
PThreads

Thanks to LLNL for their tutorial
from which these slides are

derived
http://www.llnl.gov/computing/tutorials/

workshops/workshop/pthreads/MAIN.html

1

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

Processes and threads
• Understanding what a thread means

knowing the relationship between a process
and a thread. A process is created by the
operating system.

– Processes contain information about
program resources and program
execution state, including:

• Process ID, process group ID, user
ID, and group ID, address space

• Environment, working directory
• Program instructions, registers,

stack, heap
• File descriptors, inter-process

communication tools (such as
message queues, pipes,
semaphores, or shared memory),
signal actions

• Shared libraries
2

Processes and threads, cont.
• Threads use and exist within these

process resources, yet are able to be
scheduled by the operating system
and run as independent entities
within a process

• A thread can possess an independent
flow of control and be schedulable
because it maintains its own:

–Stack pointer
–Registers
–Scheduling properties (such as

policy or priority)
–Set of pending and blocked

signals
–Thread specific data.

3

Processes and threads, cont.

• A process can have multiple threads, all of which
share the resources within a process and all of which
execute within the same address space

• Within a multi-threaded program, there are at any time
multiple points of execution

• Because threads within the same process share
resources:

– Changes made by one thread to shared system resources
(such as closing a file) will be seen by all other threads

– Two pointers having the same value point to the same data
– Reading and writing to the same memory locations is

possible, and therefore requires explicit synchronization by
the programmer

4

What are Pthreads?

• Historically, hardware vendors have implemented their
own proprietary versions of threads.

– Standardization required for portable multi-threaded
programming

– For Unix, this interface specified by the IEEE POSIX 1003.1c
standard (1995).

• Implementations of this standard are called POSIX threads, or
Pthreads.

• Most hardware vendors now offer Pthreads in addition to their
proprietary API's

• Pthreads are defined as a set of C language programming
types and procedure calls, implemented with a pthread.h
header/include file and a thread library

– Multiple drafts before standardization -- this leads to
problems 5

Posix Threads - 3 kinds
• "Real" POSIX threads, based on the IEEE POSIX

1003.1c-1995 (also known as the ISO/IEC
9945-1:1996) standard, part of the ANSI/IEEE
1003.1, 1996 edition, standard. POSIX
implementations are, not surprisingly, the standard on
Unix systems. POSIX threads are usually referred to
as Pthreads.

• DCE threads are based on draft 4 (an early draft) of
the POSIX threads standard (which was originally
named 1003.4a, and became 1003.1c upon
standardization).

• Unix International (UI) threads, also known as Solaris
threads, are based on the Unix International threads
standard (a close relative of the POSIX standard).

6

What are threads used for?
• Tasks that may be suitable for threading

include tasks that
– Block for potentially long waits (Tera MTA/HEP)
– Use many CPU cycles
– Must respond to asynchronous events
– Are of lesser or greater importance than other

tasks
– Are able to be performed in parallel with other tasks

• Note that numerical computing and
parallelism are a small part of what
parallelism is used for

7

Three classes of Pthreads
routines

• Thread management: creating, detaching, and joining
threads, etc. They include functions to set/query thread
attributes (joinable, scheduling etc.)

• Mutexes: Mutex functions provide for creating,
destroying, locking and unlocking mutexes. They are
also supplemented by mutex attribute functions that set
or modify attributes associated with mutexes.

• Condition variables: The third class of functions
address communications between threads that share a
mutex. They are based upon programmer specified
conditions. This class includes functions to create,
destroy, wait and signal based upon specified variable
values. Functions to set/query condition variable
attributes are also included.

8

Creating threads
• pthread_create (thread, attr, start_routine, arg)
• This routine creates a new thread and makes it executable. Typically,

threads are first created from within main() inside a single process.
– Once created, threads are peers, and may create other threads
– The pthread_create subroutine returns the new thread ID via the

thread argument. This ID should be checked to ensure that the
thread was successfully created

– The attr parameter is used to set thread attributes. Can be an object,
or NULL for the default values

– start_routine is the C routine that the thread will execute once it is
created. A single argument may be passed to start_routine via arg
as a void pointer.

– The maximum number of threads that may be created by a process is
implementation dependent.

