
More Advanced
OpenMP

This is an abbreviated form of Tim Mattson’s and Larry
Meadow’s (both at Intel) SC ’08 tutorial located at http://
openmp.org/mp-documents/omp-hands-on-SC08.pdf
All errors are my responsibility

1

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Topics (only OpenMP 3 in these slides)

• Creating Threads

• Synchronization

• Runtime library calls

• Data environment

• Scheduling for and
sections

• Memory Model

• OpenMP 3.0 and Tasks

OpenMP 4

• Extensions to tasking

• User defined reduction
operators

• Construct cancellation

• Portable SIMD directives

• Thread affinity

2

Creating Tasks

• We already know about

• parallel regions (omp parallel)

• parallel sections (omp parallel sections)

• parallel for (omp parallel for) or omp for
when in a parallel region

• We will now talk about Tasks

3

Tasks
• OpenMP before OpenMP 3.0 has always had tasks

• A parallel construct created implicit tasks, one per thread

• A team of threads was created to execute the tasks

• Each thread in the team is assigned (and tied) to one task

• Barrier holds the original master thread until all tasks are
finished (note that the master may also execute a task)

• OpenMP 3.0 allows us to explicitly create tasks.

• Every part of an OpenMP program is part of some task, with the
master task executing the program even if there is no explicit
task

4

task construct syntax
#pragma omp task [clause[[,]clause] ...]
structured-block

clauses:
if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

if (false) says execute the task by the
spawning thread
• different task with respect to

synchronization
• Data environment is local to the thread
• User optimization for cache affinity and

cost of executing on a different thread

untied says the task can be executed by
more than one thread, i.e., different
threads execute different parts of the
task

Blue options are as before and
associated with whether storage
is shared or private

5

When do we know a task is
finished?

• At explicit or implicit thread barriers

• All tasks generated in the current parallel region are
finished when the barrier for that parallel region finishes

• Matches what you expect, i.e., when a barrier is reached the
work preceding the barrier is finished

• At task barriers

• Wait until all tasks defined in the current task are finished

#pragma omp taskwait

• Applies to tasks T directly generated in the current task, not
to tasks generated by the tasks T

6

Example: parallel pointer
chasing with parallel region

#pragma omp parallel
{
 #pragma omp single private(p)
 {
 p = listhead ;
 while (p) {
 #pragma omp task
 process (p)
 p=next (p) ;
 }
 }
}

value of p passed is
value of p at the time of
the invocation. Saved on
the stack like with any
function call

process is an ordinary
user function.

7

Example: parallel pointer
chasing with for

#pragma omp parallel
{
 #pragma omp for private(p)
 for (int i =0; i <numlists ; i++) {
 p = listheads [i] ;
 while (p) {
 #pragma omp task
 process (p)
 p=next (p) ;
 }
 }
}

8

Parent task
suspended until child
tasks finish

Example: parallel postorder
graph traversal

void postorder(node *p) {
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
}

This is a task
scheduling point

9

Example: postorder graph
traversal in parallel

void postorder(node *p) { // p is initially
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
} Postorder is originally called from within

an omp parallel region

10

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
}

11

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
}

12

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
}

process process process process

, , , ,

13

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
} process

14

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
} process process

15

Postorder graph traversal in
parallel — task wait

void postorder(node *p) {
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 process(p->data);
}

process process

process

16

• Certain constructs contain task scheduling points
(task constructs, taskwait constructs, taskyield [#pragma
omp taskyield] constructs, barriers (implicit and
explicit), the end of a tied region)

• Threads at task scheduling points can suspend their
task and begin executing another task in the task
pool (task switching)

• At the completion of the task or at another task
scheduling point it can resume executing the original
task

Task scheduling points

17

Example: task switching
#pragma omp single
{
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
} • Many tasks rapidly generated -- eventually more tasks than

threads

• Generated tasks will have to suspend until a thread can
execute them

• With task switching, the executing thread can

• execute an already generated task, draining the task pool

• execute the encountered task (could be cache friendly)

18

Example: thread switching
#pragma omp single
{
 #pragma omp task untied
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task // tied
 process(item[i]);
}

• Eventually too many tasks are generated

• Task that is generating tasks is suspended and the task that is
executed executes (for example) a long task

• Other threads execute all of the already generated tasks and begin
starving for work

• With thread switching the task that generates tasks can be
resumed by a different thread and generate tasks, ending starvation

• Programmer must specify this behavior with untied

The task generating other
tasks is untied, the tasks
executing process() are tied.

19

taskprivate data

• Supported, but you have to be careful.

• Let p be a private variable in a task T1

• Let task T1 spawn task T2

• T2 cannot declare p as private

• If p were shared, it could.

• Why? T1 can finish, its stack framed is popped,
no more p for T2 access.

20

Synchronization

• Locks

• Nested locks

21

Simple locks

• A simple lock is available if it is not set

• Lock manipulation routines include:

• omp_init_lock(...)

• omp_set_lock(...)

• omp_unset_lock(...)

• omp_test_lock(...)

