
More Advanced 
OpenMP

This is an abbreviated form of Tim Mattson’s and Larry 
Meadow’s (both at Intel) SC ’08 tutorial located at http://
openmp.org/mp-documents/omp-hands-on-SC08.pdf
All errors are my responsibility
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Topics (only OpenMP 3 in these slides)

• Creating Threads

• Synchronization

• Runtime library calls

• Data environment

• Scheduling for and 
sections

• Memory Model

• OpenMP 3.0 and Tasks

OpenMP 4

• Extensions to tasking

• User defined reduction 
operators

• Construct cancellation

• Portable SIMD directives

• Thread affinity
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Creating Tasks

• We already know about 

• parallel regions (omp parallel)

• parallel sections (omp parallel sections)

• parallel for (omp parallel for) or omp for 
when in a parallel region

• We will now talk about Tasks
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Tasks
• OpenMP before OpenMP 3.0 has always had tasks

• A parallel construct created implicit tasks, one per thread

• A team of threads was created to execute the tasks

• Each thread in the team is assigned (and tied) to one task

• Barrier holds the original master thread until all tasks are 
finished (note that the master may also execute a task)

• OpenMP 3.0 allows us to explicitly create tasks.

• Every part of an OpenMP program is part of some task, with the 
master task executing the program even if there is no explicit 
task
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task construct syntax
#pragma omp task [clause[[,]clause] ...]
structured-block

clauses:
if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default( shared | none )

if (false) says execute the task by the 
spawning thread
• different task with respect to 

synchronization
• Data environment is local to the thread
• User optimization for cache affinity and 

cost of executing on a different thread

untied says the task can be executed by 
more than one thread, i.e., different 
threads execute different parts of the 
task

Blue options are as before and 
associated with whether storage 
is shared or private
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When do we know a task is 
finished?

• At explicit or implicit thread barriers

• All tasks generated in the current parallel region are 
finished when the barrier for that parallel region finishes

• Matches what you expect, i.e., when a barrier is reached the 
work preceding the barrier is finished

• At task barriers

• Wait until all tasks defined in the current task are finished

#pragma omp taskwait

• Applies to tasks T directly generated in the current task, not 
to tasks generated by the tasks T
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Example: parallel pointer 
chasing with parallel region

#pragma omp parallel
{
   #pragma omp single private(p)
   {
      p = listhead ;
      while (p) {
         #pragma omp task
                  process (p)
         p=next (p) ;
      }
   }
}

value of p passed is 
value of p at the time of 
the invocation.  Saved on 
the stack like with any 
function call

process is an ordinary 
user function.
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Example: parallel pointer 
chasing with for

#pragma omp parallel
{
   #pragma omp for private(p)
   for ( int i =0; i <numlists ; i++) {
      p = listheads [ i ] ;
      while (p ) {
         #pragma omp task
                  process (p)
         p=next (p ) ;
      }
   }
}
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Parent task 
suspended until child 
tasks finish

Example: parallel postorder 
graph traversal

void postorder(node *p) {
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
}

This is a task 
scheduling point
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Example: postorder graph 
traversal in parallel

void postorder(node *p) { // p is initially 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
} Postorder is originally called from within 

an omp parallel region
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Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
}
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Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
}
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Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
}

process process process process

, , , ,
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Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
} process
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Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
} process process
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Postorder graph traversal in 
parallel — task wait

void postorder(node *p) {
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   process(p->data);
}

process process

process
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• Certain constructs contain task scheduling points 
(task constructs, taskwait constructs, taskyield [#pragma 
omp taskyield] constructs, barriers (implicit and 
explicit), the end of a tied region)

• Threads at task scheduling points can suspend their 
task and begin executing another task in the task 
pool (task switching)

• At the completion of the task or at another task 
scheduling point it can resume executing the original 
task

