
Accelerated Computing

GPU Teaching Kit

CUDA Memories

Module 4.1 – Memory and Data Locality

2

Objective
– To learn to effectively use the CUDA memory types in a parallel

program
– Importance of memory access efficiency
– Registers, shared memory, global memory
– Scope and lifetime

2

3

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Review: Image Blur Kernel.

4

How about performance on a GPU
– All threads access global memory for their input matrix elements

– One memory accesses (4 bytes) per floating-point addition
– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

– This limits the execution rate to 3.3% (50/1500) of the peak
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to
the1,500 GFLOPS

5

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L
O
C
K
_W
ID
T
H
E

W
ID
T
H

W
ID
T
H

Row

Col

Example – Matrix Multiplication

6

A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}

7

Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}

8

A Toy Example: Thread to P Data Mapping

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)

9

Calculation of P0,0 and P0,1

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P0,1

10

Memory and Registers in the Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

11

Programmer View of CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

12

Declaring CUDA Variables

– __device__ is optional when used with __shared__, or __constant__
– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

13

Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}

14

Where to Declare Variables?

Can host
access it?

Outside of
any Function In the kernel

global
constant

register
shared

15

Shared Memory in CUDA
– A special type of memory whose contents are explicitly defined and

used in the kernel source code
– One in each SM
– Accessed at much higher speed (in both latency and throughput) than global

memory
– Scope of access and sharing - thread blocks
– Lifetime – thread block, contents will disappear after the corresponding thread

finishes terminates execution
– Accessed by memory load/store instructions
– A form of scratchpad memory in computer architecture

16

Global Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory Register

File

Control Unit

PC IR

Hardware View of CUDA Memories

Accelerated Computing

GPU Teaching Kit

Tiled Parallel Algorithms

Module 4.2 – Memory and Data Locality

2

Objective
– To understand the motivation and ideas for tiled parallel algorithms

– Reducing the limiting effect of memory bandwidth on parallel kernel performance
– Tiled algorithms and barrier synchronization

3

Global Memory Access Pattern
of the Basic Matrix Multiplication Kernel

Thread 1 Thread 2

Global Memory

4

Tiling/Blocking - Basic Idea

Thread 1 Thread 2

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number
of tiles at each point in time

5

Tiling/Blocking - Basic Idea

Thread 1 Thread 2

Global Memory

On-chip Memory

6

Basic Concept of Tiling
– In a congested traffic system, significant reduction of vehicles

can greatly improve the delay seen by all vehicles
– Carpooling for commuters
– Tiling for global memory accesses

– drivers = threads accessing their memory data operands
– cars = memory access requests

6

7

Some Computations are More Challenging to Tile

– Some carpools may be easier than others
– Car pool participants need to have similar work schedule
– Some vehicles may be more suitable for carpooling

– Similar challenges exist in tiling

8

Carpools need synchronization.
– Good: when people have similar schedule

8

Worker A

Worker B
Time

sleep

sleep work

work

dinner

dinner

9

Carpools need synchronization.
– Bad: when people have very different schedule

9

Worker A

Worker B
time

sleep

sleep work

work

dinner

party

10

Same with Tiling
– Good: when threads have similar access timing

– Bad: when threads have very different timing
10

Thread 1

Thread 2
Time

Thread 1

Thread 2
Time

11

Barrier Synchronization for Tiling

12

Outline of Tiling Technique
– Identify a tile of global memory contents that are accessed by

multiple threads
– Load the tile from global memory into on-chip memory
– Use barrier synchronization to make sure that all threads are ready

to start the phase
– Have the multiple threads to access their data from the on-chip

