
Introduction to MPI

1

Topics to be covered

• MPI vs shared memory

• Initializing MPI

• MPI concepts -- communicators, processes,
ranks

• MPI functions to manipulate these

• Timing functions

• Barriers and the reduction collective operation
2

Shared and distributed memory
• Shared memory

• automatically maintained a consistent image of memory according
to some memory model

• fine grained communication possible via loads, stores, and cache
coherence

• model and multicore hardware support well aligned

• Programs can be converted piece-wise

• Distributed memory

• Program executes as a collection of processes, all communication
between processors explicitly specified by the programmer

• Fine grained communication in general too expensive --
programmer must aggregate communication

• Conversion of programs is all-or-nothing

• Cost scaling of machines is better than with shared memory -- well
aligned with economics of commodity rack mounted blades

3

Message Passing

network -
ethernet or

proprietary (vendor
specific, infinitband,

etc.)

processor

memory

processor

memory

processor

memory

processor

memory

processor

memory

processor

memory

processor

memory

processor

memory

4

Message Passing Model

network -
ethernet or

proprietary (vendor
specific, infinitband,

etc.)

processo

memory

processo

memory

processo

memory

processo

memory

processo

memory

processo

memory

processo

memory

processo

memory
• This drawing implies

that all processor are
equidistant from one
another

• This is often not the
case -- the network
topology and
multicores make some
processors closer
than others

• programmers have to
exploit this manually

5

Message Passing Model

• In reality, processes run on
cores, and are closer to
other processes on the
same processor

• Across processors, some
can be reached via a single
hop on the network, others
require multiple hops

• Not a big issue on small
(several hundred
processors), but it needs to
be considered on large
machines.

network

P

M

P

M

P

M

P

M

network

P

M

P

M

P

M

P

M

network

P

M

P

M

P

M

P

M

network

P

M

P

M

P

M

P

M

network

6

131,072 cores BG/L

7

Tianhe-2, 40,960 processors,
10,649,600 cores

Why use message passing

• Allows control over data layout, locality and
communication -- very important on large machines

• Portable across all machines including shared memory
machines -- it’s a universal parallel programming model

• Easier to write deterministic programs

• simplifies debugging

• easier to understand programs

• Style needed for efficient messages can lead to better
performance than shared memory programs, even on
shared memory systems.

9

Why not use it?
• All or nothing program development - generally

need to make the entire program parallel to make
any part parallel

• Information needed for messages low-level and
sometimes hard to program

• Subtle bugs in message passing code can lead to
performance problems and deadlock

• Message passing code disrupts the flow of
algorithms

10

SPMD execution

• Single Program Multiple Data

• Multiple copies of the same program
operating on different parts of the data
(typically different sections of an array)

• Each program copy executes in a process

• Different processes can execute different
paths through the program

11

SPMD execution

for (i=1; i <= n/2; i++) {
a[i] = i;

}
for (i=1, i<= n/2; i++) {

... = a[i-1];
}

for (i=1; i <= n/2; i++) {
a[i] = n/2+i;

}
for (i=1; i <= n/2; i++) {

... = a[i-1];
} i 1

0 1 ... n/2-1 n/2

1 2 ... 49 50
a

i 1

0 1 ... n/2-1 n/2

51 52 ... 99 100
a

n 99n 99

for (i=1; i <= n; i++) {
a[i] = i + 1;

}
for (i=1, i <= n; i++) {

... = a[i-1];
} local

index

global
index

12

Process 0 Process 1

Work done by processes

• Each process has a unique rank or process id
(often called pid in programs) that is set when
program starts

• Is not changed during the execution of the
program (however, see Naik, Moreira, et al. IBM
DRMS project if you are really interested in this.)

• Each process has a unique identifier (often called
pid) that is known to the program

• Typical program pattern is compute a communicate
acompute ... a... acommunicate

13

Radix sort

• Radix sort works well to sort lists of numbers

• Will assume integers have values from 0 to 65,535

• Have N >> 65,535 numbers to sort

14

Sequential program

for (i=0; i < 65535; i++) {
sorted[i] = 0;

}

for (i=0; i < n; i++) {
sorted[data[i]]++;

}

for (i=0; i<65535; i++) {
for (j=0; j < sort[i]; j++) {

fprint(“%i\n”, i);
}}

Want to convert to
SPMD message
passing code

Note that data input not
shown -- this can require
some thought

Data often spread across
multiple files to accommodate
parallel I/O on large problems

15

SPMDizing the program

all processors execute this (replicated execution)
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}

each processor executes N/4 iterations (assume N mod 4 = 0)
for (i=0; i < N/4; i++) {

sorted[data[i]]++;
}

this becomes a sum reduction over the sorted arrays on each processor,
i.e. communication. This code does not show that.
for (i=0; i<65535; i++) {

for (j=0; j < sort[i]; j++) {
fprint(“%i\n”, i);

