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Objective
– To learn to effectively use the CUDA memory types in a parallel 

program
– Importance of memory access efficiency
– Registers, shared memory, global memory
– Scope and lifetime
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// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Review: Image Blur Kernel.
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How about performance on a GPU
– All threads access global memory for their input matrix elements

– One memory accesses (4 bytes) per floating-point addition
– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

– This limits the execution rate to 3.3% (50/1500) of the peak 
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to 
the1,500 GFLOPS
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Example – Matrix Multiplication
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A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}
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Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}
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A Toy Example: Thread to P Data Mapping

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)
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Calculation of P0,0 and P0,1

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3
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P0,0

M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P0,1
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Memory and Registers in the Von-Neumann Model
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Programmer View of  CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory
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Declaring CUDA Variables

– __device__ is optional when used with  __shared__, or __constant__
– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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Example:
Shared Memory Variable Declaration 

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}
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Where to Declare Variables?

Can host 
access it?

Outside of 
any Function In the kernel

global
constant

register
shared
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Shared Memory in CUDA
– A special type of memory whose contents are explicitly defined and 

used in the kernel source code
– One in each SM
– Accessed at much higher speed (in both latency and throughput) than global 

memory
– Scope of access and sharing - thread blocks
– Lifetime – thread block, contents will disappear after the corresponding thread 

finishes terminates execution
– Accessed by memory load/store instructions
– A form of scratchpad memory in computer architecture
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Objective
– To understand the motivation and ideas for tiled parallel algorithms 

– Reducing the limiting effect of memory bandwidth on parallel kernel performance
– Tiled algorithms and barrier synchronization
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Global Memory Access Pattern 
of the Basic Matrix Multiplication Kernel

Thread 1 Thread 2  

Global Memory
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Tiling/Blocking - Basic Idea

Thread 1 Thread 2
 

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number 
of tiles at each point in time  
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Tiling/Blocking - Basic Idea

Thread 1 Thread 2
 

Global Memory

On-chip Memory
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Basic Concept of Tiling
– In a congested traffic system, significant reduction of  vehicles 

can greatly improve the delay seen by all vehicles
– Carpooling for commuters
– Tiling for global memory accesses

– drivers = threads accessing their memory data operands
– cars = memory access requests

6
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Some Computations are More Challenging to Tile

– Some carpools may be easier than others
– Car pool participants need to have similar work schedule
– Some vehicles may be more suitable for carpooling

– Similar challenges exist in tiling
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Carpools need synchronization.
– Good: when people have similar schedule

8

Worker A

Worker B
Time

sleep

sleep work

work

dinner

dinner
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Carpools need synchronization.
– Bad: when people have very different schedule

9

Worker A
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time

sleep
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work

dinner

party



10

Same with Tiling
– Good: when threads have similar access timing

– Bad: when threads have very different timing
10

Thread 1

Thread 2
Time

Thread 1

Thread 2
Time
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Barrier Synchronization for Tiling
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Outline of Tiling Technique
– Identify a tile of global memory contents that are accessed by 

multiple threads
– Load the tile from global memory into on-chip memory
– Use barrier synchronization to make sure that all threads are ready 

to start the phase
– Have the multiple threads to access their data from the on-chip 

memory
– Use barrier synchronization to make sure that all threads have 

completed the current phase
– Move on to the next tile

12
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Objective
– To understand the design of a tiled parallel algorithm for matrix 

multiplication
– Loading a tile
– Phased execution
– Barrier Synchronization
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Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a 
column of N

– Each thread block – a strip of M and a 
strip of N
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Tiled Matrix Multiplication
– Break up the execution of each 

thread into phases 
– so that the data accesses by the 

thread block in each phase are 
focused on one tile of M and one 
tile of N

– The tile is of BLOCK_SIZE 
elements in each dimension
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Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

5
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Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory
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Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1
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P3,0 P3,2 P3,3P3,1

M0,1M0,0
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M0,2 M0,3

M1,1
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N0,1N0,0
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N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2
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Phase 0 Use for Block (0,0) (iteration 1)
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P1,0
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P1,1

P2,0 P2,2 P2,3P2,1
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P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory
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Phase 1 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory
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Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1
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M0,1M0,0

