
Introduction to MPI
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Topics to be covered

• MPI vs shared memory

• Initializing MPI

• MPI concepts -- communicators, processes, 
ranks

• MPI functions to manipulate these

• Timing functions

• Barriers and the reduction collective operation
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Shared and distributed memory
• Shared memory 

• automatically maintained a consistent image of memory according 
to some memory model

• fine grained communication possible via loads, stores, and cache 
coherence

• model and multicore hardware support well aligned

• Programs can be converted piece-wise

• Distributed memory

• Program executes as a collection of processes, all communication 
between processors explicitly specified by the programmer

• Fine grained communication in general too expensive -- 
programmer must aggregate communication

• Conversion of programs is all-or-nothing

• Cost scaling of machines is better than with shared memory -- well 
aligned with economics of commodity rack mounted blades

3



Message Passing
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Message Passing Model
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• This drawing implies 

that all processor are 
equidistant from one 
another

• This is often not the 
case -- the network 
topology and 
multicores make some 
processors closer 
than others

• programmers have to 
exploit this manually
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Message Passing Model

• In reality, processes run on 
cores, and are closer to 
other processes on the 
same processor

• Across processors, some 
can be reached via a single 
hop on the network, others 
require multiple hops

• Not a big issue on small 
(several hundred 
processors), but it needs to 
be considered on large 
machines.
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131,072 cores BG/L
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Tianhe-2, 40,960 processors, 
10,649,600 cores 



Why use message passing

• Allows control over data layout, locality and 
communication -- very important on large machines

• Portable across all machines including shared memory 
machines -- it’s a universal parallel programming model

• Easier to write deterministic programs

• simplifies debugging

• easier to understand programs

• Style needed for efficient messages can lead to better 
performance than shared memory programs, even on 
shared memory systems.
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Why not use it?
• All or nothing program development - generally 

need to make the entire program parallel to make 
any part parallel

• Information needed for messages low-level and 
sometimes hard to program

• Subtle bugs in message passing code can lead to 
performance problems and deadlock

• Message passing code disrupts the flow of 
algorithms
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SPMD execution

• Single Program Multiple Data

• Multiple copies of the same program 
operating on different parts of the data 
(typically different sections of an array)

• Each program copy executes in a process

• Different processes can execute different 
paths through the program
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SPMD execution

for (i=1; i <= n/2; i++) { 
a[i] = i; 

} 
for (i=1, i<= n/2; i++) { 

... = a[i-1]; 
} 

for (i=1; i <= n/2; i++) { 
a[i] = n/2+i; 

} 
for (i=1; i <= n/2; i++) { 

... = a[i-1]; 
} i 1

0 1 ... n/2-1 n/2

1 2 ... 49 50
a 

i 1

0 1 ... n/2-1 n/2

51 52 ... 99 100
a 

n 99n 99

for (i=1; i <= n; i++) { 
a[i] = i + 1; 

} 
for (i=1, i <= n; i++) { 

... = a[i-1]; 
} local 

index

global 
index
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Work done by processes

• Each process has a unique rank or process id 
(often called pid in programs) that is set when 
program starts

• Is not changed during the execution of the 
program (however, see Naik, Moreira, et al. IBM 
DRMS project if you are really interested in this.)

• Each process has a unique identifier (often called 
pid) that is known to the program

• Typical program pattern is compute a communicate 
acompute ... a... acommunicate
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Radix sort

• Radix sort works well to sort lists of numbers

• Will assume integers have values from 0 to 65,535

• Have N >> 65,535 numbers to sort
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Sequential program

for (i=0; i < 65535; i++) { 
sorted[i] = 0; 

} 

for (i=0; i < n; i++) { 
sorted[data[i]]++; 

} 

for (i=0; i<65535; i++) { 
for (j=0; j < sort[i]; j++) { 

fprint(“%i\n”, i); 
}} 

Want to convert to 
SPMD message 
passing code

Note that data input not 
shown -- this can require 
some thought

Data often spread across 
multiple files to accommodate 
parallel I/O on large problems
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SPMDizing the program

all processors execute this (replicated execution)
for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
} 

each processor executes N/4 iterations (assume N mod 4 = 0)
for (i=0; i < N/4; i++) { 

sorted[data[i]]++; 
} 

this becomes a sum reduction over the sorted arrays on each processor,
i.e. communication.  This code does not show that.
for (i=0; i<65535; i++) { 

for (j=0; j < sort[i]; j++) { 
fprint(“%i\n”, i); 

}}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P3
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P2
data[3*N/4:N-1]

i, j
sorted[0:65353]
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Data management
data[0:N/4-1]

i, j
sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P3
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P2
data[3*N/4:N-1]

i, j
sorted[0:65353]

• All declared variables exist within each process
• There is a global and local logical index space for arrays

• globally, data has N elements 0:N-1
• locally, each process has N/4 elements numbered 0:N/

4-1(if N mod 4 == 0, otherwise ⎡N/4⎤or⎣N/4⎦elements 
per processors with some processors having more or 
fewer elements than other processors

• The concatenation of the local partitions of data arrays 
forms the global array data 

• The array data is block distributed over the processors

global indices 
shown, local is  

[0:n/4-1]
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Data bounds for block

• Two “obvious” ways to compute

• Let n be the array size, P the number 
processors
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First method
•Let P be the number of processes, n the number of array elements, 0 ≤ p ≤ P-1  is a 
process id 

