Our problem is to do this in parallel

for (i=0; i < n; i++) {
t = t + a[i];

}
t = t/n

First (and wrong) try:
• Make t private

• initialize it to zero outside, and make it
firstprivate and lastprivate

• Save the last value out
t = 0
#pragma omp parallel for firstprivate(t), lastprivate(t)
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

What is wrong with this?

Second try:

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

What is wrong with this?

Second try:
• Need to execute t+= a[i]; atomically

• Need to get the old value of t, add it to
a[i], and then save it to t without any other
threads reading or writing t or a[i].

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

An example of atomic
operations and why

they are needed

ordering and atomicity are important
and different

43

a = Balance;

a++;

Balance = a;

a = Balance;

a++;

Balance = a;

thread 0 thread 1

Program Memory

account b

$497balance

Both threads
can access the
same object

Thread 0

a

Thread 1

a

44

thread 0 thread 1

Program Memory

thread 0

a $497

thread 1

a

account b

$497balance

a = Balance;

a++;

Balance = a;

a = Balance;

a++;

Balance = a;

45

thread 0 thread 1

Program Memory

thread 0

a $497

thread 1

a $497

account b

$497balance

a = Balance;

a++;

Balance = a;

a = Balance;

a++;

Balance = a;

46

thread 0 thread 1

Program Memory

thread 0

a $498

thread 1

a $497

account b

$498balance

a = Balance;

a++;

Balance = a;

a = Balance;

a++;

Balance = a;

47

thread 0 thread 1

Program Memory

The end result
probably
should have
been $499.
One update is
lost.

thread 0

a $498

thread 1

a $498

account b

$498balance

a = Balance;

a++;

Balance = a;

a = Balance;

a++;

Balance = a;

synchronization enforces atomicity

48

thread 0 thread 1

Program Memory

object b

$497balance

Make them
atomic using
critical

thread 0

a

thread 1

a

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

One thread acquires
the lock

49

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

object b

$497balance

thread 0

a

thread 1

a

The other thread waits
until the lock is free

One thread acquires
the lock

50

object b

$498balance

thread 0

a

thread 1

a $498

The other thread waits
until the lock is free

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

One thread acquires
the lock

51

object b

$498balance

thread 0

a $498

thread 1

a $498

The other thread waits
until the lock is free

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

One thread acquires
the lock

52

object b

$499balance

thread 0

a $499

thread 1

a $498

The other thread waits
until the lock is free

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

Locks typically do not enforce
ordering

53

Either order is
possible

For many (but
not all)
programs, either
order is correct

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

#omp critical
{
 a = Balance;
 a++;
 Balance = a;
}

Sequential Consistency (SC)

• Coherence says that a read will get the last value written for a
variable

• Consistency is concerned with the interactions between writes
to different variables

• Sequential consistency (see Lamport paper) is when ... the
result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this
sequence in the order specified by its program.

SC Example

Question: Is it legal for z == 1 and w == 0?

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

thread 0 thread 1

SC Example

Question: Is it legal for z == 1 and w == 0?
Answer: Not with sequential consistency

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

thread 0 thread 1

SC Example

Question: Is it legal for z == 1 and w == 0?
For z == 1, “Y=1” must execute before “z=Y”
For w == 0, “w = X” must execute before “X=1”

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

thread 0 thread 1

Sequential Consistency

Question: Is it legal for z == 1 and
w == 0?

Answer: NO. For z == 1 and w ==
0, ordering in previous slide
requires either “X=1” and “Y=1” to
execute in a different order, or for
“z=Y” or “w=X” to execute in a
different order.

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

Relative execution
order implied by
assigned value

Many languages violate SC by default

Question: Is it legal for z == 1
and w == 0?

Answer: YES. Java
semantics allow “X=1” and
“Y=1” to execute in a different
order, or for “z=Y” or “w=X” to
execute in a different order.

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

Sequential Consistency (SC)

• Coherence says that a read will get the last value written for a
variable

• Consistency is concerned with the interactions between writes
to different variables, i.e., execution orders as seen in different
threads are consistent with some definition of how orders
should occur

• Sequential consistency (see Lamport paper) is when ... the
result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this
sequence in the order specified by its program.

We generally want
programs to be SC

• After we parallelize the program the executions of the
program should all give an answer such that ... the result of
any execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in this
sequence in the order specified by its program.