• omp_destroy_lock

22

Simple lock example

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
 id = omp_get_thread_num();
 tmp = do_lots_of_work(id);
 omp_set_lock(&lck);
 printf(“%d %d”, id, tmp);
 omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

lck 0

lck 1

lck 0

lck

23

Motivation for next lock example

void* items[100000000]; init(items);
omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel for private(tmp)
{
 for (int i = 0; i < 100000000; i++) {
 omp_set_lock(&lck);
 update(items[i]);
 omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

void* items[100000000]; init(items);
#pragma omp parallel for private(tmp)
{
 for (int i = 0; i < 100000000; i++) {
 #pragma omp critical
 update(items[i]);
}

Left and right code is pretty much the same and will
essentially serialize the for loop.

24

More complicated lock example (a)

void* items[100000000]; init(items); // items[i] and items[j] may point to
 // the same thing
omp_lock_t lck[100000000];
for (int i = 0; i < 100000000; i++)
 omp_init_lock(&(lck[i]));
#pragma omp parallel for
{
 for (int i = 0; i < 100000000; i++) {
 omp_set_lock(&(lck[i]));
 update(items[i]);
 omp_unset_lock(&(lck[i]));
}
for (int i = 0; i < 100000000; i++)
 omp_destroy_lock(&(lck[i]));

This doesn’t work, why?

Hint: what is being
changed by update and
what does the set lock
correspond to?

25

Why it is wrong
• items[u] and items[v] point

to the same storage/object

• two different locks are
acquired/set by
omp_set_lock(&(lck[u]));
omp_set_lock(&(lck[v]));

• Locks are not providing
exclusive access to the
object

• Also, there are
implementation limits on
the number of locks

u v. . .items

u v. . .lck

26

More complicated lock example (a)

void* items[100000000]; init(items); // items[i] and items[j] may point to
 // the same thing
omp_lock_t lck[101];
for (int i = 0; i < 101; i++)
 omp_init_lock(&(lck[i]));
#pragma omp parallel for private(tmp)
{
 for (int i = 0; i < 100000000; i++) {
 int tmp = (((int) items[i]) % 101));
 omp_set_lock(&(lck[tmp]));
 update(items[i]);
 omp_unset_lock(&(lck[tmp]));
}
for (int i = 0; i < 101; i++)
 omp_destroy_lock(&(lck[i]));

27

Why this works

• If pointers are evenly
distributed then few
collisions on << 101
threads, little serialization

• Balance the number of
locks to give an
acceptable chance of
collision on a lock

u v. . .items

. . .lck
0 100

pp

let (p % 101) == 98

98

28

Nested locks
• A nested lock is available if it is not set or it is set by

the same thread attempting to acquire it.

• Lock manipulation routines include:

• omp_init_nest_lock(...)

• omp_set_ nest_ lock(...)

• omp_unset_ nest_ lock(...)

• omp_test_ nest_ lock(...)

• omp_destroy_ nest_lock
29

OpenMP Memory Model

Two issues, coherence and consistency. Coherence: Behavior of
the memory system when a single address is accessed by
multiple threads. Consistency: Orderings of accesses to
different addresses by multiple threads.

30

Memory models
• Memory models worry about the interactions of

loads and stores (reads and writes) in different threads

• HW dependences (hazards) are used to deal with
reads and writes within a thread to the same memory
location and are not generally thought of as part of
the memory model.

• Stated differently, regardless to of the memory
model, reads/writes, writes/writes and writes/reads
within a thread to the same memory location will
be in-order

31

OpenMP Memory Model Basics

a b

Wa Wb Ra Rb . . .

Program order

Source Code

Wb Rb Wa Ra . . .

Code order

Executable Code

Semantically equivalent
single thread order

Compiler

private viewprivate view

thread 0 thread 1

thread private thread private
a b

 a b

Commit order
32

Sequential Consistency
• An operation is sequentially consistent (SC) if the

operation is in the same order in the program
order, code order and commit order.

• An execution is SC if all operations appear to be
SC

• A consistency model where all operations are SC is
strict

• A consistency model where some of these orders
can be violated is relaxed.

• Most languages/processors have relaxed orders
33

Reordering Accesses
• Compiler reorders program order to code order

• Reordering happens because of the compiler doing
optimizations. In practice, compilers will maintain SC if the
program is well-synchronized, for reasons we will see soon.

• Hardware reorders code order to commit order

• Reordering happens because of out-of-order execution.
Hardware will maintain SC if the code order is SC and the
program is well synchronized.