•r = n mod P, r = 0, all blocks are the same size, otherwise, first r blocks have  ⎡n/P⎤ 
elements, last P-r have ⎣n/P⎦ elements

•First element on a process p is p⎣n/P⎦+ min(p,r)

•Last element on process p is (p+1)⎣n/P⎦+ min(p+1,r) - 1

•process with element i is min(⎣i/(⎣n/P⎦+ 1)⎦, ⎣i-r) / ⎣n/P⎦⎦)

•Example -- 12 elements over 5 processors, 2 = 12 mod 5

• Example -- 12 elements over 7 processors, 5 = 12 mod 7
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Second method
• First element controlled (or owned) by process p is ⎣p n/P⎦ 

(first element and first process id p is 0 

• Last element controlled by process p is one less that the first 
element controlled by process p+1

 ⎣ (p+1) n/P⎦ - 1

• Process controlling element i is ⎣(P(i+1)-1)/n⎦

• Example -- 12 elements over 5 processors, r = 2 = 12 mod 5

• Example -- 17 elements over 5 processors, r = 2 = 17 mod 5
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Global vs local indices

• Each part of an array within a process must be 
indexed as a local element of that array using the local 
index.

• Logically, each local element is a part of the global 
array, and within the problem domain has a global 
index

• It is the MPI programmer’s responsibility (that means 
you) to maintain that mapping.

0 1 0 1 20 1 20 10 1

7 8 9 10 114 5 62 30 1

local index:

global index:
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Use macros to access 
bounds

• Macros or functions can be used to compute these.

• Block lower bound: LB(p, P, n) = (p*n/P) 

• Block upper bound: UB(p, P, n) = LB(p+1, P, n)-1 

• Block size: LB(p+1, P, n) - LB(p, P, n) 

• Block owner: Owner(i, P, n) = (P*(i+1)-1)/n 

0 1 0 1 20 1 20 10 1

7 8 9 10 114 5 62 30 1

local index:

global index:
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Comparison of the two 
methods

Operations First 
Method

Second 
Method

Low index 4 2

High index 6 4

Owner 7 4

Assumes floor is free (as it is with integer division 
although integer division itself may be expensive)
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The cyclic distribution

data[0:N:4]
i, j

sorted[0:65353]

P0 P1
data[1:n:4]

i, j
sorted[0:65353]

P3
data[2:N:4]

i, j
sorted[0:65353]

P2
data[3:N:4]

i, j
sorted[0:65353]

• Let A be an array with N elements.  
• Let the array be cyclically distributed over P processes
• Process p gets elements p, p+P, p+2*P, p+3*P, ...
• In the above 

• process 0 gets elements 0, 4, 8, 12, ... of data 
• process 1 gets elements 1, 5, 9, 13, ... of data 
• process 2 gets elements 2, 6, 10, 14, ... of data 
• process 3 gets elements 3, 7, 11, 15, ... of data
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The block-cyclic distribution

• Let A be an array with N elements
• Let the array be block-cyclically distributed over P 

processes, with blocksize B
• Block b, b = 0 ...,  on process p gets elements 

             b*B*P+p*B: b*B*P + (p+1)*B)-1 elements
• With P=4, B=3

• process 0 gets elements [0:2], [12:14], [24:26] of data 
• process 1 gets elements [3:5], [15:17],[27:29] of data 
• process 2 gets elements [6:8], [18:20],[30:32] of data 
• process 3 gets elements [9:11], [21:23],[33:35] of 

data
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Converting the program to MPI: System initialization

#include <mpi.h> /* MPI library prototypes, etc. */ 
#include <stdio.h> 
// all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) { 

int pid; /* MPI process ID) 
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); // get N from the arg vector 
int sorted[65536]; int data[N/4]; 
MPI_INIT(&argc, &argv); 
for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
}}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]
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MPI_INIT
• Initialize the MPI runtime

• Does not have to be the first executable statement 
in the program, but it must be the first MPI call made

• Initializes the default MPI communicator 
(MPI_COMM_WORLD which includes all 
processes)

• Reads standard files and environment variables to 
get information about the system the program will 
execute on

• e.g. what machines executes the program?

27



The MPI environment
A 

communicator 
defines a 

universe of 
processes that 
can exchange  

messagesMPI_COMM_WORLD

0
6

1 2

4

3 7

5

A process

A rank

The communicator  name 
(MPI_COMM_WOLD is the default communicator 

name
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Converting the program to MPI

#include <mpi.h> /* MPI library prototypes, etc. */ 
#include <stdio.h> 
/ all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) { 

int pid; /* MPI process ID) 
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); 
int sorted[65536]; int data[N/4]; 
MPI_INIT(&argc, &argv); 
MPI_Comm_size(MPI_COMM_WORLD, &numP); 
for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
}}

Communicator 
name

get 
number of 
processors

cheat!
should 
malloc

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[0:N/4-1]

i, j
sorted[0:65353]

P2
data[0:N/4-1]

i, j
sorted[0:65353]

P3
data[0:N/4-1]

i, j
sorted[0:65353]
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Converting the program to MPI

#include <mpi.h> /* MPI library prototypes, etc. */ 
#include <stdio.h> 
/ all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) { 

int pid; /* MPI process ID) 
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); 
int sorted[65536]; int data[*N/4]; MPI_INIT(&argc, &argv); 
MPI_Comm_size(MPI_COMM_WORLD, &numP); 
MPI_Comm_rank(MPI_COMM_WORLD, &pid); 
for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
}}