• Moreover, it is often good to have the program give the same
answer as a sequential, one node, one core, one thread, etc.
implementation of the algorithm

• It will be our responsibility as programmers to ensure this --
the hardware and software will not

We generally want
programs to be SC

• It will be our responsibility as programmers to ensure this --
the hardware and software will not

• Hardware maintains coherence -- values read from a cache or
memory will be the last value written

• Hardware typically maintains relaxed consistency -- within
code running on a single thread, read orders with respect to
writes for a single variable are maintained, write orders with
respect to writes, for a single variable, are maintained.

• Instructions are provided to prevent re-orderings of other
operations

Shared memory programming
models

• Can either be a language, language extension,
library or a combination

• Java is a language and associated virtual machine
that provides runtime support

• OpenMP is a language extension (for C/C++ and
Fortran) and an associated library (or runtime)

• Pthreads (or Posix Threads) is a library with C/C+
+ and Fortran bindings

Back to our example of
summing the elements

of an array

• Same thing as in the bank example can happen

• A thread gets a value of t,

• gets interrupted (or maybe just holds its value in a
register),

• the other thread gets the same value of t,
increments it, and then

• the original thread increment its copy.

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

The first update of t is
lost.

Third (and correct but
slow) try:

• use a critical section in the code

• executes the following (possible compound)
statement atomically

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

t += a[i];
}
t = t/n

What is wrong with this?

Why this is slow
t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

t = a[i];
}
t = t/n

i=1
t=a[0]

i=1
t=a[1]

i=3
t=a[2] . . .

.

.

i=2
t=a[1]

i=n-1
t=a[n-1]time = O(n)

The operation we are trying
to do is an example of a

reduction
• Called a reduction because it takes

something with d dimensions and reduces it
to something with d-k, k > 0 dimensions

• Reductions on commutative operations can
be done in parallel

A partially parallel reduction

a[99]a[24] a[25] a[49] a[50] a[74] a[75] ...a[0]

t[0] =
+a[0:24]

t[3] =
+a[75:99]

t[2] =
+a[50:74]

t[1] =
+a[25:49]

tmp = t[0]
for (i = 1, i < 4; i++)
 tmp += t[i];

25

4speedup = 100/29
= 3.45

O(P) to sum
the partial

sums

How can we do this in
OpenMP?

double t[4] = {0.0, 0.0, 0.0, 0.0}
int omp_set_num_threads(4);
#pragma omp parallel for
for (i=0; i < n; i++) {

t[omp_get_thread_num()] += a[i];
}
avg = 0;
for (i=0; i < 4; i++) }

avg += t[i];
}
avg = avg / n;

This is getting
messy and we
still are using a
O(#threads)
summation of
the partial
sums.
parallel
serial
OpenMP function

A better parallel reduction

a[99]a[24] a[25] a[49] a[50] a[74] a[75] ...a[0]

t[0] =
+a[0:24]

t[3] =
+a[74:99]

t[2] =
+a[50:74]

t[1] =
+a[25:49]

t[0] += t[1]

25

t[2] += t[3]

t[0] += t[2]

1

1
speedup = 100/27

= 3.7

OpenMP provides an
easy way to do this

• Reductions are common enough that
OpenMP provides support for them

• reduction clause for omp parallel pragma

• specify variable and operation

• OpenMP takes care of creating
temporaries, computing partial sums, and
computing the final sum

Dot product example
t=0;
for (i=0; i < n; i++) {

t = t + a[i]*c[i];
}

t=0;
#pragma omp parallel for reduction(+:t)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}

OpenMP makes t private,
puts the partial sums for
each thread into t, and
then forms the full sum of
t as shown earlier

Restrictions on Reductions

Operations on the reduction
variable must be of the form

x = x op expr
x = expr op x (except
subtraction)
x binop = expr
x++
++x
x--
--x

• x is a scalar variable in the
list

• expr is a scalar expression
that does not reference x

• op is not overloaded, and is
one of +, *, -, /, &, ^, |, &&, ||

• binop is not overloaded, and
is one of +, *, -, /, &, ^, |

Why the restrictions on where t
can appear?

#pragma omp parallel for reduction(+:t)
// each element of a[i] = 1
for (i=0; i<n; i++) {

b[i] = t;
 t += a[i];

}
• In the sequential loop, at the end of iteration i, t = i+1.
• Let st be the starting iteration for the thread t, then

st = (tid-1)*ceil(n/#threads)+i+1
• If executed as a recurrence using a static distribution of iterations, at

the end of iteration i, t=i-st,
• Thus, if n = 100, thread 3 executes iterations 50...74, and in iteration

60, i = 11
• This means b[61] = 11, not 61
• making it work right is, in general, hard to do efficiently.
• Thus the OpenMP restriction on where t can appear

Improving performance of
parallel loops

#pragma omp parallel for reduction(+:t)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}
• Parallel loop startup and teardown has a cost
• Parallel loops with few iterations can lead to

slowdowns -- if clause allows us to avoid this
• This overhead is one reason to try and parallelize

outermost loops.
#pragma omp parallel for reduction(+:t) if (n>1000)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}

Assigning iterations to
threads (thread scheduling)
• The schedule clause can guide how iterations of a loop

are assigned to threads

• Two kinds of schedules:

• static: iterations are assigned to threads at the start of
the loop. Low overhead but possible load balance
issues.

