
Threads 1

Thread basics

Threads and processes
• Every program you run starts a process

– A process is the entity associated with a running
program that owns the resources of the running
program and that is scheduled and managed by the
operating system.

– A process has its own address space, open files, is
allocated physical memory, etc.

• Every process has at least one thread
– A thread has its own program counter and registers
– System resources used by the thread are owned by

the process
– In particular, all threads associated with a process

share the same address space.
2

Why use threads?

• Easier programming
– Many tasks whose execution needs to appear to be

interleaved/happening at the same time
– Some tasks can run forever (e.g., watch for mouse

input)
– Having a loop iterate over them and making sure

each tasks gets its share of the processor can lead to
complex programs

• Better performance
– To use all of the cores in a multicore processor we

need at least one thread for each core

3

Why multicores
• Life was simpler when processor clock rates doubled

every couple of years or so
• Processors got faster, enabling more complicated

software, when motivated faster processors (and buying
a new machine) which motivated even more complicated
software . . .

• If something cannot go on forever, it will stop. --Stein's
Law, first pronounced in the 1980s
– Always true of exponentials
– E = 1/2*C*V2, where E is energy, C is capacitance and

V is voltage.
– Higher frequencies require higher voltages
– More cores increase C, which increases energy

linearly
4

5

Java offers good support for
multithreading

6

class YourClass extends Thread {
 public void run () {
 // code for the thread, i.e. what it does
 }
}
...
public static void main(String [] args) {
 YourClass t1 = new YourClass("...");
 t1.start();
}

Threads 2

Java Thread

main start

Threads 4

Thread Execution Time
t1 t1 t1

t2 t2 t2

t3 t3 t3

t1 t1 t1 t1 t1 t1

t2 t2 t2 t2 t2 t2

t3 t3 t3 t3 t3 t3

time

One core or
processor

>= 2 cores or
processors

• advantages of many threads, even on single processor
– impression of continuous progress in all threads
– improve utilization of different components
– handle user inputs more quickly

• disadvantage of many threads
– add slight work to program structure
– adds scheduling overhead
– incur overhead in thread creation
– cause complex interleaving the execution and

possibly wrong results (if you do not think "in parallel")

Threads 5

Many Threads, Few Processors

10

A typical numerical program has sequential periods of
execution

followed
by
parallel
periods

followed
by
parallel
periods

followed by sequential periods

11

As programmers, we can spawn new threads at the
start of a parallel phase, and kill them at the end of
the phase

Or we can start the threads once, and at the end of a
parallel period put them into a pool to be reused at
the next parallel period

Or have them suspend to begin working again

A Second Reason for Threads

• Let say you have a game that is handling multiple
players and characters

• The game also needs to monitor keyboard input, mouse
clicks, etc.

• There are several ways to code this
– One big loop that goes over everything
– A thread that monitors input and an action loop
– A thread for input and each character

12

One big loop

while (true) {
 check if new input, if so, put on the input queue // what if
 // we need to pause to check what is coming next to
 // complete a command to put on the input queue?
 update char1 action
 update char2 action
 . . .
 update charn action
}

13

One big loop

Thread 0:
Check for input, clean it up, put on an input queue

Thread 1:
while (true) {
 update char1 action
 update char2 action
 . . .
 update charn action
}

14

One big loop

Thread 0:
Check for input, clean it up, put on an input queue

Thread 1:
 char1 actions

. . .

Thread n:
 update charn action
}

15

Two ways to spawn threads in Java
First Way

• Inherit from the Thread
class

• Invoke the run method
on the object via the
start method call

• We don’t have to write
start -- it comes for free
(inherited from Thread)

• The run method can be
viewed as the "main"
method of the thread

16

public class myThread extends Thread {
 . . .
 public void run() {
 // thread actions here
 }
 . . .
}

myThread t1 = new Mythread(...);
t1.start(); // indirectly invokes t1.run()

Two ways to spawn threads in Java
Second Way

• Implement Runnable
interface

• Invoke the start
method on the Thread
object

• The start method calls
the run method after
some underlying system
actions.