Task scheduling points
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Example: task switching
#pragma omp single
{
   for (i=0; i<ONEZILLION; i++)
      #pragma omp task
               process(item[i]);
} • Many tasks rapidly generated -- eventually more tasks than 

threads

• Generated tasks will have to suspend until a thread can 
execute them

• With task switching, the executing thread can

• execute an already generated task, draining the task pool

• execute the encountered task (could be cache friendly)
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Example: thread switching
#pragma omp single
{
   #pragma omp task untied
      for (i=0; i<ONEZILLION; i++)
         #pragma omp task // tied
                  process(item[i]);
}

• Eventually too many tasks are generated

• Task that is generating tasks is suspended and the task that is 
executed executes (for example) a long task

• Other threads execute all of the already generated tasks and begin 
starving for work

• With thread switching the task that generates tasks can be 
resumed by a different thread and generate tasks, ending starvation

• Programmer must specify this behavior with untied

The task generating other 
tasks is untied, the tasks 
executing process( ) are tied.
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taskprivate data

• Supported, but you have to be careful.

• Let p be a private variable in a task T1

• Let task T1 spawn task T2

• T2 cannot declare p as private

• If p were shared, it could.

• Why?  T1 can finish, its stack framed is popped, 
no more p for T2 access.
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Synchronization

• Locks

• Nested locks
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Simple locks

• A simple lock is available if it is not set

• Lock manipulation routines include:

• omp_init_lock(...)

• omp_set_lock(...)

• omp_unset_lock(...)

• omp_test_lock(...)

• omp_destroy_lock
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Simple lock example

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
   id = omp_get_thread_num();
   tmp = do_lots_of_work(id);
   omp_set_lock(&lck);
   printf(“%d %d”, id, tmp);
   omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

lck 0

lck 1

lck 0

lck
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Motivation for next lock example

void* items[100000000]; init(items); 
omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel for private(tmp)
{
   for (int i = 0; i < 100000000; i++) {   
      omp_set_lock(&lck);
      update(items[i]);
      omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

void* items[100000000]; init(items); 
#pragma omp parallel for private(tmp)
{
   for (int i = 0; i < 100000000; i++) {   
      #pragma omp critical
      update(items[i]);
}

Left and right code is pretty much the same and will 
essentially serialize the for  loop.
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More complicated lock example (a)

void* items[100000000]; init(items); // items[i] and items[j] may point to 
                                                             // the same thing
omp_lock_t lck[100000000];
for (int i = 0; i < 100000000; i++) 
   omp_init_lock(&(lck[i]));
#pragma omp parallel for
{
   for (int i = 0; i < 100000000; i++) {   
      omp_set_lock(&(lck[i]));
      update(items[i]);
      omp_unset_lock(&(lck[i]));
}
for (int i = 0; i < 100000000; i++)
   omp_destroy_lock(&(lck[i]));

This doesn’t work, why?

Hint: what is being 
changed by update and 
what does the set lock 
correspond to?
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Why it is wrong
• items[u] and items[v] point 

to the same storage/object

• two different locks are 
acquired/set by      
omp_set_lock(&(lck[u]));
omp_set_lock(&(lck[v]));  

• Locks are not providing 
exclusive access to the 
object

• Also, there are 
implementation limits on 
the number of locks

u v. . .items

u v. . .lck
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More complicated lock example (a)

void* items[100000000]; init(items); // items[i] and items[j] may point to 
                                                             // the same thing
omp_lock_t lck[101];
for (int i = 0; i < 101; i++) 
   omp_init_lock(&(lck[i]));
#pragma omp parallel for private(tmp)
{
   for (int i = 0; i < 100000000; i++) { 
      int tmp = (((int) items[i]) % 101));   
      omp_set_lock(&(lck[tmp]));
      update(items[i]);
      omp_unset_lock(&(lck[tmp]));
}
for (int i = 0; i < 101; i++)
   omp_destroy_lock(&(lck[i]));
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Why this works

• If pointers are evenly 
distributed then few 
collisions on << 101 
threads, little serialization

• Balance the number of 
locks to give an 
acceptable chance of 
collision on a lock

u v. . .items

. . .lck
0 100

pp

let (p % 101) == 98

98
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Nested locks
• A nested lock is available if it is not set or it is set by 

the same thread attempting to acquire it.