Communicator 
name

arg to get 
rank (i.e. pid) of 

this 

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]
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Converting the program to MPI

#include <mpi.h> /* MPI library prototypes, etc. */ 
#include <stdio.h> 
/ all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) { 

int pid; /* MPI process ID) 
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); 
int sorted[65536]; int data[*N/4]; MPI_INIT(&argc, &argv); 
MPI_Comm_size(MPI_COMM_WORLD, &numP); 
MPI_Comm_rank(MPI_COMM_WORLD, &pid); 
for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
} 
MPI_Finalize( ); 

}

The last MPI 
function called

MPI_Finalize frees 
system resources 
associated with MPI

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]
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Time to do something useful

#include <mpi.h> /* MPI library prototypes, etc. */ 
#include <stdio.h> 
/ all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) { 

int pid; /* MPI process ID) 
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); 
int sorted[65536]; int data[*N/4]; 
MPI_INIT(&argc, &argv); 
MPI_Comm_size(MPI_COMM_WORLD, &numP); 
MPI_Comm_rank(MPI_COMM_WORLD, &pid); 
for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
} 
sort(data, sort, pid, numP); 
MPI_Finalize( ); 

}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]
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The serial code

void sort (sort[ ], data[ ], int pid, int numP) { 
for (i=0; i < N; i++) { 

sorted[data[i]]++; 
} 
// sorted results available here ...

} 

If above is done in parallel, need to get results from all 
processes before printing them
for (i=0; i<65535; i++) { 

for (j=0; j < sort[i]; j++) { 
fprint(“%i\n”, i); 

}}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]
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type of data 
being reduced

MPI_Reduce(...)

• Does a reduction like the reduce clause in OpenMP, 
only it uses messages.

MPI_Reduce(void *opnd, void *result, int count,  MPI_Datatype type,
                    MPI_Operator op, int root, MPI_Comm comm);

address 
of the first 
element to 
be reduced

address of the first result 
element

number 
reduction 
elements/

results

reduction 
operation

rank of the 
process getting 

the result

the 
communicator over 

which the reduction is 
performed
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MPI_Datatype
• Defined as constants in the mpi.h header file 

• Types supported are

MPI_CHAR MPI_DOUBLE

MPI_FLOAT MPI_INT

MPI_LONG MPI_LONG_DOUBLE

MPI_SHORT MPI_UNSIGNED_CHAR

MPI_UNSIGNED MPI_UNSIGNED_LONG

MPI_UNSIGNED_SHORT
35



MPI_Op
• Defined as constants in the mpi.h header file 

• Types supported are

MPI_BAND MPI_BOR
MPI_EXOR MPI_BXOR
MPI_LAND MPI_LOR
MPI_LXOR MPI_MAX
MPI_MAXLOC MPI_MIN
MPI_MINLOC MPI_PROD
MPI_SUM
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type of data 
being reduced

MPI_Reduce(...)

• Does a reduction like the reduce clause in OpenMP, 
only it uses messages.

MPI_Reduce(MPI_IN_PLACE, void *opnd, int count, MPI_Datatype type, 
                    MPI_Operator op, int root, MPI_Comm comm);

address of the first 
result element

number 
reduction 
elements/

results

reduction 
operation

rank of 
process getting 

the result

the 
communicator

use 
*result as 
in and out 
buffer on 

root
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Example of reduction

MPI_Reduce(MPI_IN_PLACE, sorted, 8, MPI_INT, 
MPI_SUM, 0, MPI_COMM_WORLD);

3 5 2 9 8 11 20 4sorted, p=0

8 3 6 8 38 5 27 6sorted, p=1

1 0 9 0 2 1 2 40sorted, p=2

13 15 12 19 18 21 42 3sorted, p=3

25 23 39 36 64 38 91 53sorted, p=0
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Add the reduction

void sort (sort[ ], data[ ], int pid, int numP) { 
for (i=0; i < N; i++) { 

sorted[data[i]]++; 
} 
// can merge all of the “sorted” arrays here
if (pid == 0) { 

MPI_Reduce(MPI_IN_PLACE, sorted, 65353, MPI_INT, 
                       MPI_SUM, 0, MPI_COMM_WORLD); 

} else { 
MPI_Reduce(sorted, (void *) null, 65353, MPI_INT,  
                      MPI_SUM, 0, MPI_COMM_WORLD); 

} 
Alternatively, could allocate a buffer for final sorted result.  Buffer 
would be the same size as sorted.

