
1Programming Massively Parallel Processors. DOI:
Copyright ©	 David B. Kirk/NVIDIA Corporation and Wen-mei W. Hwu. Published by Elsevier Inc. All rights reserved2017

http://dx.doi.org/10.1016/B978-0-12-811986-0.00001-7

Introduction 1
CHAPTER

CHAPTER OUTLINE

	1.1	 Heterogeneous Parallel Computing..2
	1.2	 Architecture of a Modern GPU..6
	1.3	 Why More Speed or Parallelism?...8
	1.4	 Speeding Up Real Applications..10
	1.5	 Challenges in Parallel Programming..12
	1.6	 Parallel Programming Languages and Models...12
	1.7	 Overarching Goals...14
	1.8	 Organization of the Book...15
References... 18

Microprocessors based on a single central processing unit (CPU), such as those in
the Intel Pentium family and the AMD Opteron family, drove rapid performance
increases and cost reductions in computer applications for more than two decades.
These microprocessors brought giga floating-point operations per second (GFLOPS,
or Giga (109) Floating-Point Operations per Second), to the desktop and tera float-
ing-point operations per second (TFLOPS, or Tera (1012) Floating-Point Operations
per Second) to datacenters. This relentless drive for performance improvement has
allowed application software to provide more functionality, have better user inter-
faces, and generate more useful results. The users, in turn, demand even more
improvements once they become accustomed to these improvements, creating a posi-
tive (virtuous) cycle for the computer industry.

This drive, however, has slowed since 2003 due to energy consumption and heat
dissipation issues that limited the increase of the clock frequency and the level of
productive activities that can be performed in each clock period within a single CPU.
Since then, virtually all microprocessor vendors have switched to models where mul-
tiple processing units, referred to as processor cores, are used in each chip to increase
the processing power. This switch has exerted a tremendous impact on the software
developer community [Sutter 2005].

Traditionally, the vast majority of software applications are written as sequen-
tial programs that are executed by processors whose design was envisioned by von
Neumann in his seminal report in 1945 [vonNeumann 1945]. The execution of these

2 CHAPTER 1  Introduction

programs can be understood by a human sequentially stepping through the code.
Historically, most software developers have relied on the advances in hardware to
increase the speed of their sequential applications under the hood; the same software
simply runs faster as each new processor generation is introduced. Computer users
have also become accustomed to the expectation that these programs run faster with
each new generation of microprocessors. Such expectation is no longer valid from
this day onward. A sequential program will only run on one of the processor cores,
which will not become significantly faster from generation to generation. Without
performance improvement, application developers will no longer be able to intro-
duce new features and capabilities into their software as new microprocessors are
introduced, reducing the growth opportunities of the entire computer industry.

Rather, the applications software that will continue to enjoy significant perfor-
mance improvement with each new generation of microprocessors will be parallel
programs, in which multiple threads of execution cooperate to complete the work
faster. This new, dramatically escalated incentive for parallel program development
has been referred to as the concurrency revolution [Sutter 2005]. The practice of
parallel programming is by no means new. The high-performance computing com-
munity has been developing parallel programs for decades. These programs typically
ran on large scale, expensive computers. Only a few elite applications could justify
the use of these expensive computers, thus limiting the practice of parallel program-
ming to a small number of application developers. Now that all new microproces-
sors are parallel computers, the number of applications that need to be developed as
parallel programs has increased dramatically. There is now a great need for software
developers to learn about parallel programming, which is the focus of this book.

1.1  HETEROGENEOUS PARALLEL COMPUTING
Since 2003, the semiconductor industry has settled on two main trajectories for
designing microprocessors [Hwu 2008]. The multicore trajectory seeks to maintain
the execution speed of sequential programs while moving into multiple cores. The
multicores began with two-core processors with the number of cores increasing with
each semiconductor process generation. A current exemplar is a recent Intel mul-
ticore microprocessor with up to 12 processor cores, each of which is an out-of-
order, multiple instruction issue processor implementing the full X86 instruction set,
supporting hyper-threading with two hardware threads, designed to maximize the
execution speed of sequential programs. For more discussion of CPUs, see https://
en.wikipedia.org/wiki/Central_processing_unit.