• Lock manipulation routines include:

• omp_init_nest_lock(...)

• omp_set_ nest_ lock(...)

• omp_unset_ nest_ lock(...)

• omp_test_ nest_ lock(...)

• omp_destroy_ nest_lock
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OpenMP Memory  Model

Two issues, coherence and consistency.  Coherence: Behavior of 
the memory system when a single address is accessed by 
multiple threads.  Consistency: Orderings of accesses to 
different addresses by multiple threads.
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Memory models
• Memory models worry about the interactions of 

loads and stores (reads and writes) in different threads

• HW dependences (hazards) are used to deal with 
reads and writes within a thread to the same memory 
location and are not generally thought of as part of 
the memory model.  

• Stated differently, regardless to of the memory 
model, reads/writes, writes/writes and writes/reads 
within a thread to the same memory location will 
be in-order
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OpenMP Memory Model Basics

a   b

Wa  Wb  Ra  Rb . . .

Program order

Source Code

Wb  Rb  Wa  Ra  . . .

Code order

Executable Code

Semantically equivalent 
single thread order

Compiler

private viewprivate view

thread 0 thread 1

thread private thread private
a   b

                      a                           b

Commit order
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Sequential Consistency 
• An operation is sequentially consistent (SC) if the 

operation is in the same order in the program 
order, code order and commit order. 

• An execution is SC if all operations appear to be 
SC

• A consistency model where all operations are SC is 
strict

• A consistency model where some of these orders 
can be violated is relaxed.

• Most languages/processors have relaxed orders
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Reordering Accesses
• Compiler reorders program order to code order

• Reordering happens because of the compiler doing 
optimizations.  In practice, compilers will maintain SC if the 
program is well-synchronized, for reasons we will see soon.

• Hardware reorders code order to commit order

• Reordering happens because of out-of-order execution.  
Hardware will maintain SC if the code order is SC and the 
program is well synchronized.

• The private view of memory can differ from shared memory

• Consistency models are based on orderings of Reads (R), 
Writes (W) and Synchronizations (S) within a thread

R→R,  W→W,  R→W,  W→R, R→S,  S→S,  W→S
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OpenMP’s consistency model

• Weak consistency

• S ops (synchronization operations) must be executed in 
sequential order

• Within a thread cannot reorder S with respect to W 
or S with respect R (cannot move past a read or 
write)

• Guarantees S→W, S→R, R→S, W→S, S→S

• R→R,  W→W,  R→W missing.  Obviously, if writes or read/
writes are to the same location they are ordered 
(dependences/hazards enforced)  If read or write not to same 
memory location, can be moved around with respect to one another
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What is a race?
• Execute a parallel 

program

• If a there is 

• a read or write to 
some v in a thread, 
and 

• a write to it in 
another thread, and 

• no enforced 
ordering at runtime 
between the two, 

• there is a race.
• Orderings come from 

synchronization

set_lock(a)
  v = . . .
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

set_lock(a)
  . . . = v
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

either blue or 
green order must 
exist at runtime
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Green order occurs

set_lock(a)
  v = . . .
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

set_lock(a)
  . . . = v
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

green order exists 
at runtime

Update to V 
must follow the 
read -- cannot 
be overlapping
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Blue order occurs

set_lock(a)
  v = . . .
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

set_lock(a)
  . . . = v
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

blue order exists
Read and write 

of  V cannot 
overlap since 

write must occur 
before read
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A race exists

  v = . . .
 

operations 
on non-shared 
variables

operations 
on non-shared 
variables

set_lock(a)
  . . . = v
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

A race exists -- 
no ordered path 
exists39



A race exists

set_lock(a)
  v = . . .
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

set_lock(b)
  . . . = v
  unset_lock(b)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

Different locks, 
no ordering 

across threads, 
a race exists
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set_lock(a)
  v = . . .
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

set_lock(a)
  . . . = v
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

For an order to exist 
between v= and =v it must 
be that the fence in the 
unset_lock( ) forces any new 
value of v out before the 
unset_lock completes

The fence will not complete 
until the value to memory is 
committed

The value to memory will 
not be committed before 
any stale values of v are 
invalidated
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What about IBM’s Power processors?

set_lock(a)
  v = . . .
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

set_lock(a)
  . . . = v
  unset_lock(a)

operations 
on non-shared 
variables

operations 
on non-shared 
variables

Some Power fence’s (called 
sync instructions) can 
complete before the value is 
committed to memory.  I.e., 
value may be committed to 
shared cache or local 
memory.