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]

39



Notes on Reduce

• There is a result for each element of the 
source array across all processors

• The result ends up on only one processor 
(allreduce sends the result to all 
processors)
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Determining program 
performance

• MPI_Barrier - barrier 
synchronization

• MPI_Wtick - returns the 
clock resolution in 
seconds

• MPI_Wtime - current 
time

int main(int argc, char * argv[ ]) { 
... 
double elapsed; 
int pid; /* MPI process ID) 
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv);  
for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
} 
MPI_Barrier( ); 
elapsed = -MPI_Wtime( ); 
sort(data, sort, pid, numP); 
elapsed += MPI_Wtime( ); 
if (pid == 0) printSort(final); 
MPI_Finalize( ); 

}
41



Determining program 
performance

int main(int argc, char * argv[ ]) { 
... 
double elapsed; 
int pid; /* MPI process ID) 
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); for (i=0; i < 65535; i++) { 

sorted[i] = 0; 
} 
MPI_Barrier( ); 
elapsed = -MPI_Wtime( ); 
sort(data, sort, pid, numP); 
elapsed += MPI_Wtime( ); 
if (pid == 0) printSort(final, elapsed); 
MPI_Finalize( ); 

}

Holds the 
elapsed time

wait for all 
processors to 

finish 
initialization

negative 
of start 

time

plus finish 
time gives 

elapsed time

Wtick( ) returns a 
double that holds 
the number of 
seconds between 
clock ticks - 10-3 is 
milliseconds
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Wtick( ) gives the clock 
resolution

MPI_WTick returns the resolution of MPI_WTime 
in seconds. That is, it returns, as a double precision 
value, the number of seconds between successive 
clock ticks.

double tick = MPI_WTick( );
Thus, a millisecond resolution timer will return 10-3
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Sieve of Erosthenes

• Look at block allocations

• Performance tuning

• MPI_Bcast function
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Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

1.start with two, mark 
all multiples

2.find the next 
unmarked u -- it is a 
prime

3.mark all multiples of u 
between k2 and n until 
k2 > n 

4.repeat 2 & 3 until 
finished
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Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

3 is prime

mark all multiples of 3 >  
9
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Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

5 is prime

mark all multiples of 5 > 
25
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Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

7 is prime

mark all multiples of 7 > 
49
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Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

11 is prime

mark all multiples of 11 
> 121
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Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

1, 2, 3, 5, 7, 13, 17, 19, 23, 
29, 31, 37, 41, 43, 47, 53, 
59, 61, 67, 71, 73, 79, 83, 
89 and 97 are prime.  

1 is not prime by 
definition

50



Want to parallelize this

• Because we are message passing, obvious 
thing to look at it domain decomposition, i.e. 
how can we break up the domain being 
operated on over multiple processors

• partition data across processors

• associate tasks with data

• In general, try to find fundamental operations 
and associate them with data
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What is (are) the 
fundamental operation(s)?

• Marking of the 
multiples of the 
last prime found

• if v a multiple of k 
then v mod k == 0

forall (v = k; v < n+1; v++) { 
if (v mod k != 0) a[v] = 1; 

}

• min-reduction to 
find the next prime 
(i.e. smallest 
unmarked value) 
across all processes

• broadcast the value 
to all tasks
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To make this efficient

• Combine as many tasks as possible onto a 
single process

• Make the amount of work done by each 
process similar, i.e. load balance

• Make the communication between tasks 
efficient
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Combining work/
partitioning data

• Because processes work on data that they own (the 
owners compute rule, Rogers and Pingali), the two 
problems are tightly inter-related.

• Each element is owned by a process

• It is the process that owns the consistent, i.e., up-to-
date value of a variable

• All updates to the variable are made by the owner

• All requests for the value of the variable are to the 
owner
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Combining work/
partitioning data

• Because processes update the data that they own

• Cyclic distributions have the property that for all 
elements i on some process p, i mod p = c holds, where c 
is some integer value

• Although cyclic usually gives better load balance, it 
doesn’t in this case

• Lesson -- don’t apply rules-of-thumb blindly

• Block, in this case, gives a better load balance

• computation of indices will be harder
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Interplay of decomposition 
and implementation

• Decomposition affects how we design the implementation

• More abstract issues of parallelization can affect the implementation

• In the current algorithm, let Φ be the highest possible prime

• At most, only first √Φ values may be used to mark off (sieve) other 
primes 

• if P processes, n elements to a process, then if 

n/P  > √ Φ 

only elements in p=0 will be used to sieve.  This means we only 
need to look for lowest unmarked elements in p=0 and only p=0 
needs to send this out, saving a reduction operation.
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Use of block partitioning 
affects marking

• Can mark j, j+k, j+2k, ... where j is the first 
prime in the block

• Using the parallel method described in 
earlier psuedo-code, would need to use an 
expensive mod

 for all e in the block 
if e mod k = 0, mark e 

• We would like to eliminate this.
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Sketch of the algorithm
1. Create list of possible primes 

2. On each process, set k = 2 

3. Repeat 

3.1.On each process, mark all multiples of k 

3.2.On process 0, find smallest unmarked number u, set k=u 

3.3.On process 0, broadcast k to all processes 

4. Until k2 > Φ (the highest possible prime) 

5. Perform a sum reduction to determine the number of primes
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Data layout, primes up to 28

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

11 12 13 14 15 16 17 18 19P=1
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=2
0 1 2 3 4 5 6 7 8i =

array 
element

number 
being 

checked for 
"primeness"
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Algorithm 1/4
#include <mpi.h> 
#include <math.h> 
#include <stdio.h> 
#include "MyMPI.h" 
#define MIN(a,b)  ((a)<(b)?(a):(b)) 

int main (int argc, char *argv[]) 
{ 
   ... 
   MPI_Init (&argc, &argv); 
   MPI_Barrier(MPI_COMM_WORLD); 
   elapsed_time = -MPI_Wtime(); 
   MPI_Comm_rank (MPI_COMM_WORLD, &id); 
   MPI_Comm_size (MPI_COMM_WORLD, &p); 
   if (argc != 2) { 
      if (!id) printf ("Command line: %s <m>\n", argv[0]); 
      MPI_Finalize(); exit (1); 
   }

standar
d stuff

bounds 
macros, etc.