17

public class myRunnable
 extends C implements runnable {
 public myRunnable() {
 // constructor stuff
 public void run() {
 // thread actions here
 }
 . . .
}
. . . .
Thread t1 = new Thread(new MyRunnable()).start();

From a discussion on StackOverflow
http://stackoverflow.com/questions/541487/implements-runnable-vs-extends-thread
Moral of the story:

Inherit only if you want to override
some behavior.

Or rather it should be read as:
Inherit less, interface more.

Or, in other words, implementing
Runnable is preferable to extends Thread

18

http://stackoverflow.com/questions/541487/implements-runnable-vs-extends-thread

Calling run directly does not start a
new thread

19

The difference between run and start
Sai Hegde at http://www.coderanch.com/t/234040/threads/java/Difference-between-run-start-method

20

1.Thread t1 = new Thread();

2.Thread t2 = new Thread();

3.t1.run();
4.t2.run(); t1.run() is guaranteed to completely execute before t2.run, i.e. it

does not execute the two run calls asynchronously with the
calling code. The run method is executed with the same thread
that calls t1.run() and t1.run().

Often not useful.

http://www.coderanch.com/t/234040/threads/java/Difference-between-run-start-method

Calling run does not start a new Thread

21

1.Thread t1 = new Thread();
2.Thread t2 = new Thread();
3.t1.run();
4.t2.run();

t1.run and t2.run will execute one after the other like any
other method call

Calling start does start a new Thread

22

1.Thread t1 = new Thread();
2.Thread t2 = new Thread();
3.t1.start();
4.t2.start();

t1.start and t2.start can, and usually will, execute
asynchronously with respect to one another and the
calling thread.

private class LawnMower extends Thread {
 public void run() {
 cutTheGrass();
 }
}
public void doChoresFirstThenReadComics() {
 new LawnMower.run();
 readComics();
}
public void readComicsWhileSomeoneElseDoesChores() {
 new LawnMower.start();
 readComics();
}

23

An attempt at a humorous example of this

What happens with start?
• Thread t1 = new Thread() creates a new Java Thread

object.
• t1.run() invokes the run method on that object
• To get asynchronous execution, a new thread, i.e., a new

locus of control, needs to be created.
• This is what start does.

– When start is executed, it creates a new thread
(generally an OS thread on most implementations)

– it executes the run method in that new thread.
– This is what lets the actions performed by the run

method execute asynchronously with other code.

24

All threads for a process share
memory

• If thread T0 writes a value to X, and thread T1 reads X,
the value of X will (eventually) change

• The major challenge of writing correct multi-threaded
programs is managing accesses to variable shared
across different threads

25

ordering and atomicity are important
and different

26

a = b.getBalance();

a++;

b.setBalance(a);

a = b.getBalance();

a++;

b.setBalance(a);

thread 0 thread 1

Program Memory

object b

$497balance

Both threads
can access the
same object

Thread 0

a

Thread 1

a

27

a = b.getBalance();

a++;

b.setBalance(a);

a = b.getBalance();

a++;

b.setBalance(a);

thread 0 thread 1

Program Memory

object b

$497balance

thread 0

a $497

thread 1

a

28

a = b.getBalance();

a++;

b.setBalance(a);

a = b.getBalance();

a++;

b.setBalance(a);

thread 0 thread 1

Program Memory

object b

$497balance

thread 0

a $497

thread 1

a $497

29

a = b.getBalance();

a++;

b.setBalance(a);

a = b.getBalance();

a++;

b.setBalance(a);

thread 0 thread 1

Program Memory

object b

$498balance

thread 0

a $498

thread 1

a $497

30

a = b.getBalance();

a++;

b.setBalance(a);

a = b.getBalance();

a++;

b.setBalance(a);

thread 0 thread 1

Program Memory

object b

$498balance

The end result
probably
should have
been $499.
One update is
lost.