}}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P3
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P2
data[3*N/4:N-1]

i, j
sorted[0:65353]

16

Data management
data[0:N/4-1]

i, j
sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P3
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P2
data[3*N/4:N-1]

i, j
sorted[0:65353]

• All declared variables exist within each process
• There is a global and local logical index space for arrays

• globally, data has N elements 0:N-1
• locally, each process has N/4 elements numbered 0:N/

4-1(if N mod 4 == 0, otherwise ⎡N/4⎤or⎣N/4⎦elements
per processors with some processors having more or
fewer elements than other processors

• The concatenation of the local partitions of data arrays
forms the global array data

• The array data is block distributed over the processors

global indices
shown, local is

[0:n/4-1]

17

Data bounds for block

• Two “obvious” ways to compute

• Let n be the array size, P the number
processors

18

First method
•Let P be the number of processes, n the number of array elements, 0 ≤ p ≤ P-1 is a
process id

•r = n mod P, r = 0, all blocks are the same size, otherwise, first r blocks have ⎡n/P⎤
elements, last P-r have ⎣n/P⎦ elements

•First element on a process p is p⎣n/P⎦+ min(p,r)

•Last element on process p is (p+1)⎣n/P⎦+ min(p+1,r) - 1

•process with element i is min(⎣i/(⎣n/P⎦+ 1)⎦, ⎣i-r) / ⎣n/P⎦⎦)

•Example -- 12 elements over 5 processors, 2 = 12 mod 5

• Example -- 12 elements over 7 processors, 5 = 12 mod 7

19

Second method
• First element controlled (or owned) by process p is ⎣p n/P⎦

(first element and first process id p is 0

• Last element controlled by process p is one less that the first
element controlled by process p+1

 ⎣ (p+1) n/P⎦ - 1

• Process controlling element i is ⎣(P(i+1)-1)/n⎦

• Example -- 12 elements over 5 processors, r = 2 = 12 mod 5

• Example -- 17 elements over 5 processors, r = 2 = 17 mod 5

20

Global vs local indices

• Each part of an array within a process must be
indexed as a local element of that array using the local
index.

• Logically, each local element is a part of the global
array, and within the problem domain has a global
index

• It is the MPI programmer’s responsibility (that means
you) to maintain that mapping.

0 1 0 1 20 1 20 10 1

7 8 9 10 114 5 62 30 1

local index:

global index:

21

Use macros to access
bounds

• Macros or functions can be used to compute these.

• Block lower bound: LB(p, P, n) = (p*n/P)

• Block upper bound: UB(p, P, n) = LB(p+1, P, n)-1

• Block size: LB(p+1, P, n) - LB(p, P, n)

• Block owner: Owner(i, P, n) = (P*(i+1)-1)/n

0 1 0 1 20 1 20 10 1

7 8 9 10 114 5 62 30 1

local index:

global index:

22

Comparison of the two
methods

Operations First
Method

Second
Method

Low index 4 2

High index 6 4

Owner 7 4

Assumes floor is free (as it is with integer division
although integer division itself may be expensive)

23

The cyclic distribution

data[0:N:4]
i, j

sorted[0:65353]

P0 P1
data[1:n:4]

i, j
sorted[0:65353]

P3
data[2:N:4]

i, j
sorted[0:65353]

P2
data[3:N:4]

i, j
sorted[0:65353]

• Let A be an array with N elements.
• Let the array be cyclically distributed over P processes
• Process p gets elements p, p+P, p+2*P, p+3*P, ...
• In the above

• process 0 gets elements 0, 4, 8, 12, ... of data
• process 1 gets elements 1, 5, 9, 13, ... of data
• process 2 gets elements 2, 6, 10, 14, ... of data
• process 3 gets elements 3, 7, 11, 15, ... of data

24

The block-cyclic distribution

• Let A be an array with N elements
• Let the array be block-cyclically distributed over P

processes, with blocksize B
• Block b, b = 0 ..., on process p gets elements

 b*B*P+p*B: b*B*P + (p+1)*B)-1 elements
• With P=4, B=3

• process 0 gets elements [0:2], [12:14], [24:26] of data
• process 1 gets elements [3:5], [15:17],[27:29] of data
• process 2 gets elements [6:8], [18:20],[30:32] of data
• process 3 gets elements [9:11], [21:23],[33:35] of

data

25

Converting the program to MPI: System initialization

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>
// all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); // get N from the arg vector
int sorted[65536]; int data[N/4];
MPI_INIT(&argc, &argv);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]

26

MPI_INIT
• Initialize the MPI runtime

• Does not have to be the first executable statement
in the program, but it must be the first MPI call made

• Initializes the default MPI communicator
(MPI_COMM_WORLD which includes all
processes)

• Reads standard files and environment variables to
get information about the system the program will
execute on

• e.g. what machines executes the program?