• dynamic: some iterations are assigned at the start of
the loop, others as the loop progresses. Higher
overheads but better load balance.

• A chunk is a contiguous set of iterations

The schedule clause - static

• schedule(type[, chunk]) where “[]”
indicates optional

• (type [,chunk]) is

• (static): chunks of ~ n/t iterations per
thread, no chunk specified. The default.

• (static, chunk): chunks of size chunk
distributed round-robin. No chunk
specified means chunk = 1

The schedule clause -
dynamic

• schedule(type[, chunk]) where “[]”
indicates optional

• (type [,chunk]) is

• (dynamic): chunks of size of 1 iteration
distributed dynamically

• (dynamic, chunk): chunks of size chunk
distributed dynamically

Static

Chunk = 1 1, 4, 7, 10, 130, 3, 6, 9, 12 2, 5, 8, 11, 14

thread 0 thread 1 thread 2

Chunk = 2 2, 3, 8, 9, 14, 150, 1, 6, 7, 12, 13 4, 5, 10, 11, 16, 17

thread 0 thread 1 thread 2

With no chunk size specified, the iterations are divided
as evenly as possible among processors, with one chunk
per processor

With dynamic chunks go to processors as work needed.

The schedule clause

• schedule(type[, chunk]) (type [,chunk]) is

• (guided,chunk): uses guided self scheduling
heuristic. Starts with big chunks and
decreases to a minimum chunk size of chunk

• runtime - type depends on value of
OMP_SCHEDULE environment variable, e.g.
setenv OMP_SCHEDULE=”static,1”

Guided with two threads
example

31 2 4 65 7 8 9

Dynamic schedule with
large blocks

3

1 2

4

65

7 8

9

Large blocks
reduce

scheduling
costs, but

lead to large
load

imbalance

Dynamic schedule with
small blocks

Small blocks have a
smaller load
imbalance, but with
higher scheduling
costs.

Would like the best
of both methods.

1

3

5

7

9

11

23

25

27

. . .

Thread 0

2

4

6

8

10

12

24

26

. . .

Thread 1

Guided with two threads

By starting out with
larger blocks, and
then ending with
small ones, scheduling
overhead and load
imbalance can both
be minimized.

1 2

34
56
78

9

The nowait clause

#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] > 0) a[i] += b[i];
}
barrier here by default
#pragma omp parallel for nowait
for (i=0; i < n; i++) {

if (a[i] < 0) a[i] -= b[i];
}

with nowait

i i

jj

without nowait

i i

jj

time

Only the static distribution with the same bounds guarantees
the same thread will execute the same iterations from both
loops.

The sections pragma
Used to specify task parallelism

#pragma omp parallel sections
{

#pragma omp section /* optional */
{
v = f1()
w = f2()
}

#pragma omp section
 v = f3()
}

v = f1()
w = f2() v = f3()

The parallel pragma

#pragma omp parallel private(w)
{
 w = getWork (q);
 while (w != NULL) {
 doWork(w);
 w = getWork(q);
 }
}

• every processor
executes the statement
following the parallel
pragma

• Parallelism of useful
work in the example
because independent
and different work
pulled of of q

• q needs to be thread
safe

The parallel pragma
#pragma omp parallel private(w)
{
#pragma omp critical
 w = getWork (q);
 while (w != NULL) {
 doWork(w);
#pragma omp critical
 w = getWork(q);
 }
}

• If data structure pointed to
by q is not thread safe,
need to synchronize it in
your code

• One way is to use a critical
clause

single and master clauses exist.

The single directive

Requires statement
following the pragma
to be executed by the
master thread.

Differs from critical in
that critical lets the
statement execute on
many threads, just one
at a time.

#pragma omp parallel private(w)
{
 w = getWork (q);
 while (w != NULL) {
 doWork(w);
 w = getWork(q);
 }
 #pragma omp single
 fprintf(“finishing work”);
}

The master directive
Requires statement
following the pragma to be
executed by the master
thread.