thread 0

a $498

thread 1

a $498

synchronization enforces atomicity

31

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

thread 0 thread 1

Program Memory

object b

$497balance

Make them
atomic using
synchronized

thread 0

a

thread 1

a

One thread acquires
the lock

32

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$497balance

thread 0

a

thread 1

a

The other thread waits
until the lock is free

One thread acquires
the lock

33

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$498balance

thread 0

a

thread 1

a $498

The other thread waits
until the lock is free

One thread acquires
the lock

34

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$498balance

thread 0

a $498

thread 1

a $498

The other thread waits
until the lock is free

One thread acquires
the lock

35

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$499balance

thread 0

a $499

thread 1

a $498

The other thread waits
until the lock is free

Locks typically do not enforce
ordering

36

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

synchronized(b) {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

Either order is
possible

For many (but
not all)
programs,
either order is
correct

Java Locks

• Every object can be locked
• the code synchronized(b) {stmt_list} says that

no other code synchronized on the object referenced by
b can execute at the same time as stmt_list in the
thread holding the lock.

• By locking on objects accessed in a block of code, the
operations can be made atomic. Assume the code
accesses objects o1 and o2:
– Any other code accessing o1 and o2 has to

synchronize on at least one lock that is the same
– Simply getting a lock does not make the code atomic:

it is necessary for other code to cooperate and try and
get at least one lock that is the same

– This violates encapsulation, but life is tough 37

38

synchronized(o1) {
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 o1.foo();
 o2.bar();
}

synchronized(o1) {
 o1.foo();
 o2.bar();
}

synchronized(o1) {
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 o1.foo();
 o2.bar();
}

Wrong - no
synchronization

Works -
synchronized

Works -
synchronized

39

synchronized(o3) {
 o1.foo();
 o2.bar();
}

synchronized(o3) {
 o1.foo();
 o2.bar();
}

Works

Works

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

Works

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

40

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

very
dangerous

Acquiring multiple locks can lead to
deadlock

When doing multithreaded programming, assume that anything
bad that can happen will happen if it is not prevented from
happening by locks or other mechanisms.

Bugs involving races, deadlock, etc. are incredibly hard to find
because the program behavior is non-deterministic.

41

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

very
dangerous

Can lead to deadlock

o1
lock

42

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

very
dangerous

Can lead to deadlock

o1
lock

o2
lock

The left thread cannot
get o2's lock, the right
thread cannot get o1's
lock, so neither thread
can finish and release
their locks -- deadlock!

43

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

very
dangerous

Can lead to deadlock

o1
lock

o2
lock

There is always an
ordering cycle in
programs that can
deadlock.

44

Class B {
 . . .
 synchronized void foo(T o1) {
 o1.foo();
 o2.bar();
 }
 . . .
}
. . .
B b = new B();
b.foo(ox);

Synchronized methods

When foo is invoked, a lock is
acquired on object ref’d by b, not ox

45

Class B {
 . . .
 synchronized void foo(T o1, B this) {
 o1.foo();
 o2.bar();
 }
 . . .
}
. . .
B b = new B();
b.foo(ox, b);

Synchronized methods - how this
works

When foo is invoked, a lock is
acquired on object ref’d by b, not ox

46

Class B {
 . . .
 synchronized void foo(T o1) {
 o1.foo();
 o2.bar();
 }

Synchronized method semantics

Class B {
 . . .
 void foo(T o1) {
 synchronized(this) {
 o1.foo();
 o2.bar();
 }
 }

As if a lock is acquired on the
this, i.e. synchronized(this) within
the method.

47

Class B {
 static T obj = null;
 B(T t) {obj = t;}
 synchronized void foo(Object o1) {
 B.obj.f = . . .
 }
}

Synchronized methods
There will
be a race on
the access to
B.obj.f (i.e.
oX.f) in the
calls to
b1.foo and
b2.foo.