27

The MPI environment
A

communicator
defines a

universe of
processes that
can exchange

messagesMPI_COMM_WORLD

0
6

1 2

4

3 7

5

A process

A rank

The communicator name
(MPI_COMM_WOLD is the default communicator

name

28

Converting the program to MPI

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>
/ all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv);
int sorted[65536]; int data[N/4];
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

Communicator
name

get
number of
processors

cheat!
should
malloc

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[0:N/4-1]

i, j
sorted[0:65353]

P2
data[0:N/4-1]

i, j
sorted[0:65353]

P3
data[0:N/4-1]

i, j
sorted[0:65353]

29

Converting the program to MPI

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>
/ all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv);
int sorted[65536]; int data[*N/4]; MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

Communicator
name

arg to get
rank (i.e. pid) of

this

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]

30

Converting the program to MPI

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>
/ all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv);
int sorted[65536]; int data[*N/4]; MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}
MPI_Finalize();

}

The last MPI
function called

MPI_Finalize frees
system resources
associated with MPI

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]

31

Time to do something useful

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>
/ all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv);
int sorted[65536]; int data[*N/4];
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}
sort(data, sort, pid, numP);
MPI_Finalize();

}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]

32

The serial code

void sort (sort[], data[], int pid, int numP) {
for (i=0; i < N; i++) {

sorted[data[i]]++;
}
// sorted results available here ...

}

If above is done in parallel, need to get results from all
processes before printing them
for (i=0; i<65535; i++) {

for (j=0; j < sort[i]; j++) {
fprint(“%i\n”, i);

}}

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]

33

type of data
being reduced

MPI_Reduce(...)

• Does a reduction like the reduce clause in OpenMP,
only it uses messages.

MPI_Reduce(void *opnd, void *result, int count, MPI_Datatype type,
 MPI_Operator op, int root, MPI_Comm comm);

address
of the first
element to
be reduced

address of the first result
element

number
reduction
elements/

results

reduction
operation

rank of the
process getting

the result

the
communicator over

which the reduction is
performed

34

MPI_Datatype
• Defined as constants in the mpi.h header file

• Types supported are

MPI_CHAR MPI_DOUBLE

MPI_FLOAT MPI_INT

MPI_LONG MPI_LONG_DOUBLE

MPI_SHORT MPI_UNSIGNED_CHAR

MPI_UNSIGNED MPI_UNSIGNED_LONG

MPI_UNSIGNED_SHORT
35

MPI_Op
• Defined as constants in the mpi.h header file

• Types supported are

MPI_BAND MPI_BOR
MPI_EXOR MPI_BXOR
MPI_LAND MPI_LOR
MPI_LXOR MPI_MAX
MPI_MAXLOC MPI_MIN
MPI_MINLOC MPI_PROD
MPI_SUM

36

type of data
being reduced

MPI_Reduce(...)

• Does a reduction like the reduce clause in OpenMP,
only it uses messages.

MPI_Reduce(MPI_IN_PLACE, void *opnd, int count, MPI_Datatype type,
 MPI_Operator op, int root, MPI_Comm comm);

address of the first
result element

number
reduction
elements/

results

reduction
operation

rank of
process getting

the result

the
communicator

use
*result as
in and out
buffer on

root

37

Example of reduction

MPI_Reduce(MPI_IN_PLACE, sorted, 8, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

3 5 2 9 8 11 20 4sorted, p=0

8 3 6 8 38 5 27 6sorted, p=1

1 0 9 0 2 1 2 40sorted, p=2

13 15 12 19 18 21 42 3sorted, p=3

25 23 39 36 64 38 91 53sorted, p=0

38

Add the reduction

void sort (sort[], data[], int pid, int numP) {
for (i=0; i < N; i++) {

sorted[data[i]]++;
}
// can merge all of the “sorted” arrays here
if (pid == 0) {

MPI_Reduce(MPI_IN_PLACE, sorted, 65353, MPI_INT,
 MPI_SUM, 0, MPI_COMM_WORLD);

} else {
MPI_Reduce(sorted, (void *) null, 65353, MPI_INT,
 MPI_SUM, 0, MPI_COMM_WORLD);

}
Alternatively, could allocate a buffer for final sorted result. Buffer
would be the same size as sorted.

data[0:N/4-1]
i, j

sorted[0:65353]

P0 P1
data[N/4:2*N/4-1]

i, j
sorted[0:65353]

P2
data[2*N/4:3*N/4-1]

i, j
sorted[0:65353]

P3
data[3*N/4:N-1]

i, j
sorted[0:65353]

39

Notes on Reduce

• There is a result for each element of the
source array across all processors

• The result ends up on only one processor
(allreduce sends the result to all
processors)

40

Determining program
performance

• MPI_Barrier - barrier
synchronization

• MPI_Wtick - returns the
clock resolution in
seconds

• MPI_Wtime - current
time

int main(int argc, char * argv[]) {
...
double elapsed;
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}
MPI_Barrier();
elapsed = -MPI_Wtime();
sort(data, sort, pid, numP);
elapsed += MPI_Wtime();
if (pid == 0) printSort(final);
MPI_Finalize();