M1,0

M0,2 M0,3
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Shared Memory

Shared Memory
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Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1
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Execution Phases of Toy Example
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Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple 
threads 
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Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before 
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase
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Objective
– To learn to write a tiled matrix-multiplication kernel

– Loading and using tiles for matrix multiplication
– Barrier synchronization, shared memory
– Resource Considerations
– Assume that Width is a multiple of tile size for simplicity

2
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Loading Input Tile 0 of M (Phase 0) 
– Have each thread load an M 

element and an N element at the 
same relative position as its P 
element.

int Row = by * blockDim.y + ty;

int Col =   bx * blockDim.x + tx;

2D indexing for accessing Tile 0:

M[Row][tx]

N[ty][Col]
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Loading Input Tile 0 of N (Phase 0) 
– Have each thread load an M 

element and an N element at the 
same relative position as its P 
element.

int Row = by * blockDim.y + ty;

int Col =   bx * blockDim.x + tx;

2D indexing for accessing Tile 0:

M[Row][tx]

N[ty][Col]
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Loading Input Tile 1 of M (Phase 1) 

2D indexing for accessing Tile 1:

M[Row][1*TILE_WIDTH + tx]

N[1*TILE*WIDTH + ty][Col]
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Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:

M[Row][1*TILE_WIDTH + tx]

N[1*TILE*WIDTH + ty][Col]
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M[Row][p*TILE_WIDTH+tx]
M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]
N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing



8

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}
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Tile (Thread Block) Size Considerations
– Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads
– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float 
loads from global memory for 256 * (2*16) = 8,192 mul/add 
operations. (16 floating-point operations for each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float 
loads from global memory for 1024 * (2*32) = 65,536 mul/add 
operations. (32 floating-point operation for each memory load)

11
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Shared Memory and Threading
– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared 

memory. 
– For 16KB shared memory, one can potentially have up to 8 thread blocks 

executing
– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared 
memory usage per thread block, allowing 2 thread blocks active at the same time 
– However, in a GPU where the thread count is limited to 1536 threads per SM, 

the number of blocks per SM is reduced to one!
– Each __syncthread() can reduce the number of active threads for a 

block
– More thread blocks can be advantageous

12
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Objective
– To understand how CUDA threads execute on SIMD Hardware

– Warp partitioning
– SIMD Hardware
– Control divergence
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Warps as Scheduling Units

– Each block is divided into 32-thread warps
– An implementation technique, not part of the CUDA programming 

model
– Warps are scheduling units in SM
– Threads in a warp execute in Single Instruction Multiple Data 

(SIMD) manner
– The number of threads in a warp may vary in future generations

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…Block 3 Warps
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Warps in Multi-dimensional Thread Blocks
– The thread blocks are first linearized into 1D in row major order

– In x-dimension first, y-dimension next, and z-dimension last

4

Figure 6.1: Placing 2D threads into linear order
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Blocks are partitioned after linearization
– Linearized thread blocks are partitioned 

– Thread indices within a warp are consecutive and increasing
– Warp 0 starts with Thread 0

– Partitioning scheme is consistent across devices
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from 

generation to generation

– DO NOT rely on any ordering within or between 
warps
– If there are any dependencies between threads, you must 

__syncthreads() to get correct results (more later).
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SMs are SIMD Processors
– Control unit for instruction fetch, decode, and control is shared 

among multiple processing units
– Control overhead is minimized (Module 1)

Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared 
Memory

Register
File

Control Unit

PC IR
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SIMD Execution Among Threads in a Warp
– All threads in a warp must execute the same instruction 

at any point in time

– This works efficiently if all threads follow the same 
control flow path
– All if-then-else statements make the same decision
– All loops iterate the same number of times
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Control Divergence
– Control divergence occurs when threads in a warp take 

different control flow paths by making different control 
decisions 
– Some take the then-path and others take the else-path of an if-

statement
– Some threads take different number of loop iterations than others

– The execution of threads taking different paths are 
serialized in current GPUs
– The control paths taken by the threads in a warp are traversed one 

at a time until there is no more.
– During the execution of each path, all threads taking that path will 

be executed in parallel
– The number of different paths can be large when considering 

nested control flow statements
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Control Divergence Examples
– Divergence can arise when branch or loop 

condition is a function of thread indices
– Example kernel statement with divergence:

– if (threadIdx.x > 2) { }
– This creates two different control paths for threads in a block
– Decision granularity < warp size; threads 0, 1 and 2 follow 

different path than the rest of the threads in the first warp
– Example without divergence:

– If (blockIdx.x > 2) { }
– Decision granularity is a multiple of blocks size; all threads in 

any given warp follow the same path
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Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, 
int n)

{
int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];
}

10

Device Code
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Analysis for vector size of 1,000 elements
– Assume that block size is 256 threads

– 8 warps in each block

– All threads in Blocks 0, 1, and 2 are within valid range
– i values from 0 to 767
– There are 24 warps in these three blocks, none will have control divergence

– Most warps in Block 3 will not control divergence
– Threads in the warps 0-6 are all within valid range, thus no control divergence

– One warp in Block 3 will have control divergence
– Threads with i values 992-999  will all be within valid range
– Threads with i values of 1000-1023 will be outside valid range

– Effect of serialization on control divergence will be small
– 1 out of 32 warps has control divergence
– The impact on performance will likely be less than 3%
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Objective
– To learn to analyze the performance impact of control divergence

– Boundary condition checking
– Control divergence is data-dependent
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Performance Impact of Control Divergence
– Boundary condition checks are vital for complete functionality and 

robustness of parallel code
– The tiled matrix multiplication kernel has many boundary condition checks
– The concern is that these checks may cause significant performance degradation
– For example, see the tile loading code below:

if(Row < Width && t * TILE_WIDTH+tx < Width) {
ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

} else {
ds_M[ty][tx] = 0.0;
}

if (p*TILE_WIDTH+ty < Width && Col < Width) {
ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

} else {
ds_N[ty][tx] = 0.0;

}
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Two types of blocks in loading M Tiles
– 1. Blocks whose tiles are all within valid range until the last phase.
– 2. Blocks whose tiles are partially outside the valid range all the way

M

TILE_WIDTH

Type 1

Type 2
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Analysis of Control Divergence Impact
– Assume 16x16 tiles and thread blocks
– Each thread block has 8 warps (256/32)
– Assume square matrices of 100x100
– Each thread will go through 7 phases (ceiling of 100/16)

– There are 49 thread blocks (7 in each dimension)
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Control Divergence in Loading M Tiles
– Assume 16x16 tiles and thread blocks
– Each thread block has 8 warps (256/32)
– Assume square matrices of 100x100
– Each warp will go through 7 phases (ceiling of 100/16)

– There are 42 (6*7) Type 1 blocks, with a total of 336 (8*42) warps
– They all have 7 phases, so there are 2,352 (336*7) warp-phases
– The warps have control divergence only in their last phase
– 336 warp-phases have control divergence
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Control Divergence in Loading M Tiles (Type 2)

– Type 2: the 7 block assigned to load the bottom tiles, with a total of 
56 (8*7) warps

– They all have 7 phases, so there are 392 (56*7) warp-phases
– The first 2 warps in each Type 2 block will stay within the valid range 

until the last phase
– The 6 remaining warps stay outside the valid range
– So, only 14 (2*7) warp-phases have control divergence
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Overall Impact of Control Divergence
– Type 1 Blocks: 336 out of 2,352 warp-phases have control 

divergence
– Type 2 Blocks: 14 out of 392 warp-phases have control divergence
– The performance impact is expected to be less than 12% (350/2,944 

or (336+14)/(2352+14))

M

TILE_WIDTH

Type 1

Type 2
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Additional Comments
– The calculation of impact of control divergence in loading N tiles is 

somewhat different and is left as an exercise

– The estimated performance impact is data dependent.
– For larger matrices, the impact will be significantly smaller

– In general, the impact of control divergence for boundary condition 
checking for large input data sets should be insignificant

– One should not hesitate to use boundary checks to ensure full functionality

– The fact that a kernel is full of control flow constructs does not mean 
that there will be heavy occurrence of control divergence

– We will cover some algorithm patterns that naturally incur control 
divergence (such as parallel reduction)  in the Parallel Algorithm 
Patterns modules



Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode


DRAM Bandwidth

Module 6.1 – Memory Access Performance

Accelerated Computing

GPU Teaching Kit



2

Objective
– To learn that memory bandwidth is a first-order performance factor 

in a massively parallel processor
– DRAM bursts, banks, and channels
– All concepts are also applicable to modern multicore processors
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Global Memory (DRAM) Bandwidth

– Ideal

– Reality
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DRAM Core Array Organization
– Each DRAM core array has about 16M bits

– Each bit is stored in a tiny capacitor made of one transistor

Memory Cell
Core Array

Row
Decoder

Sense Amps

Column Latches

Mux

Row
Addr

Column
Addr

Off-chip Data

Wide

Narrow Pin Interface
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A very small (8x2-bit) DRAM Core Array

de
co

de

0 1 1

Sense amps

Mux
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DRAM Core Arrays are Slow
– Reading from a cell in the core array is a very slow process

– DDR: Core speed = ½ interface speed
– DDR2/GDDR3: Core speed = ¼ interface speed
– DDR3/GDDR4: Core speed = ⅛ interface speed
– … likely to be worse in the future

de
co

de

To sense amps 

A very small capacitance that 
stores a data bit

About 1000 cells connected to each vertical line  
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DRAM Bursting
– For DDR{2,3} SDRAM cores clocked at 1/N speed of the interface:

– Load (N × interface width) of DRAM bits from the same row at once to an internal 
buffer, then transfer in N steps at interface speed

– DDR3/GDDR4: buffer width = 8X interface width
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DRAM Bursting Timing Example

time

Address bits to 
decoder

Core Array access delay
bits

on interface

Non-burst timing

Burst timing

Modern DRAM systems are designed to always be accessed 
in burst mode. Burst bytes are transferred to the processor 
but discarded when accesses are not to sequential locations.
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Multiple DRAM Banks

de
co

de

Sense amps

Mux

de
co

de

Sense amps

Mux
Bank 0 Bank 1
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DRAM Bursting with Banking

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time 
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GPU off-chip memory subsystem
– NVIDIA GTX280 GPU: 

– Peak global memory bandwidth = 141.7GB/s

– Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)
– For a typical 64-bit interface, we can sustain only about 17.6 GB/s (Recall DDR - 2 transfers 

per clock)
– We need a lot more bandwidth (141.7 GB/s) – thus 8 memory channels
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Objective
– To learn that memory coalescing is important for effectively utilizing 

memory bandwidth in CUDA
– Its origin in DRAM burst
– Checking if a CUDA memory access is coalesced
– Techniques for improving memory coalescing in CUDA code
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DRAM Burst – A System View

– Each address space is partitioned into burst sections 
– Whenever a location is accessed, all other locations in the same 

section are also delivered to the processor 
– Basic example: a 16-byte address space, 4-byte burst sections

– In practice, we have at least 4GB address space, burst section 
sizes of 128-bytes or more

3

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 
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Memory Coalescing

– When all threads of a warp execute a load instruction, if all accessed 
locations fall into the same burst section, only one DRAM request 
will be made and the access is fully coalesced.

4

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads
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Un-coalesced Accesses

– When the accessed locations spread across burst section 
boundaries:

– Coalescing fails
– Multiple DRAM requests are made
– The access is not fully coalesced.

– Some of the bytes accessed and transferred are not used by the 
threads

5

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

T0 T1 T2 T3

Un-coalesced Loads
T0 T1 T2 T3

Un-coalesced Loads
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How to judge if an access is coalesced?

– Accesses in a warp are to consecutive locations if the index in an 
array access is in the form of

– A[(expression with terms independent of threadIdx.x) + threadIdx.x];

6
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M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A 2D C Array in Linear Memory Space
7
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Two Access Patterns of Basic Matrix Multiplication 

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

i is the loop counter in the inner product loop of the kernel code

A is m × n, B is n × k 
Col = blockIdx.x*blockDim.x + threadIdx.x

H
E

IG
H

T
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B accesses are coalesced

N
T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access 
direction in 
kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3
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A Accesses are Not Coalesced

T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access 
direction in 
kernel code

…

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3
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Loading an Input Tile

A

B

C

W
ID

T
H

Row

Col

n

m

n

k

k

m

int tx = threadIdx.x
int ty = threadIdx.y
Accessing tile 0 2D indexing:

A[Row][tx]
B[ty][Col]