Thread 0

B b1 = new B(oX);
b1.foo();

Thread 1

B b2 = new B(oX);
b2.foo();

48

Class B {
 static T obj = null;
 B(T t) {obj = t;}
 synchronized void foo(Object o1) {
 B.obj.f = . . .
 }
}

Synchronized methods

Thread 0

B b1 = new B(oX);
b1.foo();

Thread 1

B b2 = new B(oX);
b2.foo();

b1
b1
object
foo() {
B.obj.f = T

object
oX
float fb2

b1
object
foo() {
B.obj.f =

lock on
b1 object

lock on b2 object

49

In this case synchronize on B.obj
Both threads
now
synchronize
on the field
being
accessed

Class B {
 T obj = null;
 B(T t) {obj = t;}
 synchronized void foo(Object o1) {
 synchronize(obj) {
 obj.f = . . .
 }
 }
}

Thread 0

B b1 = new B(oX);
b1.foo();

Thread 1

B b2 = new B(oX);
b2.foo();

Class B {
 T obj = null;
 B(T t) {obj = t;}
 synchronized void foo(Object o1) {
 synchronize(obj) {
 obj.f = . . .
 }
 }
}

50

Synchronized methods

Thread 0

B b1 = new B(oX);
b1.foo();

Thread 1

B b2 = new B(oX);
b2.foo();

b1
b1
object
foo() {
B.obj.f = T

object
oX
float fb2

b1
object
foo() {
B.obj.f =

lock on
obj object

lock on obj object

51

A question . . .
In this case
obj is
initialized by
the
constructor.
What if obj
was equal to
null?

Class B {
 T obj = null;
 B(T t) {obj = t;}
 synchronized void foo(Object o1) {
 synchronize(obj) {
 obj.f = . . .
 }
 }
}

Thread 0

B b1 = new B(oX);
b1.foo();

Thread 1

B b2 = new B(oX);
b2.foo();

A general rule

• To avoid races do one of the following
– Always synchronize on the shared object
– Always synchronize on another object that is used

everywhere in the program to synchronize the shared
object(s) -- requires communication among the
developers of the other parts of the program.

52

A general rule - first case

• To avoid races do one of the following
– Always synchronize on the shared object(s)
– Always synchronize on another object that is used

everywhere in the program to synchronize the shared
object

53

See the class B example three slides back

Be careful about deadlock!

A general rule - second case

• To avoid races do one of the following
– Always synchronize on the shared object
– Always synchronize on another object that is used

everywhere in the program to synchronize the shared
object

54

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

We will consider the code below

An example of the second case

55

synchronized(o1) {
 synchronized(o2)
 o1.foo();
 o2.bar();
}

synchronized(o2) {
 synchronized(o1)
 o1.foo();
 o2.bar();
}

synchronized(Lock.l1) {
 o1.foo();
 o2.bar();
}

synchronized(Lock.l1) {
 o1.foo();
 o2.bar();
}

class Lock {
 static l1 = new Object();
}

Question: Why not always use a
single lock to synchronize
everything?

56

Weird things happen without proper
synchronization

57

Thread 1

while (C.flag == 0);

v1 = C.newVal;

System.out.println(v1);

Thread 0

C.newVal = 52;

C.flag = 1;

Executes before threads are spawned
newVal = 0;
flag = 0

What is the purpose of this code?
What value(s) can be printed for v1?
Does the while loop end?

Weird things happen without proper
synchronization

58

Thread 1

while (C.flag == 0);

v1 = C.newVal;

System.out.println(v1);

Thread 0

C.newVal = 52;

C.flag = 1;

Executes before threads are spawned

newVal = 0;
flag = 0

The bold line orders (and the dotted
transitive order) are NOT guaranteed
by Java and most languages. E.g., this
would be an is an undefined C++
program.

Weird things happen without proper
synchronization

59

Thread 1

while (C.flag = 0);

v1 = C.newVal;

System.out.println(v1);

Thread 0

C.newVal = 52;

C.flag = 1;

Executes before threads are spawned

newVal = 0;
flag = 0

No guarantee the while will ever end
No guarantee v1 will get the value
assigned in Thread 0.

What causes the problem?

60

Thread 1

load C.flag, r1
while (r1 == 0);

v1 = C.newVal;

System.out.println(v1);

Executes before threads are spawned

newVal = 0;
flag = 0

Compiler, processor or memory
subsystem may reorder instructions.
Register allocation may keep value of
flag in the while loop in a register.