}
41

Determining program
performance

int main(int argc, char * argv[]) {
...
double elapsed;
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); for (i=0; i < 65535; i++) {

sorted[i] = 0;
}
MPI_Barrier();
elapsed = -MPI_Wtime();
sort(data, sort, pid, numP);
elapsed += MPI_Wtime();
if (pid == 0) printSort(final, elapsed);
MPI_Finalize();

}

Holds the
elapsed time

wait for all
processors to

finish
initialization

negative
of start

time

plus finish
time gives

elapsed time

Wtick() returns a
double that holds
the number of
seconds between
clock ticks - 10-3 is
milliseconds

42

Wtick() gives the clock
resolution

MPI_WTick returns the resolution of MPI_WTime
in seconds. That is, it returns, as a double precision
value, the number of seconds between successive
clock ticks.

double tick = MPI_WTick();
Thus, a millisecond resolution timer will return 10-3

43

Sieve of Erosthenes

• Look at block allocations

• Performance tuning

• MPI_Bcast function

44

Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

1.start with two, mark
all multiples

2.find the next
unmarked u -- it is a
prime

3.mark all multiples of u
between k2 and n until
k2 > n

4.repeat 2 & 3 until
finished

45

Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

3 is prime

mark all multiples of 3 >
9

46

Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

5 is prime

mark all multiples of 5 >
25

47

Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

7 is prime

mark all multiples of 7 >
49

48

Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

11 is prime

mark all multiples of 11
> 121

49

Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

100999897969594939291

To find primes

1, 2, 3, 5, 7, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83,
89 and 97 are prime.

1 is not prime by
definition

50

Want to parallelize this

• Because we are message passing, obvious
thing to look at it domain decomposition, i.e.
how can we break up the domain being
operated on over multiple processors

• partition data across processors

• associate tasks with data

• In general, try to find fundamental operations
and associate them with data

51

What is (are) the
fundamental operation(s)?

• Marking of the
multiples of the
last prime found

• if v a multiple of k
then v mod k == 0

forall (v = k; v < n+1; v++) {
if (v mod k != 0) a[v] = 1;

}

• min-reduction to
find the next prime
(i.e. smallest
unmarked value)
across all processes

• broadcast the value
to all tasks

52

To make this efficient

• Combine as many tasks as possible onto a
single process

• Make the amount of work done by each
process similar, i.e. load balance

• Make the communication between tasks
efficient

53

Combining work/
partitioning data

• Because processes work on data that they own (the
owners compute rule, Rogers and Pingali), the two
problems are tightly inter-related.

• Each element is owned by a process

• It is the process that owns the consistent, i.e., up-to-
date value of a variable

• All updates to the variable are made by the owner

• All requests for the value of the variable are to the
owner

54

Combining work/
partitioning data

• Because processes update the data that they own

• Cyclic distributions have the property that for all
elements i on some process p, i mod p = c holds, where c
is some integer value

• Although cyclic usually gives better load balance, it
doesn’t in this case

• Lesson -- don’t apply rules-of-thumb blindly

• Block, in this case, gives a better load balance

• computation of indices will be harder
55

Interplay of decomposition
and implementation

• Decomposition affects how we design the implementation

• More abstract issues of parallelization can affect the implementation

• In the current algorithm, let Φ be the highest possible prime

• At most, only first √Φ values may be used to mark off (sieve) other
primes

• if P processes, n elements to a process, then if

n/P > √ Φ

only elements in p=0 will be used to sieve. This means we only
need to look for lowest unmarked elements in p=0 and only p=0
needs to send this out, saving a reduction operation.

56

Use of block partitioning
affects marking

• Can mark j, j+k, j+2k, ... where j is the first
prime in the block

• Using the parallel method described in
earlier psuedo-code, would need to use an
expensive mod

 for all e in the block
if e mod k = 0, mark e

• We would like to eliminate this.

57

Sketch of the algorithm
1. Create list of possible primes

2. On each process, set k = 2

3. Repeat

3.1.On each process, mark all multiples of k

3.2.On process 0, find smallest unmarked number u, set k=u

3.3.On process 0, broadcast k to all processes

4. Until k2 > Φ (the highest possible prime)

5. Perform a sum reduction to determine the number of primes
58

Data layout, primes up to 28

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

11 12 13 14 15 16 17 18 19P=1
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=2
0 1 2 3 4 5 6 7 8i =

array
element

number
being

checked for
"primeness"

59

Algorithm 1/4
#include <mpi.h>
#include <math.h>
#include <stdio.h>
#include "MyMPI.h"
#define MIN(a,b) ((a)<(b)?(a):(b))

int main (int argc, char *argv[])
{
 ...
 MPI_Init (&argc, &argv);
 MPI_Barrier(MPI_COMM_WORLD);
 elapsed_time = -MPI_Wtime();
 MPI_Comm_rank (MPI_COMM_WORLD, &id);
 MPI_Comm_size (MPI_COMM_WORLD, &p);
 if (argc != 2) {
 if (!id) printf ("Command line: %s <m>\n", argv[0]);
 MPI_Finalize(); exit (1);
 }

standar
d stuff

bounds
macros, etc.

setup, check
args, etc.