Have each thread load an A element 
and a B element at the same relative 
position as its C element.
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Corner Turning

d_M d_N

W
ID

TH

WIDTH

d_M d_N

Original 
Access
Pattern

Tiled
Access
Pattern

Copy into 
shared
memory

Perform 
multiplication 

with shared memory 
values



GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode


Accelerated Computing

GPU Teaching Kit

Lecture 14.1 - Pinned Host Memory
Module 14 – Efficient Host-Device Data Transfer



2

Objective

– To learn the important concepts involved in copying (transferring) data 
between host and device
– Direct Memory Access
– Pinned memory
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CPU-GPU Data Transfer using DMA

– DMA (Direct Memory Access) hardware is used by cudaMemcpy() for 
better efficiency
– Frees CPU for other tasks
– Hardware unit specialized to transfer a number of bytes requested by OS
– Between physical memory address space regions (some can be mapped I/O memory 

locations)
– Uses system interconnect, typically PCIe in today’s systems

CPU Main Memory (DRAM)

GPU card 
(or other I/O cards)

DMAGlobal 
Memory

PCIe
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Virtual Memory Management 

– Modern computers use virtual memory management
– Many virtual memory spaces mapped into a single physical memory
– Virtual addresses (pointer values) are translated into physical addresses

– Not all variables and data structures are always in the physical 
memory
– Each virtual address space is divided into pages that are mapped into and out of 

the physical memory
– Virtual memory pages can be mapped out of the physical memory (page-out) to 

make room
– Whether or not a variable is in the physical memory is checked at address 

translation time
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Data Transfer and Virtual Memory 

– DMA uses physical addresses
– When cudaMemcpy() copies an array, it is implemented as one or more DMA 

transfers
– Address is translated and page presence checked for the entire source and 

destination regions at the beginning of each DMA transfer
– No address translation for the rest of the same DMA transfer so that high efficiency 

can be achieved

– The OS could accidentally page-out the data that is being read or written 
by a DMA and page-in another virtual page into the same physical location



6

Pinned Memory and DMA Data Transfer 

– Pinned memory are virtual memory pages that are specially marked so that 
they cannot be paged out

– Allocated with a special system API function call
– a.k.a. Page Locked Memory, Locked Pages, etc.
– CPU memory that serve as the source or destination of a DMA transfer must 

be allocated as pinned memory
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CUDA data transfer uses pinned memory.

– The DMA used by cudaMemcpy() requires that any source or destination in 
the host memory is allocated as pinned memory

– If a source or destination of a cudaMemcpy() in the host memory is not 
allocated in pinned memory, it needs to be first copied to a pinned memory –
extra overhead

– cudaMemcpy() is faster if the host memory source or destination is 
allocated in pinned memory since no extra copy is needed
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Allocate/Free Pinned Memory

– cudaHostAlloc(), three parameters
– Address of pointer to the allocated memory
– Size of the allocated memory in bytes
– Option – use cudaHostAllocDefault for now

– cudaFreeHost(), one parameter
– Pointer to the memory to be freed
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Using Pinned Memory in CUDA

– Use the allocated pinned memory and its pointer the same way as those 
returned by malloc();

– The only difference is that the allocated memory cannot be paged by the OS

– The cudaMemcpy() function should be about 2X faster with pinned memory

– Pinned memory is a limited resource
– over-subscription can have serious consequences 
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Putting It Together - Vector Addition Host Code Example

int main()
{

float *h_A, *h_B, *h_C;
…

cudaHostAlloc((void **) &h_A, N* sizeof(float),
cudaHostAllocDefault);

cudaHostAlloc((void **) &h_B, N* sizeof(float),
cudaHostAllocDefault); 

cudaHostAlloc((void **) &h_C, N* sizeof(float),
cudaHostAllocDefault); 

…
// cudaMemcpy() runs 2X faster

}
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Objective

– To learn task parallelism in CUDA
– CUDA Streams
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Serialized Data Transfer and Computation

– So far, the way we use cudaMemcpy serializes data transfer and 
GPU computation for VecAddKernel()

Trans. A Trans. B Comp Trans. C

time

Only use one direction, 
GPU idle

PCIe Idle
Only use one 
direction, GPU 
idle
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Device Overlap