Thread 0

C.flag = 1;

C.newVal = 52;

61

Thread 1

synchronize(obj) {f = C.flag;}
while (f == 0) {
 synchronize(obj) {f = C.flag;}
}

v1 = C.newVal;

System.out.println(v1);

Thread 0

synchronized(obj) {
 C.newVal = 52;
 C.flag = 1;
}

Executes before threads are spawned

newVal = 0;
flag = 0

obj must be the
same in all threads

Synchronized also makes sure
values are updated

• Compilers attempt to store values in registers
• Even if the cache entry for a variable is invalidated, the

old or stale value may remain in a register
• When encountering a synchronized block java makes

sure that
– Values in registers are refreshed (reloads the

registers from memory or cache)
– Reads and writes to memory prior to the synchronized

block are finished
• Before leaving a synchronized block Java makes sure

that
– all reads and writes have finished, i.e., the value are

in memory.
62

Thus, synchronization does three
things

• It enforces atomicity by letting the
programmer only allow one thread at
a time to access storage locations
inside of synchronized code

• It forces the compiler to get fresh
values for variables stored in registers

• It forces the compiler to write updated
values to global memory

63

Volatile variables
• In embedded devices and controllers it

is common to have a sensor/external
device automatically update registers
on the processors

• Program variables that contain values
from this register should be updated
every time they are read

• Volatile variables in Java can also be
used to force threads to update values
and write values within a synchronized
block

• Use of volatile can decrease
performance

64

5 a rc

T0

Sensor
or
external
device

Even long data types require
attention

65

Not all primitive stores
are atomic

public class C {
static long li = 0;

}

Thread 0
...
C.li = Long.MAX_VALUE();

Thread 1
...
C.li = 0;

What are the allowed values for C.li after both stores
(assuming they are unsynchronize)?

Not all primitive stores
are atomic

Thread 0
...
C.li = Long.MAX_VALUE();

Thread 1
...
C.li = 0;

four values possible:
MAX_VALUE, 0,
MAX_VALUE & 32(1).32(0) (32 1 bits followed by 32 0 bits)
MAX_VALUE & 32(0).32(1) (32 0 bits followed by 32 1 bits)

Why have such an
abomination?

Shared Memory
32 bits 32 bits

t0

011...1 111...1

t1

000...0 000...0

The right thing happens

Shared Memory
32 bits 32 bits

t0 t1

011...1

111...1 000...0011...1 000...0

The right thing happens

Shared Memory
32 bits

t0 t1

011...1

111...1

111...1 000...0011...1 000...0

The right thing happens

Shared Memory
111...1

t0 t1

011...1

000...0

000...0

111...1 000...0011...1 000...0

The right thing happens

Shared Memory
111...1

t0 t1

011...1000...0 000...0

111...1 000...0011...1 000...0

The wrong thing happens

Shared Memory
32 bits 32 bits

t0 t1

011...1

111...1 000...0011...1 000...0

The wrong thing happens

Shared Memory
32 bits 32 bits

t0 t1

000...0

011...1

111...1 000...0011...1 000...0

The wrong thing happens

Shared Memory

t0

000...0

t1

32 bits

000...0

111...1 000...0011...1 000...0

The wrong thing happens

Shared Memory

t0

000...0

t1

32 bits000...0

111...1

111...1 000...0011...1 000...0

The wrong thing happens

Shared Memory

t0

000...0

t1

32 bits000...0111...1

111...1 000...0011...1 000...0

Orders not prevented can
happen - so prevent them

Thread 0
...
synchronized(C) {

C.li = Long.MAX_VALUE();
}

Thread 1
...
synchronized(C) {

C.li = 0;
}

t0

011...1 111...1

t0

000...0000...0

Shared Memory
000...0

Synchronization forces one or
the other write to finish before

the other begins

000...0

Not just a Java problem

t0

011...1 111...1

t0

000...0000...0

Shared Memory
000...0

This problem will occur with
any language unless
1. the language spec/

compiler enforce the
atomicity of the writes

2. the hardware enforces
atomicity of multi-word
writes (and program will
not be portable)

111...1

Why don’t all language specs prevent this?