60

Algorithm, 2/4
 n = atoi(argv[1]);
 low_value = 2 + BLOCK_LOW(id,p,n-1);
 high_value = 2 + BLOCK_HIGH(id,p,n-1);
 size = BLOCK_SIZE(id,p,n-1);
 proc0_size = (n-1)/p;
 if ((2 + proc0_size) < (int) sqrt((double) n)) {
 if (!id) printf ("Too many processes\n");
 MPI_Finalize();
 exit (1);
 }

 marked = (char *) malloc (size);
 if (marked == NULL) {
 printf ("Cannot allocate enough memory\n");
 MPI_Finalize();
 exit (1);
 }

Get min and
max possible
prime on p in
global space

Figure out if
too many

processes for
√Φ candidates

on p=0
allocate array

to use to mark
primes

61

BLOCK_LOW

values for P=0, similar for other
processes

11 12 13 14 15 16 17 18 19P=0
9 10 11 12 13 14 15 16 17i =

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=0

18 19 20 21 22 23 24 25 26i =

BLOCK_HIGH

high_value

i's are in
global
index
space

62

low_value

Algorithm 3/4
 for (i = 0; i < size; i++) marked[i] = 0; // initialize marking array
 if (!id) index = 0; // p=0 action, find first prime
 prime = 2;
 do { // prime = 2 first time through, sent by bcast on later iterations
 if (prime * prime > low_value) // find first value to mark
 first = prime * prime - low_value; // first item in this block
 else {
 if (!(low_value % prime)) first = 0; // first element divisible by prime
 else first = prime - (low_value % prime);
 }
 for (i = first; i < size; i += prime) marked[i] = 1; // mark every kth item
 if (!id) { // p=0 action, find next prime by finding unmarked element
 while (marked[++index]);
 prime = index + 2;
 }
 MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD);
 } while (prime * prime <= n);

63

First prime index = 0
prime = 2

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local =

2 * 2 > 2
first = 2 * 2 - 2
first = 2

not 2 * 2 > 11
11 % 2 == 1
first = 2 - (l1 % 2)
first = 1

not 2 * 2 > 20
20 % 2 == 0
first = 0

64

third prime index = 3
prime = 5

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local =

5 * 5 > 2
first = 5 * 5 - 2
first = 23

5 * 5 > 11
first = 5 * 5 - 11
first = 16

5 * 5 > 20
first = 5 * 5 - 20
first = 5

65

Mark every prime elements
starting with first index = 0

prime = 2

2 * 2 > 4
first = 2 * 2 - 2
first = 2

not 2 * 2 > 11
11 % 2 == 1
first = 2 - (l1 % 2)
first = 1

not 2 * 2 > 20
20 % 2 == 0
first = 0

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local =

66

Algorithm 4/4
 // on each processor count the number of primes, then reduce this total
 count = 0;
 for (i = 0; i < size; i++)
 if (!marked[i]) count++;
 MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM,
 0, MPI_COMM_WORLD);
 elapsed_time += MPI_Wtime();
 if (!id) {
 printf ("%d primes are less than or equal to %d\n",
 global_count, n);
 printf ("Total elapsed time: %10.6f\n", elapsed_time);
 }
 MPI_Finalize ();
 return 0;
}

67

Mark all prime elements
starting with first index = 0

prime = 2

2 3 4 5 6 7 8 9 10P=0

11 12 13 14 15 16 17 18 19P=0

20 21 22 23 24 25 26 27 28P=0

count = 1

count = 4

count = 2

global_count = 1 + 4 + 2

68

Other MPI environment
management routines

• MPI_Abort (comm, errorcode)
• Aborts all processors associated with communicator

comm
• MPI_Get_processor_name(&name, &length)

• MPI version of gethostname, but what it returns is
implementation dependent. gethostname may be
more portable.

• MPI_Initialized(&flag)
• Returns true if MPI_Init has been called, false

otherwise
69

point-to-point communication
• Most MPI communication is between a pair of

processors

• send/receive transmits data from the sending process
to the receiving process

• MPI point-to-point communication has many flavors:

• Synchronous send

• Blocking send / blocking receive

• Non-blocking send / non-blocking receive

• Buffered send

• Combined send/receive

• "Ready" send (matching receive already posted.)

