
Accelerated Computing

GPU Teaching Kit

Kernel-Based SPMD Parallel Programming

Module 3.1 - CUDA Parallelism Model

2

Objective
– To learn the basic concepts involved in a simple CUDA kernel

function
– Declaration
– Built-in variables
– Thread index to data index mapping

2

3

Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
int i = threadIdx.x+blockDim.x*blockIdx.x;
if(i<n) C[i] = A[i] + B[i];

}

Device Code

4

Example: Vector Addition Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
// d_A, d_B, d_C allocations and copies omitted
// Run ceil(n/256.0) blocks of 256 threads each
vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);

}

Host Code

4

The ceiling function makes sure that there
are enough threads to cover all elements.

5

More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
dim3 DimGrid((n-1)/256 + 1, 1, 1);
dim3 DimBlock(256, 1, 1);
vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

5

Host Code

This is an equivalent way to express the
ceiling function.

6

__host__
void vecAdd(…)
{
dim3 DimGrid(ceil(n/256.0),1,1);
dim3 DimBlock(256,1,1);

vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B
,d_C,n);
}

Kernel execution in a nutshell

6

GridBlk 0 Blk N-1
• • •

GPUM0
RAM

Mk• • •

__global__
void vecAddKernel(float *A,

float *B, float *C, int n)
{

int i = blockIdx.x * blockDim.x
+ threadIdx.x;

if(i<n) C[i] = A[i]+B[i];
}

7

More on CUDA Function Declarations

− __global__ defines a kernel function
− Each “__” consists of two underscore characters
− A kernel function must return void

− __device__ and __host__ can be used together
− __host__ is optional if used alone

7

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable from
the:

Executed on
the:

8

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

Compiling A CUDA Program

2

host device

Kernel 1

Grid 1 Block
(0, 0)

Block
(1, 1)

Block
(1, 0)

Block
(0, 1)

Grid 2

Block (1,0)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

3

16 16 blocks

62 76 picture

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Row*Width+Col = 2*4+1 = 9
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

__global__ void PictureKernel(float* d_Pin, float* d_Pout,
int height, int width)

{

// Calculate the row # of the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of d_Pout if in range
if ((Row < height) && (Col < width)) {
d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];

}
}

Scale every pixel value by 2.0

	 	

…

…

Not all threads in a Block will follow the same control flow path.

Accelerated Computing

GPU Teaching Kit

Color-to-Grayscale Image Processing Example

Lecture 3.3 – CUDA Parallelism Model

GPU Teaching Kit

2

Objective
– To gain deeper understanding of multi-dimensional grid kernel

configurations through a real-world use case

2

3

RGB Color Image Representation

– Each pixel in an image is an RGB value
– The format of an image’s row is

(r g b) (r g b) (r g b)
– RGB ranges are not distributed uniformly
– Many different color spaces, here we show the

constants to convert to AdbobeRGB color space
– The vertical axis (y value) and horizontal axis (x value) show

the fraction of the pixel intensity that should be allocated to G
and B. The remaining fraction (1-y–x) of the pixel intensity that
should be assigned to R

– The triangle contains all the representable colors in this color
space

4

RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of
each pixel carries only intensity information.

5

Color Calculating Formula

– For each pixel (r g b) at (I, J) do:
grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

– This is just a dot product <[r,g,b],[0.21,0.71,0.07]> with the
constants being specific to input RGB space

0.21
0.71

0.07

6

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

7

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

8

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

Pixels
processed
by a thread
block

Thread Scheduling

Lecture 3.5 – CUDA Parallelism Model

Accelerated Computing

GPU Teaching Kit

2

Objective
– To learn how a CUDA kernel utilizes hardware execution resources

– Assigning thread blocks to execution resources
– Capacity constrains of execution resources
– Zero-overhead thread scheduling

3

Transparent Scalability

– Each block can execute in any order relative to others.
– Hardware is free to assign blocks to any processor at any time

– A kernel scales to any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

4

Example: Executing Thread Blocks

– Threads are assigned to Streaming
Multiprocessors (SM) in block granularity

– Up to 8 blocks to each SM as resource allows
– Fermi SM can take up to 1536 threads

– Could be 256 (threads/block) * 6 blocks
– Or 512 (threads/block) * 3 blocks, etc.

– SM maintains thread/block idx #s
– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

SM

5

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

6

The Von-Neumann Model with SIMD units

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Single Instruction Multiple Data
(SIMD)

7

Warps as Scheduling Units

• Each Block is executed as 32-thread Warps
– A hardware [spm] implementation decision,

not part of the CUDA programming model
– Warps are scheduling units in SM
– Threads in a warp execute in SIMD
– Future GPUs may have different number of

threads in each warp

8

Warp Example
• If 3 blocks are assigned to an SM and each block has 256 threads,

how many Warps are there in an SM?
– Each Block is divided into 256/32 = 8 Warps
– There are 8 * 3 = 24 Warps

…t0 t1 t2 … t31
…

…t0 t1 t2 … t31
…Block 0 Warps Block 1 Warps

…t0 t1 t2 … t31
…Block 2 Warps

Register File

L1 Shared Memory

9

Example: Thread Scheduling (Cont.)
– SM implements zero-overhead warp scheduling

– Warps whose next instruction has its operands ready for consumption are eligible
for execution

– Eligible Warps are selected for execution based on a prioritized scheduling policy
– All threads in a warp execute the same instruction when selected

10

Block Granularity Considerations
– For Matrix Multiplication using multiple blocks,

should I use 8X8, 16X16 or 32X32 blocks for Fermi?

– For 8X8, we have 64 threads per Block. Since each SM
can take up to 1536 threads, which translates to 24
Blocks. However, each SM can only take up to 8 Blocks,
only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each
SM can take up to 1536 threads, it can take up to 6
Blocks and achieve full capacity unless other resource
considerations overrule.

– For 32X32, we would have 1024 threads per Block. Only
one block can fit into an SM for Fermi. Using only 2/3 of
the thread capacity of an SM.

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 3.1 - CUDA Parallelism Model
	Objective
	Example: Vector Addition Kernel
	Example: Vector Addition Kernel Launch (Host Code)
	More on Kernel Launch (Host Code)
	Kernel execution in a nutshell
	More on CUDA Function Declarations
	Compiling A CUDA Program
	Slide Number 9
	Lecture-3-1-kernel-SPMD-parallelism.pdf
	Module 3.1 - CUDA Parallelism Model
	Objective
	Example: Vector Addition Kernel
	Example: Vector Addition Kernel Launch (Host Code)
	More on Kernel Launch (Host Code)
	Kernel execution in a nutshell
	More on CUDA Function Declarations
	Compiling A CUDA Program
	Slide Number 9

	Lecture-3-3-color-to-greyscale-image-processing-example.pdf
	Lecture 3.3 – CUDA Parallelism Model
	Objective
	RGB Color Image Representation
	RGB to Grayscale Conversion
	Color Calculating Formula
	RGB to Grayscale Conversion Code
	RGB to Grayscale Conversion Code
	RGB to Grayscale Conversion Code
	Slide Number 9

	Lecture-3-5-transparent-scaling.pdf
	Lecture 3.5 – CUDA Parallelism Model
	Objective
	Transparent Scalability
	Example: Executing Thread Blocks
	The Von-Neumann Model
	The Von-Neumann Model with SIMD units
	Warps as Scheduling Units
	Warp Example
	Example: Thread Scheduling (Cont.)
	Block Granularity Considerations
	Slide Number 11