• Question: After a thread has been created, how do you know when it will
be scheduled to run by the operating system...especially on an SMP
machine? You don’t!

9

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_create.html

Terminating threads

• How threads are terminated:
• The thread returns from its starting routine

(the main routine for the initial thread)
• The thread makes a call to the
pthread_exit subroutine

• The thread is canceled by another thread
via the pthread_cancel routine
• Some problems can exist with data consistency

• The entire process is terminated due to a
call to either the exec or exit
subroutines.

10

pthread_exit(status)
• pthread_exit() routine is called after a thread has

completed its work and is no longer required to exist
• If main() finishes before the threads it has created, and

exits with pthread_exit(), the other threads will
continue to execute.
– Otherwise, they will be automatically terminated when
main() finishes

• The programmer may optionally specify a termination
status, which is stored as a void pointer for any thread that
may join the calling thread

• Cleanup
– pthread_exit() routine does not close files
– Recommended to use pthread_exit() to exit from all

threads...especially main().
11

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
void* PrintHello(void *threadid){
 printf(”\n%d: Hello World!\n", threadid);
 pthread_exit(NULL);
}
int main (int argc, char *argv[]){
 pthread_t threads[NUM_THREADS];
 int args[NUM_THREADS];
 int rc, t;
 for(t=0;t < NUM_THREADS;t++){
 printf("Creating thread %d\n", t);
 args[t] = t;
 rc = pthread_create(&threads[t], NULL, PrintHello,
 (void *) args[t]);
 if (rc) {
 printf("ERROR; return code from pthread_create() is

%d\n", rc);
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

12

Passing arguments to a
thread

• Thread startup is non-deterministic
• It is implementation dependent
• If we do not know when a thread will start,

how do we pass data to the thread knowing it
will have the right value at startup time?
– Don’t pass data as arguments that can be

changed by another thread
– In general, use a separate instance of a data

structure for each thread.

13

Passing data to a thread (a
simple integer)

int *taskids[NUM_THREADS];
for(t=0;t < NUM_THREADS;t++) {
 taskids[t] = (int *) malloc(sizeof(int));
 *taskids[t] = t;
 printf("Creating thread %d\n", t);
 rc = pthread_create(&threads[t], NULL,
 PrintHello,
 (void *) &t);
 …
}

14

15

time

t = 0;

pthread_create(..., f, t);

t = 1;

pthread_create(..., f, t);

t = 2;

thread spawn

Thread 0 Thread q

f(t);

x = t;

What is the value of t that is used in this call to f?

The value is indeterminate.

In general
• Unless you know something is read-only

–Only good way to know what the value is
when the thread starts is to have a
separate copy of argument for each thread.

–Complicated data structures may share
data at a deeper level

• This not so much of a problem with
numerical codes since the data
structures are often simpler than with
integer codes (although not true with
sparse codes and complicated meshes)

16

Thread identifiers
• pthread_t pthread_self ()

– pthread_self() routine returns the unique, system
assigned thread ID of the calling thread

• int pthread_equal (thread1, thread2)
– pthread_equal() routine compares two thread IDs.

• 0 if different, non-zero if the same.
• Note that for both of these routines, the thread identifier objects

are opaque
• Because thread IDs are opaque objects, the C language

equivalence operator == should not be used to compare two
thread IDs against each other, or to compare a single thread ID
against another value.

17

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_self.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_equal.html

• pthread_join (threadId, status)
• The pthread_join() subroutine blocks the

calling thread until the specified threadId
thread terminates

• The programmer is able to obtain the target
thread's termination return status if specified
through pthread_exit(), in the status
parameter
– This can be a void pointer and point to

anything
• It is impossible to join a detached thread

(discussed next) 18

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_join.html

Detatched threads are not
joinable

• pthread_attr_init (attr)
• Pthread_attr_setdetachstate(attr,
detachstate)

• Pthread_attr_getdetachstate(attr,
detatchstate)

• Pthread_attr_destroy (attr)
• Pthread_detach (threadid, status)

• According to the Pthreads standard, all threads should
default to joinable, but older implementations may not be
compliant.