Often the master thread is
thread 0, but this is
implementation dependent.
Master thread is the same
thread for the life of the
program.

#pragma omp parallel private(w)
{
 w = getWork (q);
 while (w != NULL) {
 doWork(w);
 w = getWork(q);
 }
 #pragma omp master
 fprintf(“finishing work”);
}

Cannot use single/
master with for

Many different instances of
the single

#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] > 0) {
a[i] += b[i];

#pragma omp single
printf(“exiting”);

}
}

Does OpenMP provide a way
to specify:

• what parts of the program execute in parallel with one
another

• how the work is distributed across different cores

• the order that reads and writes to memory will take
place

• that a sequence of accesses to a variable will occur
atomically or without interference from other threads.

• And, ideally, it will do this while giving good performance
and allowing maintainable programs to be written.

What executes in parallel?

c = 57.0;
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}

c = 57.0
#pragma omp parallel for
for (i=0; i < n; i++) {

a[i] = + c + a[i]*b[i]
}

• pragma appears like a comment to a non-OpenMP
compiler

• pragma requests parallel code to be produced for
the following for loop

The order that reads and writes to
memory occur

c = 57.0
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}

• Within an iteration, access to data appears in-order
• Across iterations, no order is implied. Races lead to undefined

programs
• Across loops, an implicit barrier prevents a loop from starting

execution until all iterations and writes (stores) to memory in the
previous loop are finished

• Parallel constructs execute after preceding sequential constructs finish

Relaxing the order that reads and writes
to memory occur

c = 57.0
#pragma omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

The nowait clause allows a thread to begin executing its part of the code
after the nowait loop as soon as it finishes its part of the nowait loop

no barrier

Accessing variables without interference
from other threads

#pragma omp parallel for
for (i=0; i < n; i++) {

a = a + b[i]
}

Dangerous -- all iterations are
updating a at the same time --
a race (or data race).

#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

a = a + b[i];
}

Inefficient but correct -- critical
pragma allows only one thread
to execute the next statement
at a time. Potentially slow --
but ok if you have enough work
in the rest of the loop to make it
worthwhile.

Other kinds of
parallelism

Vector parallelism
(SIMD parallelization)

99

Why vectors?
• Normal multi-functional unit processors

need circuitry to control and fire the
functional units

• This is not under programmer control — the
programmer only specifies the instructions
to be executed, not the functional unit that
executes the instruction.

• Hardware must detect availability of
operands and functional unit, and schedule
the operation onto a particular hardware
functional unit. Enables out-of-order
execution.

• See “scoreboard” and “Tomasulo
algorithm” for details

• Robert Tomasulo, IBM, 1967, IBM 360,
Model 91

• Derivatives of it are used in most
modern architectures

For (int i = 0; i < n; i++) {

 a[i] = b[i]*c[i];

}

For (int i = 0; i < n; i+=4) {

 a[i] = b[i]*c[i];

 a[i+1] = b[i+1]*c[i+1];

 a[i] = b[i+2]*c[i+2];

 a[i] = b[i+2]*c[i+2];

}

100

a[0] a[1] a[2] a[3]

b[0]

b[1]

b[2]

b[3]

c[0]

c[1]

c[2]

c[3]

+

+

+

+

Dataflow takes this one step further
for (int i = 0; i < n; i++) {
 a[i] = b[i+1] + c[i]
 b[i] = a[i-1]
 c[i-1] = b[i-1]
}

for (int i = 1; i < n/3; i++) {
 a[i] = b[i+1] + c[i]
 b[i] = a[i-1]
 c[i-1] = b[i-1]
 a[i+1] = b[i+2] + c[i+1]
 b[i] = a[i]
 c[i] = b[i]
 a[i+2] = b[i+3] + c[i+2]
 b[i] = a[i+1]
 c[i+1] = b[i+1]

}

a[1] b[2] c[1]

b[1] a[1]

c[0] b[0]

a[2] b[3] c[2]

b[2] a[2]

c[1] b[1]

a[3] b[4] c[3]

b[3] a[3]

c[2] b[2]

Why vectors?
• With vector units there are

architected vector registers and
vector functional units

• These work on groups, or
vectors of operands and
operations

• Programmer/compiler generates
the instructions

• Control in hardware is almost no
more complicated than a scalar
functional unit

• Allows more operations to be
done per clock with small
increase in processor complexity

For (int i = 0; i < n; i++) {

 a[i] = b[i]*c[i];

}

For (int i = 0; i < n; i+=4) {

 a[i] = b[i]*c[i];

 a[i+1] = b[i+1]*c[i+1];

 a[i] = b[i+2]*c[i+2];

 a[i] = b[i+2]*c[i+2];