• All types of sends can be paired with all types of receive

70

Buffering
What happens when
• A send occurs before the receiving process is

ready for the data
• The data from multiple sends arrive at the

receiving task which can only accept one at a time

71

System buffer space
Not part of the standard -- an “implementation detail

• Managed and controlled by the MPI library
• Finite
• Not well documented -- size maybe a function of

install parameters, consequences of running out not
well defined

• Both sends and receives can be buffered
Can help performance by allowing asynchronous
send/recvs
Can hurt performance because of memory copies
Program variables are called application buffers in
MPI-speak

72

Blocking and non-blocking point-to-
point communication

Blocking
• Most point-to-point routines have a blocking and non-blocking mode
• A blocking send call returns only when it is safe to modify/reuse the application

buffer. Basically the data in the application buffer has been copied into a system
buffer or sent.

• Blocking send can be synchronous, which means call to send returns when data is
safely delivered to the recv process

• Blocking send can be asynchronous by using a send buffer
• A blocking receive call returns when sent data has arrived and is ready to use

Non-blocking
• Non-blocking send and receive calls behave similarly and return almost

immediately.
• Non-blocking operations request the MPI library to perform the operation when it

is able. It cannot be predicted when the action will occur.
• You should not modify any application buffer (program variable) used in non-

blocking communication until the operation has finished. Wait calls are available to
test this.

• Non-blocking communication allows overlap of computation with communication
to achieve higher performance 73

Synchronous and buffered
sends and receives

• synchronous send operations block until the receiver
begins to receive the data

• buffered send operations allow specification of a buffer
used to hold data (this buffer is not the application buffer
that is the variable being sent or received)

• allows user to get around system imposed buffer limits

• for programs needing large buffers, provides portability

• One buffer/process allowed

• synchronous and buffered can be matched

74

Ordering of messages and fairness

• Messages received in-order
• If a sender sends two messages, (m1 and m2) to the same

destination, and both match the same kind of receive, m1
will be received before m2.

• If a receiver posts two receives (r1 followed by r2), and
both are looking for the same kind of messages, r1 will
receive a message before r2.

• Operation starvation is possible
• task2 performs a single receive. task0 and task3 both

send a message to task2 that matches the receive. Only
one of the sends will complete if the receive is only
executed once.

• It is the programmer’s job to ensure this doesn’t happen

75

Operation starvation

Only one of the sends will
complete.

Networks are generally not
deterministic, cannot be
predicted whose message
will arrive at task2 first, and
which will complete.

76

Basic sends and receives

• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm,
request)

• MIP_Recv(buffer, count, type, source, tag, comm,
status)

• MPI_Irecv(buffer, count, type, source, tag, comm,
request)

I forms are non-blocking

77

Basic sends/recv arguments (I forms are
non-blocking)

• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm, request)

• MIP_Recv(buffer, count, type, source, tag, comm, status)

• MPI_Irecv(buffer, count, type, source, tag, comm, request)

• buffer: pointer to the data to be sent or where received
(a program variable)

• count: number of data elements of type (not bytes!) to be
sent

• type: an MPI_Type

• tag: the message type, any unsigned integer 0 - 32767.

• comm: sender and receiver communicator
78

Basic send/recv arguments
• MPI_send(buffer, count, type, dest, tag, comm)
• MPI_Isend(buffer, count, type, dest, tag, comm, request)
• MIP_Recv(buffer, count, type, source, tag, comm, status)
• MPI_Irecv(buffer, count, type, source, comm, request)
• dest: rank of the receiving process

• source: rank of the sending process

• request: for non-blocking operations, a handle to an
MPI_Request structure for the operation to allow wait type
commands to know what send/recv they are waiting on

• status: the source and tag of the received message. This is a
pointer to the structure of type MPI_Status with fields
MPI_SOURCE and MPI_TAG.

79

Blocking send/recv/etc.
MPI_Send: returns after buf is free to be reused. Can use a system buffer but
not required, and can be implemented by a system send.
MPI_Recv: returns after the requested data is in buf.
MPI_Ssend: blocks sender until the application buffer is free and the receiver
process started receiving the message
MPI_Bsend: permits the programmer to allocate buffer space instead of
relying on system defaults. Otherwise like MPI_Send.
MPI_Buffer_attach (&buffer,size): allocate a message buffer with the
specified size
MPI_Buffer_detach (&buffer,size): frees the specified buffer

MPI_Rsend: blocking ready send, copies directly to the receive application
space buffer, but the receive must be posted before being invoked. Archaic.
MPI_Sendrecv: performs a blocking send and a blocking receive. Processes
can swap without deadlock

80

Wait and probe
MPI_Wait (&request, &status): wait until the operation specified by
request (specified in an Isend/Irecv finishes)  

MPI_Waitany (count, &array_of_requests, &index,&status): wait
for any blocking operations specified in &array_of_requests to finish  

MPI_Waitall (count, &array_of_requests, &array_of_statuses): wait
for all blocking operations specified in &array_of_requests to finish

MPI_Waitsome (incount, &array_of_requests, &outcount,
&array_of_offsets, &array_of_statuses): wait for at least one request
to finish, the number is returned in outcount.  