memory
– Use barrier synchronization to make sure that all threads have

completed the current phase
– Move on to the next tile

12

Accelerated Computing

GPU Teaching Kit

Tiled Matrix Multiplication

Module 4.3 - Memory Model and Locality

2

Objective
– To understand the design of a tiled parallel algorithm for matrix

multiplication
– Loading a tile
– Phased execution
– Barrier Synchronization

3

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L
O
C
K
_W
ID
T
H
E

W
ID
T
H

W
ID
T
H

Row

Col

Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a
column of N

– Each thread block – a strip of M and a
strip of N

4

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L
O
C
K
_W
ID
T
H
E

W
ID
T
H

W
ID
T
H

Row

Col

Tiled Matrix Multiplication
– Break up the execution of each

thread into phases
– so that the data accesses by the

thread block in each phase are
focused on one tile of M and one
tile of N

– The tile is of BLOCK_SIZE
elements in each dimension

5

Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

5

6

Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

7

Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

8

Phase 0 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

9

Phase 1 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

10

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

11

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

12

Execution Phases of Toy Example

13

Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple
threads

14

Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase

Accelerated Computing

GPU Teaching Kit

Tiled Matrix Multiplication Kernel

Module 4.4 - Memory and Data Locality

2

Objective
– To learn to write a tiled matrix-multiplication kernel

– Loading and using tiles for matrix multiplication
– Barrier synchronization, shared memory
– Resource Considerations
– Assume that Width is a multiple of tile size for simplicity

2

3

M

N

P

TILE_WIDTH

WIDTHWIDTH

T
IL
E
_W
ID
T
H
E

W
ID
T
H

W
ID
T
H

Row

Col

Loading Input Tile 0 of M (Phase 0)
– Have each thread load an M

element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

2D indexing for accessing Tile 0:

M[Row][tx]

N[ty][Col]

4

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L
O
C
K
_W
ID
T
H
E

W
ID
T
H

W
ID
T
H

Row

Col

Loading Input Tile 0 of N (Phase 0)
– Have each thread load an M

element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

2D indexing for accessing Tile 0:

M[Row][tx]

N[ty][Col]

5

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L
O
C
K
_W
ID
T
H
E

W
ID
T
H

W
ID
T
H

Row

Col

Loading Input Tile 1 of M (Phase 1)

2D indexing for accessing Tile 1:

M[Row][1*TILE_WIDTH + tx]

N[1*TILE*WIDTH + ty][Col]

6

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L
O
C
K
_W
ID
T
H
E

W
ID
T
H

W
ID
T
H

Row

Col

Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:

M[Row][1*TILE_WIDTH + tx]

N[1*TILE*WIDTH + ty][Col]

7

M[Row][p*TILE_WIDTH+tx]
M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]
N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing

8

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}

9

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}

10

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}

11

Tile (Thread Block) Size Considerations
– Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads
– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float
loads from global memory for 256 * (2*16) = 8,192 mul/add
operations. (16 floating-point operations for each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float
loads from global memory for 1024 * (2*32) = 65,536 mul/add
operations. (32 floating-point operation for each memory load)

11

12

Shared Memory and Threading
– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared

memory.
– For 16KB shared memory, one can potentially have up to 8 thread blocks

executing
– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared
memory usage per thread block, allowing 2 thread blocks active at the same time
– However, in a GPU where the thread count is limited to 1536 threads per SM,

the number of blocks per SM is reduced to one!
– Each __syncthread() can reduce the number of active threads for a

block
– More thread blocks can be advantageous

12

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Warps and SIMD Hardware

Module 5.1 – Thread Execusion Efficiency

2

Objective
– To understand how CUDA threads execute on SIMD Hardware

– Warp partitioning
– SIMD Hardware
– Control divergence

3

Warps as Scheduling Units

– Each block is divided into 32-thread warps
– An implementation technique, not part of the CUDA programming

model
– Warps are scheduling units in SM
– Threads in a warp execute in Single Instruction Multiple Data

(SIMD) manner
– The number of threads in a warp may vary in future generations

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…Block 3 Warps

4

Warps in Multi-dimensional Thread Blocks
– The thread blocks are first linearized into 1D in row major order

– In x-dimension first, y-dimension next, and z-dimension last

4

Figure 6.1: Placing 2D threads into linear order

5

Blocks are partitioned after linearization
– Linearized thread blocks are partitioned

– Thread indices within a warp are consecutive and increasing
– Warp 0 starts with Thread 0

– Partitioning scheme is consistent across devices
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from

generation to generation

– DO NOT rely on any ordering within or between
warps
– If there are any dependencies between threads, you must