• The problem has three sources:

1. The program has a race

2. Synchronization is not for free

3. Writing specs that cover what a racy program means is
hard, as in really, really hard

• Programmers should not write racy programs unless they
really, really, REALLY know what they are doing -- and even
then they probably don’t (double-lock idiom)

• If atomicity for atomics is provided by default, all stores of
multi-word primitives will be slower to help poorly written
programs

From the Java Language
Specification, 2nd edition, Chapter

17

81

In the absence of explicit synchronization, an
implementation is free to update the main memory in an
order that may be surprising. Therefore the programmer
who prefers to avoid surprises should use explicit
synchronization.

Join/Wait/Notify/NotifyAll
• These are all Java provided methods to allow you to control

the execution order of threads.
Thread t1 = new Thread(. . .);
...
t1.join()

• This code blocks until t1 completes. join is inherited from a
thread class

• join(long millis) waits millis milliseconds for the
thread to die

• join(long millis, int nanos) waits millis
milliseconds and nanos nanoseconds for the thread to die

82

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html#join(long)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html#join(long,%20int)

Wait()
• A method in Object
• Puts the thread that executes the wait method in the wait

queue associated with the object’s monitor (lock) where it
stays until another thread executes a notify (and it is chosen)
or notifyAll or it is interrupted
– the thread wanting to wait must own the monitor
– threads own monitors

• By executing a synchronized instance method of that
object.

• By executing the body of a synchronized statement that
synchronizes on the object.

• For objects of type Class, by executing a synchronized
static method of that class.

83

Notify
• A method in Object
• notify - wake up a single thread waiting on the executing

object's monitor. You don't get to pick the thread. The woken
up thread acquires the monitor.
– the notifying thread must own the monitor
– the notified thread competes with other threads to acquire

the monitor as soon as the notifying thread relinquishes it
• notifyAll wakes up all such threads and puts them all into the

locks blocked queue. Only one notified thread will acquire the
lock and continue on. The others will wait in the blocked
queue for the lock to be released and then acquire it, one-by-
one.

• Use notify when all threads accessing the resource are the
same. Use notifyAll otherwise. As a general rule, if no
specific reason to use notify, use notifyAll. 84

Stop
stop()
 Deprecated. This method is inherently unsafe. Stopping a
thread with Thread.stop causes it to unlock all of the monitors that
it has locked (as a natural consequence of the unchecked
ThreadDeath exception propagating up the stack). If any of the
objects previously protected by these monitors were in an
inconsistent state, the damaged objects become visible to other
threads, potentially resulting in arbitrary behavior. Many uses of
stop should be replaced by code that simply modifies some
variable to indicate that the target thread should stop running. The
target thread should check this variable regularly, and return from
its run method in an orderly fashion if the variable indicates that it
is to stop running. If the target thread waits for long periods (on a
condition variable, for example), the interrupt method should be
used to interrupt the wait.

85

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html#stop()

86

public class BlockingQueue<T> {

 private Queue<T> queue = new LinkedList<T>();
 private int capacity;

 public BlockingQueue(int capacity) {
 this.capacity = capacity;
 }

 // code to add and remove elements to/from the queue
}

Notify/Wait example

Notify/Wait example continued

87

				public	synchronized	void	put(T	element)	throws		
											InterruptedException	{	
								while(queue.size()	==	capacity)	{	
												wait();	
								}	

								queue.add(element);	
								notifyAll();	
				}

T0
wait queue

item 0

item 1

item 2

item n

. . .

Notify/Wait example continued

88

				public	synchronized	void	put(T	element)	throws		
											InterruptedException	{	
								while(queue.size()	==	capacity)	{	
												wait();	
								}	

								queue.add(element);	
								notifyAll();	
				}

T0
wait queue

T1

blocked queue

item 0

item 1

item 2

item n

. . .

Notify/Wait example continued

89

public	synchronized	T	take()	throws	
InterruptedException	{	
								while(queue.isEmpty())	{	
												wait();	
								}	

								T	item	=	queue.remove();	
								notifyAll();	
								return	item;	
				}

T0
wait queue

T1

blocked queue

item 0

item 1

item 2

item n-1

. . .