setup, check 
args, etc.
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Algorithm, 2/4
   n = atoi(argv[1]); 
   low_value = 2 + BLOCK_LOW(id,p,n-1); 
   high_value = 2 + BLOCK_HIGH(id,p,n-1); 
   size = BLOCK_SIZE(id,p,n-1); 
   proc0_size = (n-1)/p; 
   if ((2 + proc0_size) < (int) sqrt((double) n)) { 
      if (!id) printf ("Too many processes\n"); 
      MPI_Finalize(); 
      exit (1); 
   } 

   marked = (char *) malloc (size); 
   if (marked == NULL) { 
      printf ("Cannot allocate enough memory\n"); 
      MPI_Finalize(); 
      exit (1); 
   }

Get min and 
max possible 
prime on p in 
global space 

Figure out if 
too many 

processes for 
√Φ candidates 

on p=0 
allocate array 

to use to mark 
primes
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BLOCK_LOW

values for P=0, similar for other 
processes

11 12 13 14 15 16 17 18 19P=0
9 10 11 12 13 14 15 16 17i =

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=0

18 19 20 21 22 23 24 25 26i =

BLOCK_HIGH

high_value

i's are in 
global 
index 
space
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Algorithm 3/4
   for (i = 0; i < size; i++) marked[i] = 0; // initialize marking array 
   if (!id) index = 0; // p=0 action, find first prime 
   prime = 2; 
   do { // prime = 2 first time through, sent by bcast on later iterations 
      if (prime * prime > low_value) // find first value to mark 
         first = prime * prime - low_value; // first item in this block 
      else { 
         if (!(low_value % prime)) first = 0; // first element divisible by prime 
         else first = prime - (low_value % prime); 
      } 
      for (i = first; i < size; i += prime) marked[i] = 1; // mark every kth item 
      if (!id) { // p=0 action, find next prime by finding unmarked element 
         while (marked[++index]); 
         prime = index + 2; 
      } 
      MPI_Bcast (&prime,  1, MPI_INT, 0, MPI_COMM_WORLD); 
   } while (prime * prime <= n); 
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First prime index = 0 
prime = 2

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local  =

2 * 2 > 2 
first = 2 * 2 - 2 
first = 2

not 2 * 2 > 11 
11 % 2 == 1 
first = 2 - (l1 % 2) 
first = 1

not 2 * 2 > 20 
20 % 2 == 0 
first = 0
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third prime index = 3 
prime = 5

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local  =

5 * 5 > 2 
first = 5 * 5 - 2 
first = 23

5 * 5 > 11 
first = 5 * 5 - 11 
first = 16

5 * 5 > 20 
first = 5 * 5 - 20 
first = 5
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Mark every prime elements 
starting with first index = 0 

prime = 2

2 * 2 > 4 
first = 2 * 2 - 2 
first = 2

not 2 * 2 > 11 
11 % 2 == 1 
first = 2 - (l1 % 2) 
first = 1

not 2 * 2 > 20 
20 % 2 == 0 
first = 0

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local  =
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Algorithm 4/4
   // on each processor count the number of primes, then reduce this total    
   count = 0; 
   for (i = 0; i < size; i++) 
      if (!marked[i]) count++; 
      MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM, 
                             0, MPI_COMM_WORLD); 
   elapsed_time += MPI_Wtime(); 
   if (!id) { 
      printf ("%d primes are less than or equal to %d\n", 
         global_count, n); 
      printf ("Total elapsed time: %10.6f\n", elapsed_time); 
   } 
   MPI_Finalize (); 
   return 0; 
}
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Mark all prime elements 
starting with first index = 0 

prime = 2

2 3 4 5 6 7 8 9 10P=0

11 12 13 14 15 16 17 18 19P=0

20 21 22 23 24 25 26 27 28P=0

count = 1

count = 4

count = 2

global_count = 1 + 4 + 2
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Other MPI environment 
management routines

• MPI_Abort (comm, errorcode) 
• Aborts all processors associated with communicator 

comm 
• MPI_Get_processor_name(&name, &length)

• MPI version of gethostname, but what it returns is 
implementation dependent.  gethostname may be 
more portable.

• MPI_Initialized(&flag) 
• Returns true if MPI_Init has been called, false 

otherwise
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point-to-point communication
• Most MPI communication is between a pair of 

processors

• send/receive transmits data from the sending process 
to the receiving process

• MPI point-to-point communication has many flavors:

• Synchronous send

• Blocking send / blocking receive

• Non-blocking send / non-blocking receive

• Buffered send

• Combined send/receive

• "Ready" send (matching receive already posted.)

• All types of sends can be paired with all types of receive
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Buffering
What happens when
• A send occurs before the receiving process is 

ready for the data
• The data from multiple sends arrive at the 

receiving task which can only accept one at a time
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System buffer space
Not part of the standard -- an “implementation detail

• Managed and controlled by the MPI library
• Finite
• Not well documented -- size maybe a function of 

install parameters, consequences of running out not 
well defined

• Both sends and receives can be buffered
Can help performance by allowing asynchronous 
send/recvs
Can hurt performance because of memory copies
Program variables are called application buffers in 
MPI-speak
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Blocking and non-blocking point-to-
point communication

Blocking
• Most point-to-point routines have a blocking and non-blocking mode 
• A blocking send call returns only when it is safe to modify/reuse the application 

buffer.  Basically the data in the application buffer has been copied into a system 
buffer or sent.