__syncthreads() to get correct results (more later).

6

SMs are SIMD Processors
– Control unit for instruction fetch, decode, and control is shared

among multiple processing units
– Control overhead is minimized (Module 1)

Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory

Register
File

Control Unit

PC IR

7

SIMD Execution Among Threads in a Warp
– All threads in a warp must execute the same instruction

at any point in time

– This works efficiently if all threads follow the same
control flow path
– All if-then-else statements make the same decision
– All loops iterate the same number of times

8

Control Divergence
– Control divergence occurs when threads in a warp take

different control flow paths by making different control
decisions
– Some take the then-path and others take the else-path of an if-

statement
– Some threads take different number of loop iterations than others

– The execution of threads taking different paths are
serialized in current GPUs
– The control paths taken by the threads in a warp are traversed one

at a time until there is no more.
– During the execution of each path, all threads taking that path will

be executed in parallel
– The number of different paths can be large when considering

nested control flow statements

9

Control Divergence Examples
– Divergence can arise when branch or loop

condition is a function of thread indices
– Example kernel statement with divergence:

– if (threadIdx.x > 2) { }
– This creates two different control paths for threads in a block
– Decision granularity < warp size; threads 0, 1 and 2 follow

different path than the rest of the threads in the first warp
– Example without divergence:

– If (blockIdx.x > 2) { }
– Decision granularity is a multiple of blocks size; all threads in

any given warp follow the same path

10

Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C,
int n)

{
int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];
}

10

Device Code

11

Analysis for vector size of 1,000 elements
– Assume that block size is 256 threads

– 8 warps in each block

– All threads in Blocks 0, 1, and 2 are within valid range
– i values from 0 to 767
– There are 24 warps in these three blocks, none will have control divergence

– Most warps in Block 3 will not control divergence
– Threads in the warps 0-6 are all within valid range, thus no control divergence

– One warp in Block 3 will have control divergence
– Threads with i values 992-999 will all be within valid range
– Threads with i values of 1000-1023 will be outside valid range

– Effect of serialization on control divergence will be small
– 1 out of 32 warps has control divergence
– The impact on performance will likely be less than 3%

Accelerated Computing

GPU Teaching Kit

Performance Impact of Control Divergence

Module 5.2 – Thread Execusion Efficiency

2

Objective
– To learn to analyze the performance impact of control divergence

– Boundary condition checking
– Control divergence is data-dependent

3

Performance Impact of Control Divergence
– Boundary condition checks are vital for complete functionality and

robustness of parallel code
– The tiled matrix multiplication kernel has many boundary condition checks
– The concern is that these checks may cause significant performance degradation
– For example, see the tile loading code below:

if(Row < Width && t * TILE_WIDTH+tx < Width) {
ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

} else {
ds_M[ty][tx] = 0.0;
}

if (p*TILE_WIDTH+ty < Width && Col < Width) {
ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

} else {
ds_N[ty][tx] = 0.0;

}

4

Two types of blocks in loading M Tiles
– 1. Blocks whose tiles are all within valid range until the last phase.
– 2. Blocks whose tiles are partially outside the valid range all the way

M

TILE_WIDTH

Type 1

Type 2

5

Analysis of Control Divergence Impact
– Assume 16x16 tiles and thread blocks
– Each thread block has 8 warps (256/32)
– Assume square matrices of 100x100
– Each thread will go through 7 phases (ceiling of 100/16)

– There are 49 thread blocks (7 in each dimension)

6

Control Divergence in Loading M Tiles
– Assume 16x16 tiles and thread blocks
– Each thread block has 8 warps (256/32)
– Assume square matrices of 100x100
– Each warp will go through 7 phases (ceiling of 100/16)

– There are 42 (6*7) Type 1 blocks, with a total of 336 (8*42) warps
– They all have 7 phases, so there are 2,352 (336*7) warp-phases
– The warps have control divergence only in their last phase
– 336 warp-phases have control divergence

7

Control Divergence in Loading M Tiles (Type 2)

– Type 2: the 7 block assigned to load the bottom tiles, with a total of
56 (8*7) warps