• The private view of memory can differ from shared memory

• Consistency models are based on orderings of Reads (R),
Writes (W) and Synchronizations (S) within a thread

R→R, W→W, R→W, W→R, R→S, S→S, W→S

34

OpenMP’s consistency model

• Weak consistency

• S ops (synchronization operations) must be executed in
sequential order

• Within a thread cannot reorder S with respect to W
or S with respect R (cannot move past a read or
write)

• Guarantees S→W, S→R, R→S, W→S, S→S

• R→R, W→W, R→W missing. Obviously, if writes or read/
writes are to the same location they are ordered
(dependences/hazards enforced) If read or write not to same
memory location, can be moved around with respect to one another

35

What is a race?
• Execute a parallel

program

• If a there is

• a read or write to
some v in a thread,
and

• a write to it in
another thread, and

• no enforced
ordering at runtime
between the two,

• there is a race.
• Orderings come from

synchronization

set_lock(a)
 v = . . .
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

set_lock(a)
 . . . = v
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

either blue or
green order must
exist at runtime

36

Green order occurs

set_lock(a)
 v = . . .
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

set_lock(a)
 . . . = v
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

green order exists
at runtime

Update to V
must follow the
read -- cannot
be overlapping

37

Blue order occurs

set_lock(a)
 v = . . .
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

set_lock(a)
 . . . = v
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

blue order exists
Read and write

of V cannot
overlap since

write must occur
before read

38

A race exists

 v = . . .

operations
on non-shared
variables

operations
on non-shared
variables

set_lock(a)
 . . . = v
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

A race exists --
no ordered path
exists39

A race exists

set_lock(a)
 v = . . .
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

set_lock(b)
 . . . = v
 unset_lock(b)

operations
on non-shared
variables

operations
on non-shared
variables

Different locks,
no ordering

across threads,
a race exists

40

set_lock(a)
 v = . . .
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

set_lock(a)
 . . . = v
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

For an order to exist
between v= and =v it must
be that the fence in the
unset_lock() forces any new
value of v out before the
unset_lock completes

The fence will not complete
until the value to memory is
committed

The value to memory will
not be committed before
any stale values of v are
invalidated

41

What about IBM’s Power processors?

set_lock(a)
 v = . . .
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

set_lock(a)
 . . . = v
 unset_lock(a)

operations
on non-shared
variables

operations
on non-shared
variables

Some Power fence’s (called
sync instructions) can
complete before the value is
committed to memory. I.e.,
value may be committed to
shared cache or local
memory.

This makes for harder low-
level programming but may
make the machine faster
(sync’s execute faster)

The OpenMP standard requires that OpenMP fences on Power
processors wait until new value visible to all and old values
invalidated 42

Remember that local view and shared
memory may not be the same

• flush forces a consistent view between the local and shared
memory

• flush() flushes all thread visible variables

• flush(list) flushes all variables in list

• A flush guarantees that

• all read and writes ops that read or write data in list and that
are before the flush() will complete before the flush
completes

• all read and writes ops that read or write data in list and that
are after the flush() will not start before the flush completes

• flushes with overlapping lists (flush sets) cannot be re-
ordered with respect to one another in the same thread

• Locks always execute a flush, as do barriers.
43

Flush Example

• The flush ensures
that other threads
can see A after the
flush executes

• Serves the function
of a fence in
hardware API’s

double A;
A = compute();
flush(A); // flush to memory to
 // make sure other
 // threads can pick up
 // the right value

Can’t think of a good use of it in a non-racy
program since unlock essentially does a flush

44

Compilers and flushes

• Compilers routinely reorder instructions

• Compilers cannot move a read or write past a
barrier or a flush whose flush set contains the read
or written variable

• Keeping track of what is consistent can be confusing
for programmers, especially if flush(list) is used

• flushes do not synchronize between threads -- the
make local and shared memory consistent for a
thread.

45

Runtime library calls
• omp_set_dynamic(true|false) (default is true)

• omp_get_dynamic() (test function)

• omp_num_procs()

• omp_in_parallel()

• omp_get_max_threads()

• omp_thread_limit

• double omp_get_wtime()

• double omp_get_wtick();
46

Nested parallelism
• You can nest parallelism constructs

• Calling omp_set_num_threads() within a parallel
construct sets the number of threads available to the
next level of parallelism

• Can get info about execution environment:

omp_get_active_level() // level of parallelism nesting

omp_get_ancestor(level) // thread ID of an ancestor

omp_get_teamsize(level) // number of threads executing an
ancestor

47

Environment variables
and functions

• Can set maximum active levels of parallelism

OMP_MAX_ACTIVE_LEVELS (environment variable)
omp_set_max_active_levels()
omp_get_max_active_levels()

48

Loops
$omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {
 a(i) =
}
$omp parallel for schedule(static)
for (j=0; j < n; j++) {
 ... = a(j)
}

Guarantees iterations for both loops to
execute on the same threads

49

Loops
$omp parallel for collapse(2)
for (i=0; i < n; i++) {
 for (j=0; j < n; j++) {

 }
}

forms a single parallel loop with n*n
iterations

50

Loops (cont.)

• Schedule runtime (schedule(runtime)) made more useful. Can
set at runtime rather than just reading from the environment

omp_set_schedule()
omp_get_schedule()

omp_set_schedule(omp_sched_static, 5);

AUTO schedule now supported -- runtime picks a schedule
C++ Random access iterators can be used as control variables
in parallel loops

51

Portability
• Environment variables to control stack size added: omp_stacksize

• Added environment variable to specify how to handle idle
threads: omp_wait_policy

ACTIVE: keep threads alive at barriers/locks

PASSIVE: try to release threads to the processor (i.e., don’t use
CPU cycles

• If not set, active for a while at barrier, then passive.

• Can specify maximum number of threads to use

OMP_THREAD_LIMIT

omp_get_thread_limit()
52