• Blocking send can be synchronous, which means call to send returns when data is 
safely delivered to the recv process

• Blocking send can be asynchronous by using a send buffer
• A blocking receive call returns when sent data has arrived and is ready to use 

Non-blocking
• Non-blocking send and receive calls behave similarly and return almost 

immediately.  
• Non-blocking operations request the MPI library to perform the operation when it 

is able.   It cannot be predicted when the action will occur.
• You should not modify any application buffer (program variable) used in non-

blocking communication until the operation has finished.  Wait calls are available to 
test this.

• Non-blocking communication allows overlap of computation with communication 
to achieve higher performance 73



Synchronous and buffered 
sends and receives

• synchronous send operations block until the receiver 
begins to receive the data

• buffered send operations allow specification of a buffer 
used to hold data (this buffer is not the application buffer 
that is the variable being sent or received)

• allows user to get around system imposed buffer limits

• for programs needing large buffers, provides portability

• One buffer/process allowed

• synchronous and buffered can be matched
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Ordering of messages and fairness

• Messages received in-order
• If a sender sends two messages, (m1 and m2) to the same 

destination, and both match the same kind of receive, m1 
will be received before m2.

• If a receiver posts two receives (r1 followed by r2), and 
both are looking for the same kind of messages, r1 will 
receive a message before r2.

• Operation starvation is possible
• task2 performs a single receive.  task0 and task3 both 

send a message to task2 that matches the receive.  Only 
one of the sends will complete if the receive is only 
executed once.   

• It is the programmer’s job to ensure this doesn’t happen
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Operation starvation

Only one of the sends will 
complete.

Networks are generally not 
deterministic, cannot be 
predicted whose message 
will arrive at task2 first, and 
which will complete. 
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Basic sends and receives

• MPI_send(buffer, count, type, dest, tag, comm) 

• MPI_Isend(buffer, count, type, dest, tag, comm,            
request) 

• MIP_Recv(buffer, count, type, source, tag, comm, 
status) 

• MPI_Irecv(buffer, count, type, source, tag, comm, 
request)

I forms are non-blocking

77



Basic sends/recv arguments (I forms are 
non-blocking)

• MPI_send(buffer, count, type, dest, tag, comm) 

• MPI_Isend(buffer, count, type, dest, tag, comm, request) 

• MIP_Recv(buffer, count, type, source, tag, comm, status) 

• MPI_Irecv(buffer, count, type, source, tag, comm, request) 

• buffer: pointer to the data to be sent or where received 
(a program variable)

• count: number of data elements of type (not bytes!) to be 
sent

• type: an MPI_Type

• tag: the message type, any unsigned integer 0 - 32767.

• comm: sender and receiver communicator
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Basic send/recv arguments
• MPI_send(buffer, count, type, dest, tag, comm) 
• MPI_Isend(buffer, count, type, dest, tag, comm, request) 
• MIP_Recv(buffer, count, type, source, tag, comm, status) 
• MPI_Irecv(buffer, count, type, source, comm, request) 
• dest: rank of the receiving process

• source: rank of the sending process

• request: for non-blocking operations, a handle to an 
MPI_Request structure for the operation to allow wait type 
commands to know what send/recv they are waiting on

• status: the source and tag of the received message.  This is a 
pointer to the structure of type MPI_Status with fields 
MPI_SOURCE and MPI_TAG.
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Blocking send/recv/etc.
MPI_Send: returns after buf is free to be reused.  Can use a system buffer but 
not required, and can be implemented by a system send.
MPI_Recv: returns after the requested data is in buf.
MPI_Ssend: blocks sender until the application buffer is free and the receiver 
process started receiving the message
MPI_Bsend: permits the programmer to allocate buffer space instead of 
relying on system defaults.  Otherwise like MPI_Send.
MPI_Buffer_attach (&buffer,size): allocate a message buffer with the 
specified size
MPI_Buffer_detach (&buffer,size): frees the specified buffer

MPI_Rsend: blocking ready send, copies directly to the receive application 
space buffer, but the receive must be posted before being invoked.  Archaic.
MPI_Sendrecv: performs a blocking send and a blocking receive. Processes 
can swap without deadlock
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Wait and probe
MPI_Wait (&request, &status): wait until the operation specified by 
request (specified in an Isend/Irecv finishes)   

MPI_Waitany (count, &array_of_requests, &index,&status): wait 
for any blocking operations specified in &array_of_requests to finish  

MPI_Waitall (count, &array_of_requests, &array_of_statuses): wait 
for all blocking operations specified in &array_of_requests to finish

MPI_Waitsome (incount, &array_of_requests, &outcount, 
&array_of_offsets, &array_of_statuses): wait for at least one request 
to finish, the number is returned in outcount.  

MPI_Probe (source, tag, comm, &status): performs a blocking test 
but doesn’t require a corresponding receive to be posted.  