MPI_Probe (source, tag, comm, &status): performs a blocking test
but doesn’t require a corresponding receive to be posted.

81

Example of blocking send/recv

#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[]; {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat; // status structure

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

82

Example of blocking send/recv
if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count); // returns # of type received
printf("Task %d: Received %d char(s) from task %d with tag %d \n",
 rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
}

83

Example of blocking send/recv
if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}

task0 task1
green/italic send
blue/bold send

84

Why the reversed send/recv orders?
if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}

MPI_Send may or may not block [until a recv is posted]. It will
block until the sender can reuse the sender buffer. Some
implementations will return to the caller when the buffer has been
sent to a lower communication layer. Some others will return to the
caller when there's a matching MPI_Recv() at the other end. So it's
up to your MPI implementation whether if this program will deadlock
or not.

From stackoverflow http://stackoverflow.com/questions/20448283/deadlock-with-mpi

85

http://stackoverflow.com/questions/20448283/deadlock-with-mpi

Non-blocking operations

• MPI_Isend, MPI_Irecv, MPI_Issend, Ibsend, Irsend: similar to
MPI_Send, MPI_Recv, MPI_Ssend, Bsend, Rsend except that a
Test or Wait must be used to determine that the operation has
completed and the buffer may be read (in the case of a recv) or
written (in the case of a send).

• MPI_Test (&request, &flag,&status)

• MPI_Testany (count, &array_of_requests, &index, &flag, &status)

• MPI_Testall (count,&array_of_requests,&flag, &array_of_statuses)

• MPI_Testsome (incount, &array_of_requests, &outcount,
&array_of_offsets, &array_of_statuses)

• Like the wait operations, but do not block

86

Non-blocking example
#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[]; {
int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;
MPI_Request reqs[4];
MPI_Status stats[4];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

87

Non-blocking
example

prev = rank-1;
next = rank+1;
if (rank == 0) prev = numtasks - 1;
if (rank == (numtasks - 1)) next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

 { do some work that does not depend on the data being received }

MPI_Waitall(4, reqs, stats);

MPI_Finalize();
}

Nearest neighbor exchange
in a ring topology

88

Collective communication
routines

• Use these when communicating among processes with a well
defined pattern

• Some can be used to allow all processes to communicate

• Some perform computation during the communication
(reductions)

• Involve all processes in the specified communicator, even if a
particular processor has no data to send

• Can only be used with MPI predefined types, not derived
types.

• The programmer has to make sure all processes participate
in the collective operation

89

All processors participate
in the collective operation

if (pid % 2) {
 MPI_Reduce(..., MPI_COMM_WORLD);
}

This program will deadlock, as the MPI_Reduce
will wait forever for even processes to begin
executing it.

If you want to only involve odd processes, add
them to a new communicator.

90

Groups and communicators

• Two terms used in MPI documentation are
groups and communicators.

• A communicator is a group of processes that
can communicate with each other

• A group is an ordered set of processes

• Programmers can view groups and
communicators as being identical

91

Collective routines
MPI_Barrier (comm): tasks block upon reaching the barrier until every task in the
group has reached it
MPI_Bcast (&buffer,count,datatype,root,comm): process root sends a copy of its
data to every other processor. Should be log2(comm_size) operation. 
MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,
recvcnt,recvtype,root,comm): distributes a unique message from root to every
process in the group.
MPI_Gather(&sendbuf, sendcnt, sendtype, &recvbuf, recvcount, recvtype,
 root, comm): opposite of scatter, every process in the group sends a
unique message to the root.
MPI_Allgather (&sendbuf,sendcount,sendtype,&recvbuf,
recvcount,recvtype,comm): each tasks performs a one-to-all broadcast to every
other process in the group These are concatenated together in the recvbuf.
MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm): performs a
reduction using operation op and places the result into recvbuf on the root process.  

92

MPI_Bcast

93

MPI_Scatter

MPI_Send(sendbuf+i*sendcount*extent(sendtype), sendcount, sendtype, i, ...)

MPI_Recv(recvbuf, recvcount, recvtype, i, sendcount, sendtype, i, ...)

Equivalent to

94

MPI_Gather

MPI_Send(sendbuf, sendcount,
 sendtype, root, ...)

MPI_Recv(recvbuf+
 i*recvcount*
 extent(recvtype),
 recvcount,
 recvtype, i, ...)

With the results of each
recv stored in rank order of
the sending process

95

MPI_Allgather

A gather with
every process
being a target.

96

MPI_Reduce

Also see MPI
introductory
slides.

You can form
your own
reduction
function using
MPI_Op_create

97

MPI_Op_create

 #include "mpi.h"
 int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)

pointer
to the user

defined
function

true if
commutative, false

otherwise

Handle
to refer to the

function wherever
an MPI_Op is

needed

98

More operations

MPI_Allreduce (&sendbuf, &recvbuf, count, datatype, op, comm): functionally
equivalent to an MPI_Reduce followed by an MPI_Bcast. Faster on most hardware than the
combination of these.