– They all have 7 phases, so there are 392 (56*7) warp-phases
– The first 2 warps in each Type 2 block will stay within the valid range

until the last phase
– The 6 remaining warps stay outside the valid range
– So, only 14 (2*7) warp-phases have control divergence

8

Overall Impact of Control Divergence
– Type 1 Blocks: 336 out of 2,352 warp-phases have control

divergence
– Type 2 Blocks: 14 out of 392 warp-phases have control divergence
– The performance impact is expected to be less than 12% (350/2,944

or (336+14)/(2352+14))

M

TILE_WIDTH

Type 1

Type 2

9

Additional Comments
– The calculation of impact of control divergence in loading N tiles is

somewhat different and is left as an exercise

– The estimated performance impact is data dependent.
– For larger matrices, the impact will be significantly smaller

– In general, the impact of control divergence for boundary condition
checking for large input data sets should be insignificant

– One should not hesitate to use boundary checks to ensure full functionality

– The fact that a kernel is full of control flow constructs does not mean
that there will be heavy occurrence of control divergence

– We will cover some algorithm patterns that naturally incur control
divergence (such as parallel reduction) in the Parallel Algorithm
Patterns modules

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

DRAM Bandwidth

Module 6.1 – Memory Access Performance

Accelerated Computing

GPU Teaching Kit

2

Objective
– To learn that memory bandwidth is a first-order performance factor

in a massively parallel processor
– DRAM bursts, banks, and channels
– All concepts are also applicable to modern multicore processors

3

Global Memory (DRAM) Bandwidth

– Ideal

– Reality

4

DRAM Core Array Organization
– Each DRAM core array has about 16M bits

– Each bit is stored in a tiny capacitor made of one transistor

Memory Cell
Core Array

Row
Decoder

Sense Amps

Column Latches

Mux

Row
Addr

Column
Addr

Off-chip Data

Wide

Narrow Pin Interface

5

A very small (8x2-bit) DRAM Core Array

de
co

de

0 1 1

Sense amps

Mux

6

DRAM Core Arrays are Slow
– Reading from a cell in the core array is a very slow process

– DDR: Core speed = ½ interface speed
– DDR2/GDDR3: Core speed = ¼ interface speed
– DDR3/GDDR4: Core speed = ⅛ interface speed
– … likely to be worse in the future

de
co

de

To sense amps

A very small capacitance that
stores a data bit

About 1000 cells connected to each vertical line

7

DRAM Bursting
– For DDR{2,3} SDRAM cores clocked at 1/N speed of the interface:

– Load (N × interface width) of DRAM bits from the same row at once to an internal
buffer, then transfer in N steps at interface speed

– DDR3/GDDR4: buffer width = 8X interface width

8

DRAM Bursting Timing Example

time

Address bits to
decoder

Core Array access delay
bits

on interface

Non-burst timing

Burst timing

Modern DRAM systems are designed to always be accessed
in burst mode. Burst bytes are transferred to the processor
but discarded when accesses are not to sequential locations.

9

Multiple DRAM Banks

de
co

de

Sense amps

Mux

de
co

de

Sense amps

Mux
Bank 0 Bank 1

10

DRAM Bursting with Banking

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time

11

GPU off-chip memory subsystem
– NVIDIA GTX280 GPU:

– Peak global memory bandwidth = 141.7GB/s

– Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)
– For a typical 64-bit interface, we can sustain only about 17.6 GB/s (Recall DDR - 2 transfers

per clock)
– We need a lot more bandwidth (141.7 GB/s) – thus 8 memory channels

Memory Coalescing in CUDA

Lecture 6.2 – Performance Considerations

GPU Teaching Kit
Accelerated Computing

2

Objective
– To learn that memory coalescing is important for effectively utilizing

memory bandwidth in CUDA
– Its origin in DRAM burst
– Checking if a CUDA memory access is coalesced
– Techniques for improving memory coalescing in CUDA code

3

DRAM Burst – A System View

– Each address space is partitioned into burst sections
– Whenever a location is accessed, all other locations in the same

section are also delivered to the processor
– Basic example: a 16-byte address space, 4-byte burst sections

– In practice, we have at least 4GB address space, burst section
sizes of 128-bytes or more

3

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

4

Memory Coalescing

– When all threads of a warp execute a load instruction, if all accessed
locations fall into the same burst section, only one DRAM request
will be made and the access is fully coalesced.