81



Example of blocking send/recv

#include "mpi.h" 
#include <stdio.h> 

int main(argc,argv)  
int argc; 
char *argv[];  { 
int numtasks, rank, dest, source, rc, count, tag=1;   
char inmsg, outmsg='x'; 
MPI_Status Stat; // status structure 

MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
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Example of blocking send/recv
if (rank == 0) { 
   dest = 1; 
   source = 1; 
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 
} else if (rank == 1) { 
   dest = 0; 
   source = 0; 
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
} 

rc = MPI_Get_count(&Stat, MPI_CHAR, &count); // returns # of type received 
printf("Task %d: Received %d char(s) from task %d with tag %d \n", 
           rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG); 

MPI_Finalize( ); 
} 
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Example of blocking send/recv
if (rank == 0) { 
   dest = 1; 
   source = 1; 
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 
} else if (rank == 1) { 
   dest = 0; 
   source = 0; 
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
}

task0 task1
green/italic send
blue/bold send
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Why the reversed send/recv orders?
if (rank == 0) { 
   dest = 1; 
   source = 1; 
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 
} else if (rank == 1) { 
   dest = 0; 
   source = 0; 
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
}

MPI_Send may or may not block [until a recv is posted]. It will 
block until the sender can reuse the sender buffer. Some 
implementations will return to the caller when the buffer has been 
sent to a lower communication layer. Some others will return to the 
caller when there's a matching MPI_Recv() at the other end. So it's 
up to your MPI implementation whether if this program will deadlock 
or not.

From stackoverflow http://stackoverflow.com/questions/20448283/deadlock-with-mpi

85

http://stackoverflow.com/questions/20448283/deadlock-with-mpi


Non-blocking operations

• MPI_Isend, MPI_Irecv, MPI_Issend, Ibsend, Irsend: similar to 
MPI_Send, MPI_Recv, MPI_Ssend, Bsend, Rsend except that a 
Test or Wait must be used to determine that the operation has 
completed and the buffer may be read (in the case of a recv) or 
written (in the case of a send).

• MPI_Test (&request, &flag,&status)  

• MPI_Testany (count, &array_of_requests, &index, &flag, &status) 

• MPI_Testall (count,&array_of_requests,&flag, &array_of_statuses) 

• MPI_Testsome (incount, &array_of_requests, &outcount, 
&array_of_offsets, &array_of_statuses) 

• Like the wait operations, but do not block
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Non-blocking example
#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[];  {
int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;
MPI_Request reqs[4];
MPI_Status stats[4];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
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Non-blocking 
example

prev = rank-1;
next = rank+1;
if (rank == 0)  prev = numtasks - 1;
if (rank == (numtasks - 1))  next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);
  
      {  do some work that does not depend on the data being received  }

MPI_Waitall(4, reqs, stats);

MPI_Finalize();
}

Nearest neighbor exchange 
in a ring topology
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Collective communication 
routines

• Use these when communicating among processes with a well 
defined pattern

• Some can be used to allow all processes to communicate

• Some perform computation during the communication 
(reductions)

• Involve all processes in the specified communicator, even if a 
particular processor has no data to send

• Can only be used with MPI predefined types, not derived 
types.

• The programmer has to make sure all processes participate 
in the collective operation
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All processors participate 
in the collective operation

if (pid % 2) { 
   MPI_Reduce(..., MPI_COMM_WORLD); 
} 

This program will deadlock, as the MPI_Reduce 
will wait forever for even processes to begin 
executing it.  

If you want to only involve odd processes, add 
them to a new communicator.
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Groups and communicators

• Two terms used in MPI documentation are 
groups and communicators.  

• A communicator is a group of processes that 
can communicate with each other

• A group is an ordered set of processes

• Programmers can view groups and 
communicators as being identical
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Collective routines
MPI_Barrier (comm): tasks block upon reaching the barrier until every task in the 
group has reached it
MPI_Bcast (&buffer,count,datatype,root,comm): process root sends a copy of its 
data to every other processor.  Should be log2(comm_size) operation. 
MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf, 
recvcnt,recvtype,root,comm): distributes a unique message from root to every 
process in the group.
MPI_Gather(&sendbuf, sendcnt, sendtype, &recvbuf, recvcount, recvtype,  
                       root, comm): opposite of scatter, every process in the group sends a 
unique message to the root. 
MPI_Allgather (&sendbuf,sendcount,sendtype,&recvbuf, 
recvcount,recvtype,comm): each tasks performs a one-to-all broadcast to every 
other process in the group  These are concatenated together in the recvbuf.
MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm): performs a 
reduction using operation op and places the result into recvbuf on  the root process.  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MPI_Bcast
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MPI_Scatter

MPI_Send(sendbuf+i*sendcount*extent(sendtype), sendcount, sendtype,  i, ...)

MPI_Recv(recvbuf, recvcount, recvtype, i, sendcount, sendtype,  i, ...)

Equivalent to 
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MPI_Gather

MPI_Send(sendbuf, sendcount, 
                  sendtype, root, ...)

MPI_Recv(recvbuf+ 
                  i*recvcount* 
                  extent(recvtype),  
                  recvcount,  
                  recvtype, i, ...) 

With the results of each 
recv stored in rank order of 
the sending process
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MPI_Allgather

A gather with 
every process 
being a target.
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MPI_Reduce

Also see MPI 
introductory 
slides.