MPI_Reduce_scatter(&sendbuf, &recvbuf, recvcount, datatype, op, comm): Does an
element-wise reduce on the vector in sendbuf of length recvcount. The vector is then split
into disjoint segments and spread across the tasks. Equivalent to an MPI_Reduce followed
by an MPI_Scatter operation.  
MPI_Alltoall(&sendbuf, sendcount, sendtype, &recvbuf, recvcnt, recvtype, comm):
Each task in the group performs a scatter with the results concatenated on each process in
task rank order.

MPI_Scan(&sendbuf, &recvbuf, count, datatype, op, comm): performs the partial sums
on each processor that would result from doing an in-order reduction across the
processors in rank order.  

99

MPI_Allreduce

100

P0 P1 P2 P3 P4 P5 P6 P7

P0 P2 P4 P8

P0 P4

P0

P0 P4

P0 P2 P4 P6

P0 P1 P2 P3 P4 P5 P6 P7

0:1 2:3 4:5 6:7

0:3 4:7

0:7

0:7 0:7

0:7 0:7 0:7 0:7

all have 0:7

Naive Allreduce

2*log2(|P|)
steps

101

P0 P1 P2 P3 P4 P5 P6 P7

P0 P2 P4 P8

P0 P4

P0

P0 P4

P0 P2 P4 P6

P0 P1 P2 P3 P4 P5 P6 P7

0:1 2:3 4:5 6:7

0:3 4:7

0:7

0:7 0:7

0:7 0:7 0:7 0:7

all have 0:7

Why is this naive? On average
only ~1/2 of nodes involved in
communication each step

8

4

2

2

4

8

102

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

0:1 2:30:1 2:3 4:5 4:5 6:7 6:7

0:3 0:3 0:3 0:3 4:7 4:7 4:7 4:7

0:7 0:7 0:7 0:7 0:7 0:7 0:7 0:7

log2(|P|) steps103

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

 Algorithm from Optimization of Collective Reduction
Operations, Rolf Rabenseifner, International Conference on
Computational Science, 2004

All processors all
busy each step.

Note that the
bandwidth
requirements of
the network
change

104

MPI_Reduce_scatter

0
4
8
12

reduce
result

result of scattering
the reduce result

105

MPI_Alltoall

Each process performs
a scatter of its
elements to all other
processes.

Received data is
concatenated in
sender rank order

106

MPI_Scan

0 0:1 0:2 0:3
107

Group and communicator

• Remember that

• A communicator is a group of processes
that can communicate with each other

• A group is an ordered set of processes

• Programmers can view groups and
communicators as being the same thing

• group routines are used in collecting
processes to form communicator.

108

Why groups and communicators?

• Allow programmer to organize tasks by
functions

• Enable collective communication operations

• Allow user-defined virtual topologies to be
formed

• Enable manageable communication by
enabling synchronization

109

Properties

• Groups/communicators are dynamic, i.e.
they can be created and destroyed

• Processes can be in many groups, and will
have a unique, possibly different, rank in
each group

• MPI provides 40+ routines for managing
groups and communicators! Mercifully, we
will not cover them all.

110

Tasks these 40+ routines can
perform

Extract handle of a global group a communicator using
MPI_Comm_group
Form new group as a subset of another group using
MPI_Group_incl
Create new communicator for a group using
MPI_Comm_create
Determine a processor’s rank in a communicator using
MPI_Comm_rank
Communicate among the processors of a group
When finished, free communicators and groups using
MPI_Comm_free and MPI_Group_free

111

Relationships among
communicators and
groups.

Both collective
and point-to-point
communication is
within a group.

112

#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[]; {
int rank, new_rank, sendbuf, recvbuf, numtasks,
 ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group orig_group, new_group;
MPI_Comm new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
 printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
 MPI_Finalize();
 exit(0);
 }

Handle for
MPI_COMM_WORLD

group

Handle for a
new group

Handle for a new
communicator

Get the number of
tasks and the rank of

MPI_COMM_WORLD
for this process

sanity check code

113

#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[]; {
int rank, new_rank, sendbuf, recvbuf, numtasks,
 ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group orig_group, new_group;
MPI_Comm new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
 printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
 MPI_Finalize();
 exit(0);
 }

Variables to hold information about
the new group this will be in. Note that
since this is an SPMD program, if we do
this statically we need information for

all groups the process can be in, not just
the one that it is in.

Hold the ranks of processors in
(in MPI_COMM_WORLD) of

processes in each of the two new
groups.

114

sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
 MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
 }
else {
 MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
 }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}

get handle for
MPI_COMM_WORLD

Each process
executes one of these

statements.

Based on its number, becomes
a member of one of the

new groups.

115

sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
 MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
 }
else {
 MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
 }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}

Create a
communicator from the

group formed above

Perform collective
communication within the

group

Get the
processes rank
within the new

group

116