– Some CUDA devices support device overlap
– Simultaneously execute a kernel while copying data between device and host 

memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount( &dev_count);
for (int i = 0; i < dev_count; i++) {

cudaGetDeviceProperties(&prop, i);
if (prop.deviceOverlap) … 
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Ideal, Pipelined Timing

– Divide large vectors into segments
– Overlap transfer and compute of adjacent segments

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1 = A.1 + B.1

Trans 
A.2

Trans 
B.2

Trans 
C.1

Comp 
C.2 = A.2 + B.2

Trans 
A.3

Trans 
B.3
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CUDA Streams

– CUDA supports parallel execution of kernels and 
cudaMemcpy() with “Streams”

– Each stream is a queue of operations (kernel launches and 
cudaMemcpy()calls)

– Operations (tasks) in different streams can go in parallel
– “Task parallelism”
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Streams

– Requests made from the host code are put into First-In-First-Out 
queues
– Queues are read and processed asynchronously by the driver and device
– Driver ensures that commands in a queue are processed in sequence.  E.g., 

Memory copies end before kernel launch, etc.

host thread

cudaMemcpy()
kernel launch
device sync
cudaMemcpy()

FIFO

device driver
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Streams cont.

– To allow concurrent copying and kernel execution, use multiple 
queues, called “streams”
– CUDA “events” allow the host thread to query and synchronize with individual 

queues (i.e. streams).

Event

host thread

Stream 0

device driver

Stream 1
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Conceptual View of Streams

MemCpy A.0
MemCpy B.0

Kernel 0
MemCpy C.0

MemCpy A.1
MemCpy B.1

Kernel 1
MemCpy C.1

Stream 0 Stream 1

Copy Engine

PCIe
up

Kernel 
Engine

Operations (Kernel launches, cudaMemcpy() calls)

PCIe
down
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Objective

– To learn how to overlap data transfer with computation
– Asynchronous data transfer in CUDA
– Practical limitations of CUDA streams
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Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go 
here
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Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0,…);
cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),…, stream1);

}
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A View Closer to Reality in Previous GPUs

MemCpy A.0

MemCpy B.0

MemCpy C.0

MemCpy A.1

MemCpy B.1

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy 

Engine

PCIe

up

PCIe

down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1

Direction of 
arrows 
changed 
from original 
slides [SPM]
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Not quite the overlap we want in some GPUs

– C.0 blocks A.1 and B.1 in the copy engine queue

Trans 

A.0

Trans 

B.0

Trans 

C.0

Trans 

A.1

Comp 

C.0 = A.0 + B.0

Trans 

B.1

Comp 

C.1= A.1 + B.1

Trans 

C.1
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Better Multi-Stream Host Code 

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1); 

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),…, stream1);

}
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C.0 no longer blocks A.1 and B.1

MemCpy A.0

MemCpy B.0

MemCpy A.1

MemCpy B.1

MemCpy C.0

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy 

Engine

PCIe

up

PCIe

down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1

Direction of 
arrows 
changed 
from original 
slides [SPM]
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Better, not quite the best overlap

– C.1 blocks next iteration A.2 and B.2 in the copy engine queue

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1= A.1 + B.1

Trans 
C.1

Trans 
A.2

Trans 
B.2

Trans 
A.2

Comp 
C.2 = A.2
+

Iteration n

Iteration n+1
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Ideal, Pipelined Timing

– Will need at least three buffers for each original A, B, and C, 
code is more complicated 

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1 = A.1 + B.1

Trans 
A.2

Trans 
B.2

Trans 
C.1

Comp 
C.2 = A.2 + B.2

Trans 
A.3

Trans 
B.3
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Hyper Queues

– Provide multiple queues for each engine
– Allow more concurrency by allowing some streams to make 

progress for an engine while others are blocked 

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 0

Stream 1

Stream 2
Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z
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Wait until all tasks have completed

– cudaStreamSynchronize(stream_id)
– Used in host code
– Takes one parameter – stream identifier
– Wait until all tasks in a stream have completed
– E.g., cudaStreamSynchronize(stream0)in host code ensures that all tasks 

in the queues of stream0 have completed

– This is different from cudaDeviceSynchronize()
– Also used in host code
– No parameter
– cudaDeviceSynchronize() waits until all tasks in all streams have completed 

for the current device
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