You can form 
your own 
reduction 
function using 
MPI_Op_create 
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MPI_Op_create

       #include "mpi.h"
       int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op )

pointer 
to the user 

defined 
function

true if 
commutative, false 

otherwise

Handle 
to refer to the 

function wherever 
an MPI_Op is 

needed
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More operations

MPI_Allreduce (&sendbuf, &recvbuf, count, datatype, op, comm): functionally 
equivalent to an MPI_Reduce followed by an MPI_Bcast.  Faster on most hardware than the 
combination of these.

MPI_Reduce_scatter(&sendbuf, &recvbuf, recvcount, datatype, op, comm): Does an 
element-wise reduce on the vector in sendbuf of length recvcount.  The vector is then split 
into disjoint segments and spread across the tasks.  Equivalent to an MPI_Reduce followed 
by an MPI_Scatter operation.  
MPI_Alltoall(&sendbuf, sendcount, sendtype, &recvbuf, recvcnt, recvtype, comm): 
Each task in the group performs a scatter with the results concatenated on each process in 
task rank order. 

MPI_Scan(&sendbuf, &recvbuf, count, datatype, op, comm): performs the partial sums 
on each processor that would result from doing an in-order reduction across the 
processors in rank order.  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MPI_Allreduce
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P0 P1 P2 P3 P4 P5 P6 P7

P0 P2 P4 P8

P0 P4

P0

P0 P4

P0 P2 P4 P6

P0 P1 P2 P3 P4 P5 P6 P7

0:1 2:3 4:5 6:7

0:3 4:7

0:7

0:7 0:7

0:7 0:7 0:7 0:7

all have 0:7

Naive Allreduce

2*log2(|P|) 
steps
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P0 P1 P2 P3 P4 P5 P6 P7

P0 P2 P4 P8

P0 P4

P0

P0 P4

P0 P2 P4 P6

P0 P1 P2 P3 P4 P5 P6 P7

0:1 2:3 4:5 6:7

0:3 4:7

0:7

0:7 0:7

0:7 0:7 0:7 0:7

all have 0:7

Why is this naive?  On average 
only ~1/2 of nodes involved in 
communication each step

8

4

2

2

4

8
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P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

0:1 2:30:1 2:3 4:5 4:5 6:7 6:7

0:3 0:3 0:3 0:3 4:7 4:7 4:7 4:7

0:7 0:7 0:7 0:7 0:7 0:7 0:7 0:7

log2(|P|) steps103



P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

 Algorithm from Optimization of Collective Reduction 
Operations, Rolf Rabenseifner, International Conference on 
Computational Science, 2004

All processors all 
busy each step.

Note that the 
bandwidth 
requirements of 
the network 
change
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MPI_Reduce_scatter

0
4
8
12

reduce
result

result of scattering 
the reduce result
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MPI_Alltoall

Each process performs 
a scatter of its 
elements to all other 
processes.

Received data is 
concatenated in 
sender rank order
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MPI_Scan

0 0:1 0:2 0:3
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Group and communicator

• Remember that

• A communicator is a group of processes 
that can communicate with each other

• A group is an ordered set of processes

• Programmers can view groups and 
communicators as being the same thing

• group routines are used in collecting 
processes to form  communicator.
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Why groups and communicators?

• Allow programmer to organize tasks by 
functions

• Enable collective communication operations

• Allow user-defined virtual topologies to be 
formed

• Enable manageable communication by 
enabling synchronization
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Properties

• Groups/communicators are dynamic, i.e. 
they can be created and destroyed

• Processes can be in many groups, and will 
have a unique, possibly different, rank in 
each group

• MPI provides 40+ routines for managing 
groups and communicators!  Mercifully, we 
will not cover them all.
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Tasks these 40+ routines can 
perform

Extract handle of a global group a communicator using  
MPI_Comm_group
Form new group as a subset of another group using 
MPI_Group_incl
Create new communicator for a group using 
MPI_Comm_create
Determine a processor’s rank in a communicator using 
MPI_Comm_rank
Communicate among the processors of a group
When finished, free communicators and groups using 
MPI_Comm_free and MPI_Group_free
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Relationships among 
communicators and 
groups. 

Both collective 
and point-to-point 
communication is 
within a group.
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#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[];  {
int        rank, new_rank, sendbuf, recvbuf, numtasks,
           ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group  orig_group, new_group;
MPI_Comm   new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
  printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
  MPI_Finalize();
  exit(0);
  }

Handle for 
MPI_COMM_WORLD 

group

Handle for a 
new group

Handle for a new 
communicator

Get the number of 
tasks and the rank of 

MPI_COMM_WORLD 
for this process

sanity check code
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#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[];  {
int        rank, new_rank, sendbuf, recvbuf, numtasks,
           ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group  orig_group, new_group;
MPI_Comm   new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
  printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
  MPI_Finalize();
  exit(0);
  }

Variables to hold information about 
the new group this will be in.  Note that 
since this is an SPMD program, if we do 
this statically we need information for 

all groups the process can be in, not just 
the one that it is in. 

Hold the ranks of processors in 
(in MPI_COMM_WORLD) of 

processes in each of the two new 
groups. 
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sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
  MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
  }
else {
  MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
  }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}

get handle for 
MPI_COMM_WORLD

Each process 
executes one of these 

statements.

Based on its number, becomes 
a member of one of the  

new groups.
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sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
  MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
  }
else {
  MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
  }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}

Create a 
communicator from the 

group formed above

Perform collective 
communication within the 

group

Get the 
processes rank 
within the new 

group
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