See PThreadsAttr.pdf (next page) 19

20

include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 3
void *BusyWork(void *null) {
 int i;
 double result=0.0;
 for (i=0; i < 1000000; i++) {
 result = result + (double)random();
 }
 printf("result = %e\n",result);
 pthread_exit((void *) 0);
}

int main (int argc, char *argv[]) {
 pthread_t thread[NUM_THREADS];
 pthread_attr_t attr;
 int rc, t, status;
 /* Initialize and set thread detached attribute */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 for(t=0;t < NUM_THREADS;t++) {
 printf("Creating thread %d\n", t);
 rc = pthread_create(&thread[t], &attr, BusyWork, NULL);
 if (rc) {
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }

21

22

 /* Free attribute and wait for the other threads */
 pthread_attr_destroy(&attr);
 for(t=0;t < NUM_THREADS;t++) {
 rc = pthread_join(thread[t], (void **)&status);
 if (rc) {
 printf("ERROR; return code from pthread_join() is %d\n", rc);
 exit(-1);
 }
 printf("Completed join with thread %d status= %d\n",t, status);
 }
 pthread_exit(NULL);
}

this is ok

Locks in pthreads: allow
critical sections to be formed

• Unlike Java, locks and objects are
disjoint because unlike Java, can’t
assume you have objects

• pthread_mutex_init (mutex, attr)
• pthread_mutex_destroy (mutex)
• pthread_mutexattr_init (attr)
• pthread_mutexattr_destroy (attr)

23

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_init.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_init.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_destroy.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutexattr_init.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutexattr_destroy.html

Using locks
• pthread_mutex_lock (mutex)

– Acquire lock if available
– Otherwise wait until lock is available

• pthread_mutex_trylock (mutex)
– Acquire lock if available
– Otherwise return lock-busy error

• pthread_mutex_unlock (mutex)
– Release the lock to be acquired by another

pthread_mutex_lock or trylock call
– Cannot make assumptions about which thread will be woken

up
• See http://www.llnl.gov/computing/tutorials/

workshops/workshop/pthreads/MAIN.html for an
example

24

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_lock.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_trylock.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_unlock.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

Using barriers
pthread_barrier_t barrier;
pthread_barrierattr_t attr;

unsigned count;
int ret;

 ret = pthread_barrierattr_init(&attr);
ret = pthread_barrier_init(&barrier, &attr, count);

 ret = pthread_barrier_wait(&barrier);
 ret = pthread_barrier_destroy(&barrier);

The only barrier attribute is the process shared attribute. The
default is PTHREAD_PROCESS_PRIVATE: only threads that belong
to the process that created the barrier can wait on a barrier with
this attribute. PTHREAD_PROCESS_SHARED allows threads of any
process that accesses the memory the barrier is allocated in to
access the barrier.

25

Using condition variables

• Allows one thread to signal to another
thread that a condition is true

• Prevents programmer from having to
loop on a mutex call to poll if a condition
is true.

26

Condition variable scenario

• Main Thread
– Declare and initialize global data/variables

which require synchronization (such as
"count")

– Declare and initialize a condition variable
object

– Declare and initialize an associated mutex
– Create threads A and B to do work

27

• Thread A
• Execute up to where some

condition should be true (e.g. count
= some value)

• Lock associated mutex and check
value of a global variable (e.g.
count). If valid value:

• Call pthread_cond_wait()
– performs a blocking wait for signal

from Thread-B.
– call to pthread_cond_wait()

unlocks the associated mutex
variable so Thread-B can use it.

– Wake up on signal -- Mutex is
automatically and atomically locked

• Explicitly unlock mutex
• Continue

•Thread B
•Do work
•Lock associated mutex

• Change the value of the
global variable that
Thread-A is waiting on
• Check if the value of the

global Thread-A wait
variable fulfills the
desired condition

• signal Thread-A.
• Unlock mutex
• Continue

28

OpenMP <--> Pthreads
• omp parallel for

The programmer must partition the loop iteration space
and give different parts of the iteration space to different
threads. Need a barrier at the end

• omp parallel
Have the appropriate number of threads execute the task in
the parallel region

• omp parallel sections
Code in each section sent to a different thread with a barrier
at the end

• tasks
Just spawn a thread with the task as the called routine.29

Summary

• OpenMP build on Pthreads
• Consistency model for Pthreads

between synchronization and thread
creation/destruction calls is up to the
individual compiler

30