4

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

5

Un-coalesced Accesses

– When the accessed locations spread across burst section
boundaries:

– Coalescing fails
– Multiple DRAM requests are made
– The access is not fully coalesced.

– Some of the bytes accessed and transferred are not used by the
threads

5

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced Loads
T0 T1 T2 T3

Un-coalesced Loads

6

How to judge if an access is coalesced?

– Accesses in a warp are to consecutive locations if the index in an
array access is in the form of

– A[(expression with terms independent of threadIdx.x) + threadIdx.x];

6

7

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A 2D C Array in Linear Memory Space
7

8

Two Access Patterns of Basic Matrix Multiplication

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

i is the loop counter in the inner product loop of the kernel code

A is m × n, B is n × k
Col = blockIdx.x*blockDim.x + threadIdx.x

H
E

IG
H

T

9

B accesses are coalesced

N
T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access
direction in
kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

10

A Accesses are Not Coalesced

T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access
direction in
kernel code

…

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3

11

Loading an Input Tile

A

B

C

W
ID

T
H

Row

Col

n

m

n

k

k

m

int tx = threadIdx.x
int ty = threadIdx.y
Accessing tile 0 2D indexing:

A[Row][tx]
B[ty][Col]

Have each thread load an A element
and a B element at the same relative
position as its C element.

12

Corner Turning

d_M d_N

W
ID

TH

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
shared
memory

Perform
multiplication

with shared memory
values

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 14.1 - Pinned Host Memory
Module 14 – Efficient Host-Device Data Transfer

2

Objective

– To learn the important concepts involved in copying (transferring) data
between host and device
– Direct Memory Access
– Pinned memory

3

CPU-GPU Data Transfer using DMA

– DMA (Direct Memory Access) hardware is used by cudaMemcpy() for
better efficiency
– Frees CPU for other tasks
– Hardware unit specialized to transfer a number of bytes requested by OS
– Between physical memory address space regions (some can be mapped I/O memory

locations)
– Uses system interconnect, typically PCIe in today’s systems

CPU Main Memory (DRAM)

GPU card
(or other I/O cards)

DMAGlobal
Memory

PCIe

4

Virtual Memory Management

– Modern computers use virtual memory management
– Many virtual memory spaces mapped into a single physical memory
– Virtual addresses (pointer values) are translated into physical addresses

– Not all variables and data structures are always in the physical
memory
– Each virtual address space is divided into pages that are mapped into and out of

the physical memory
– Virtual memory pages can be mapped out of the physical memory (page-out) to

make room
– Whether or not a variable is in the physical memory is checked at address

translation time

5

Data Transfer and Virtual Memory

– DMA uses physical addresses
– When cudaMemcpy() copies an array, it is implemented as one or more DMA

transfers
– Address is translated and page presence checked for the entire source and

destination regions at the beginning of each DMA transfer
– No address translation for the rest of the same DMA transfer so that high efficiency

can be achieved

– The OS could accidentally page-out the data that is being read or written
by a DMA and page-in another virtual page into the same physical location

6

Pinned Memory and DMA Data Transfer

– Pinned memory are virtual memory pages that are specially marked so that
they cannot be paged out

– Allocated with a special system API function call
– a.k.a. Page Locked Memory, Locked Pages, etc.
– CPU memory that serve as the source or destination of a DMA transfer must

be allocated as pinned memory

7

CUDA data transfer uses pinned memory.