}

102

For (int i = 0; i < n; i+=4) {

 ldv rv1, b[i]

 ldv rv2, c[i]

 vadd rv3, rv1, rv2

}

b[0] b[1] b[2] b[3] c[0] c[1] c[2] c[3]

a[0] a[1] a[2] a[3]

+

Vector parallelization
for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

 b[i] = d[i] + e[i]; (S2)

 c[i] = f[i] + g[i]; (S3)

}

a[1], b[0], c[2] (S1)
b[1] (S2)
c[1] (S3)

a[2], b[1], c[3] (S1)
b[2] (S2)
c[2] (S3)

a[3], b[2], c[4] (S1)
b[3] (S2)
c[3] (S3)

a[4], b[3], c[5] (S1)
b[4] (S2)
c[4] (S3)

Dependences go from earlier
to later statements. This is
not good, as executing 4

iterations of S1 before S2 will
cause S1 to get stale values.

Vector parallelization
for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

 b[i] = d[i] + e[i]; (S2)

 c[i] = f[i] + g[i]; (S3)

}

S1

S2

S3

S2

S1

S3

Vector parallelization
for (int i = 1, i < n, i++) {

 b[i] = d[i] + e[i]; (S2)

 a[i] = b[i-1] + c[i+1]; (S1)

 c[i] = f[i] + g[i]; (S3)

}

b[1] (S2)
a[1], b[0], c[2] (S1)
c[1] (S3) Dependences go from earlier

statements to later
statements.

Now we can execute all S2
before all S1, and all S1 before
all S3, and no dependences
will be violated.

b[2] (S2)
a[2], b[1], c[3] (S1)
c[2] (S3)

b[3] (S2)
a[3], b[2], c[3] (S1)
c[3] (S3)

b[4] (S2)
a[4], b[3], c[5] (S1)
c[4] (S3)

Vector parallelization
for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

 b[i] = d[i] + e[i]; (S2)

 c[i] = f[i] + g[i]; (S3)

}

S1

S2

S3

S2

S1

S3

for (int i = 1, i < n, i++) {

 b[i] = d[i] + e[i]; (S2)

}

for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

}

for (int i = 1, i < n, i++) {

 c[i] = f[i] + g[i]; (S3)

}

for (int i = 1, i < n, i++) {

 b[i] = d[i] + e[i]; (S2)

 a[i] = b[i-1] + c[i+1]; (S1)

 c[i] = f[i] + g[i]; (S3)

}

for (int i = 1, i < n, i+=4) {

 vadd b[i], d[i], e[i]; (S2)

}

for (int i = 1, i < n, i+=4) {

 vadd a[i], b[i-1], c[i+1]; (S1)

}

for (int i = 1, i < n, i+=4) {

 vadd c[i], f[i], g[i]; (S3)

}

Modern server-grade
high performance
processors can do
32 or more vector
operations at a time.

GPUs, as we will
see, can do
thousands of
operations at a time

Vector parallelization
for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

 b[i] = d[i] + e[i]; (S2)

 c[i] = f[i] + g[i]; (S3)

}

S1

S2

S3

S2

S1

S3

#pragma omp simd

for (int i = 1, i < n, i++) {

 b[i] = d[i] + e[i]; (S2)

 a[i] = b[i-1] + c[i+1]; (S1)

 c[i] = f[i] + g[i]; (S3)

}

#pragma omp parallel for simd

for (int i = 1, i < n, i++) {

 b[i] = d[i] + e[i]; (S2)

 a[i] = b[i-1] + c[i+1]; (S1)

 c[i] = f[i] + g[i]; (S3)

}

#pragma omp simd runs the loop
on a single core using the vector units
in that core.

#pragma omp parallel for
simd runs the loop on the available
cores, using the vector units in that
core.

Vector parallelization with OMP
int max(int b, int c) {

 if (b > c) return b;

 else return c;

}

…

for (int i = 1, i < n, i++) {

 a[i] = max(b[i],c[i]);

}

#pragma omp declare simd

int max(int b, int c) {

 if (b > c) return b;

 else return c;

}

…

#pragma omp parallel for simd

for (int i = 1, i < n, i++) {

 a[i] = max(b[i], c[i];

}

#pragma omp declare simd

int max(int b, int c) {

 if (b > c) return b;

 else return c;

}

…

#pragma omp simd

for (int i = 1, i < n, i++) {

 a[i] = max(b[i], c[i];

}

Executes using vector units of a
multiple cores.

Executes using vector units of a
multiple cores.