This makes for harder low-
level programming but may 
make the machine faster 
(sync’s execute faster)

The OpenMP standard requires that OpenMP fences on Power 
processors wait until new value visible to all and old values 
invalidated 42



Remember that local view and shared 
memory may not be the same 

• flush forces a consistent view between the local and shared 
memory

• flush( ) flushes all thread visible variables

• flush(list) flushes all variables in list

• A flush guarantees that 

• all read and writes ops that read or write data in list and that 
are before the flush( ) will complete before the flush 
completes

• all read and writes ops that read or write data in list and that 
are after the flush( ) will not start before the flush completes 

• flushes with overlapping lists (flush sets) cannot be re-
ordered with respect to one another in the same thread

• Locks always execute a flush, as do barriers.
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Flush Example

• The flush ensures 
that other threads 
can see A after the 
flush executes

• Serves the function 
of a fence in 
hardware API’s

double A;
A = compute();
flush(A); // flush to memory to 
               // make sure other
               // threads can pick up 
               // the right value

Can’t think of a good use of it in a non-racy 
program since unlock essentially does a flush
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Compilers and flushes

• Compilers routinely reorder instructions

• Compilers cannot move a read or write past a 
barrier or a flush whose flush set contains the read 
or written variable

• Keeping track of what is consistent can be confusing 
for programmers, especially if flush(list) is used

• flushes do not synchronize between threads -- the 
make local and shared memory consistent for a 
thread.
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Runtime library calls
• omp_set_dynamic(true|false) (default is true)

• omp_get_dynamic( ) (test function)

• omp_num_procs( ) 

• omp_in_parallel( )

• omp_get_max_threads( )

• omp_thread_limit

• double omp_get_wtime( )

• double omp_get_wtick( );
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Nested parallelism
• You can nest parallelism constructs

• Calling omp_set_num_threads( ) within a parallel 
construct sets the number of threads available to the 
next level of parallelism

• Can get info about execution environment:

omp_get_active_level() // level of parallelism nesting

omp_get_ancestor(level) // thread ID of an ancestor

omp_get_teamsize(level) // number of threads executing an 
ancestor
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Environment variables 
and functions

• Can set maximum active levels of parallelism

OMP_MAX_ACTIVE_LEVELS (environment variable)
omp_set_max_active_levels()
omp_get_max_active_levels()
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Loops
$omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {
   a(i) = ....
}
$omp parallel for schedule(static)
for (j=0; j < n; j++) {
   ... = a(j)
}

Guarantees iterations for both loops to 
execute on the same threads
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Loops
$omp parallel for collapse(2)
for (i=0; i < n; i++) {
   for (j=0; j < n; j++) {
      .....
   }
}

forms a single parallel loop with n*n 
iterations
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Loops (cont.)

• Schedule runtime (schedule(runtime)) made more useful.  Can 
set at runtime rather than just reading from the environment

omp_set_schedule()
omp_get_schedule()

omp_set_schedule(omp_sched_static, 5);

AUTO schedule now supported -- runtime picks a schedule
C++ Random access iterators can be used as control variables 
in parallel loops

51



Portability
• Environment variables to control stack size added: omp_stacksize 

• Added environment variable to specify how to handle idle 
threads: omp_wait_policy  

ACTIVE: keep threads alive at barriers/locks

PASSIVE: try to release threads to the processor (i.e., don’t use 
CPU cycles

• If not set, active for a while at barrier, then passive.

• Can specify maximum number of threads to use

OMP_THREAD_LIMIT 

omp_get_thread_limit( )
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