– The DMA used by cudaMemcpy() requires that any source or destination in
the host memory is allocated as pinned memory

– If a source or destination of a cudaMemcpy() in the host memory is not
allocated in pinned memory, it needs to be first copied to a pinned memory –
extra overhead

– cudaMemcpy() is faster if the host memory source or destination is
allocated in pinned memory since no extra copy is needed

8

Allocate/Free Pinned Memory

– cudaHostAlloc(), three parameters
– Address of pointer to the allocated memory
– Size of the allocated memory in bytes
– Option – use cudaHostAllocDefault for now

– cudaFreeHost(), one parameter
– Pointer to the memory to be freed

9

Using Pinned Memory in CUDA

– Use the allocated pinned memory and its pointer the same way as those
returned by malloc();

– The only difference is that the allocated memory cannot be paged by the OS

– The cudaMemcpy() function should be about 2X faster with pinned memory

– Pinned memory is a limited resource
– over-subscription can have serious consequences

10

Putting It Together - Vector Addition Host Code Example

int main()
{

float *h_A, *h_B, *h_C;
…

cudaHostAlloc((void **) &h_A, N* sizeof(float),
cudaHostAllocDefault);

cudaHostAlloc((void **) &h_B, N* sizeof(float),
cudaHostAllocDefault);

cudaHostAlloc((void **) &h_C, N* sizeof(float),
cudaHostAllocDefault);

…
// cudaMemcpy() runs 2X faster

}

Accelerated Computing

GPU Teaching Kit

Lecture 14.2 - Task Parallelism in CUDA

Module 14 – Efficient Host-Device Data Transfer

2

Objective

– To learn task parallelism in CUDA
– CUDA Streams

3

Serialized Data Transfer and Computation

– So far, the way we use cudaMemcpy serializes data transfer and
GPU computation for VecAddKernel()

Trans. A Trans. B Comp Trans. C

time

Only use one direction,
GPU idle

PCIe Idle
Only use one
direction, GPU
idle

4

Device Overlap

– Some CUDA devices support device overlap
– Simultaneously execute a kernel while copying data between device and host

memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount(&dev_count);
for (int i = 0; i < dev_count; i++) {

cudaGetDeviceProperties(&prop, i);
if (prop.deviceOverlap) …

5

Ideal, Pipelined Timing

– Divide large vectors into segments
– Overlap transfer and compute of adjacent segments

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1 = A.1 + B.1

Trans
A.2

Trans
B.2

Trans
C.1

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

6

CUDA Streams

– CUDA supports parallel execution of kernels and
cudaMemcpy() with “Streams”

– Each stream is a queue of operations (kernel launches and
cudaMemcpy()calls)

– Operations (tasks) in different streams can go in parallel
– “Task parallelism”

7

Streams

– Requests made from the host code are put into First-In-First-Out
queues
– Queues are read and processed asynchronously by the driver and device
– Driver ensures that commands in a queue are processed in sequence. E.g.,

Memory copies end before kernel launch, etc.

host thread

cudaMemcpy()
kernel launch
device sync
cudaMemcpy()

FIFO

device driver

8

Streams cont.

– To allow concurrent copying and kernel execution, use multiple
queues, called “streams”
– CUDA “events” allow the host thread to query and synchronize with individual

queues (i.e. streams).

Event

host thread

Stream 0

device driver

Stream 1

9

Conceptual View of Streams

MemCpy A.0
MemCpy B.0

Kernel 0
MemCpy C.0

MemCpy A.1
MemCpy B.1

Kernel 1
MemCpy C.1

Stream 0 Stream 1

Copy Engine

PCIe
up

Kernel
Engine

Operations (Kernel launches, cudaMemcpy() calls)

PCIe
down

Accelerated Computing

GPU Teaching Kit

Lecture 14.3 - Overlapping Data Transfer with Computation
Module 14 – Efficient Host-Device Data Transfer

2

Objective

– To learn how to overlap data transfer with computation
– Asynchronous data transfer in CUDA
– Practical limitations of CUDA streams

3

Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go
here

4

Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0,…);
cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),…, stream1);

}

5

A View Closer to Reality in Previous GPUs

MemCpy A.0

MemCpy B.0

MemCpy C.0

MemCpy A.1

MemCpy B.1

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy

Engine

PCIe

up

PCIe

down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1

Direction of
arrows
changed
from original
slides [SPM]

6

Not quite the overlap we want in some GPUs

– C.0 blocks A.1 and B.1 in the copy engine queue

Trans

A.0

Trans

B.0

Trans

C.0

Trans

A.1

Comp

C.0 = A.0 + B.0

Trans

B.1

Comp

C.1= A.1 + B.1

Trans

C.1

7

Better Multi-Stream Host Code

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),…, stream1);

}

8

C.0 no longer blocks A.1 and B.1

MemCpy A.0

MemCpy B.0

MemCpy A.1

MemCpy B.1

MemCpy C.0

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy

Engine

PCIe

up

PCIe

down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1

Direction of
arrows
changed
from original
slides [SPM]

9

Better, not quite the best overlap

– C.1 blocks next iteration A.2 and B.2 in the copy engine queue

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1= A.1 + B.1

Trans
C.1

Trans
A.2

Trans
B.2

Trans
A.2

Comp
C.2 = A.2
+

Iteration n

Iteration n+1

10

Ideal, Pipelined Timing

– Will need at least three buffers for each original A, B, and C,
code is more complicated

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1 = A.1 + B.1

Trans
A.2

Trans
B.2

Trans
C.1

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

11

Hyper Queues

– Provide multiple queues for each engine
– Allow more concurrency by allowing some streams to make

progress for an engine while others are blocked

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 0

Stream 1

Stream 2
Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z

12

Wait until all tasks have completed

– cudaStreamSynchronize(stream_id)
– Used in host code
– Takes one parameter – stream identifier
– Wait until all tasks in a stream have completed
– E.g., cudaStreamSynchronize(stream0)in host code ensures that all tasks

in the queues of stream0 have completed

– This is different from cudaDeviceSynchronize()
– Also used in host code
– No parameter
– cudaDeviceSynchronize() waits until all tasks in all streams have completed

for the current device

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 4.1 – Memory and Data Locality
	Objective
	Review: Image Blur Kernel.
	How about performance on a GPU
	Example – Matrix Multiplication
	A Basic Matrix Multiplication
	Example – Matrix Multiplication
	A Toy Example: Thread to P Data Mapping
	Calculation of P0,0 and P0,1
	Memory and Registers in the Von-Neumann Model
	Programmer View of CUDA Memories
	Declaring CUDA Variables
	Example:�Shared Memory Variable Declaration
	Where to Declare Variables?
	Shared Memory in CUDA
	Hardware View of CUDA Memories
	Slide Number 17
	Lecture-4-2-tiled-algorithms.pdf
	Module 4.2 – Memory and Data Locality
	Objective
	Global Memory Access Pattern �of the Basic Matrix Multiplication Kernel
	Tiling/Blocking - Basic Idea
	Tiling/Blocking - Basic Idea
	Basic Concept of Tiling
	Some Computations are More Challenging to Tile
	Carpools need synchronization.
	Carpools need synchronization.
	Same with Tiling
	Barrier Synchronization for Tiling
	Outline of Tiling Technique
	Slide Number 13

	Lecture-4-3-tiled-matrix-multiplication.pdf
	Module 4.3 - Memory Model and Locality
	Objective
	Matrix Multiplication
	Tiled Matrix Multiplication
	Loading a Tile
	Phase 0 Load for Block (0,0)
	Phase 0 Use for Block (0,0) (iteration 0)
	Phase 0 Use for Block (0,0) (iteration 1)
	Phase 1 Load for Block (0,0)
	Phase 1 Use for Block (0,0) (iteration 0)
	Phase 1 Use for Block (0,0) (iteration 1)
	Execution Phases of Toy Example
	Execution Phases of Toy Example (cont.)
	Barrier Synchronization
	Slide Number 15

	Lecture-4-4-tiled-matrix-multiplication-kernel.pdf
	Module 4.4 - Memory and Data Locality
	Objective
	Loading Input Tile 0 of M (Phase 0)
	Loading Input Tile 0 of N (Phase 0)
	Loading Input Tile 1 of M (Phase 1)
	Loading Input Tile 1 of N (Phase 1)
	M and N are dynamically allocated - use 1D indexing
	Tiled Matrix Multiplication Kernel
	Tiled Matrix Multiplication Kernel
	Tiled Matrix Multiplication Kernel
	Tile (Thread Block) Size Considerations
	Shared Memory and Threading
	Slide Number 13