In contrast, the many-thread trajectory focuses more on the execution throughput
of parallel applications. The many-threads began with a large number of threads and
once again, the number of threads increases with each generation. A current exem-
plar is the NVIDIA Tesla P100 graphics processing unit (GPU) with 10 s of 1000 s
of threads, executing in a large number of simple, in order pipelines. Many-thread
processors, especially the GPUs, have led the race of floating-point performance

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit

31.1  Heterogeneous parallel computing

since 2003. As of 2016, the ratio of peak floating-point calculation throughput
between many-thread GPUs and multicore CPUs is about 10, and this ratio has been
roughly constant for the past several years. These are not necessarily application
speeds, but are merely the raw speed that the execution resources can potentially sup-
port in these chips. For more discussion of GPUs, see https://en.wikipedia.org/wiki/
Graphics_processing_unit.

Such a large performance gap between parallel and sequential execution has
amounted to a significant “electrical potential” build-up, and at some point, some-
thing will have to give. We have reached that point. To date, this large performance
gap has already motivated many applications developers to move the computation-
ally intensive parts of their software to GPU for execution. Not surprisingly, these
computationally intensive parts are also the prime target of parallel programming—
when there is more work to do, there is more opportunity to divide the work among
cooperating parallel workers.

One might ask why there is such a large peak throughput gap between many-
threaded GPUs and general-purpose multicore CPUs. The answer lies in the differ-
ences in the fundamental design philosophies between the two types of processors, as
illustrated in Fig. 1.1. The design of a CPU is optimized for sequential code perfor-
mance. It makes use of sophisticated control logic to allow instructions from a single
thread to execute in parallel or even out of their sequential order while maintaining
the appearance of sequential execution. More importantly, large cache memories are
provided to reduce the instruction and data access latencies of large complex appli-
cations. Neither control logic nor cache memories contribute to the peak calculation
throughput. As of 2016, the high-end general-purpose multicore microprocessors
typically have eight or more large processor cores and many megabytes of on-chip
cache memories designed to deliver strong sequential code performance.

Memory bandwidth is another important issue. The speed of many applications is
limited by the rate at which data can be delivered from the memory system into the
processors. Graphics chips have been operating at approximately 10x the memory
bandwidth of contemporaneously available CPU chips. A GPU must be capable of
moving extremely large amounts of data in and out of its main Dynamic Random

Control

Cache

CPU GPU

DRAM DRAM

ALU

ALU

ALU

ALU

FIGURE 1.1

CPUs and GPUs have fundamentally different design philosophies.

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit

4 CHAPTER 1  Introduction

Access Memory (DRAM) because of graphics frame buffer requirements. In con-
trast, general-purpose processors have to satisfy requirements from legacy operating
systems, applications, and I/O devices that make memory bandwidth more difficult
to increase. As a result, we expect that CPUs will continue to be at a disadvantage in
terms of memory bandwidth for some time.

The design philosophy of the GPUs has been shaped by the fast growing video
game industry that exerts tremendous economic pressure for the ability to perform a
massive number of floating-point calculations per video frame in advanced games.
This demand motivates GPU vendors to look for ways to maximize the chip area
and power budget dedicated to floating-point calculations. An important observa-
tion is that reducing latency is much more expensive than increasing throughput
in terms of power and chip area. Therefore, the prevailing solution is to optimize
for the execution throughput of massive numbers of threads. The design saves chip
area and power by allowing pipelined memory channels and arithmetic operations
to have long-latency. The reduced area and power of the memory access hardware
and arithmetic units allows the designers to have more of them on a chip and thus
increase the total execution throughput.

The application software for these GPUs is expected to be written with a large num-
ber of parallel threads. The hardware takes advantage of the large number of threads
to find work to do when some of them are waiting for long-latency memory accesses
or arithmetic operations. Small cache memories are provided to help control the
bandwidth requirements of these applications so that multiple threads that access
the same memory data do not need to all go to the DRAM. This design style is com-
monly referred to as throughput-oriented design as it strives to maximize the total
execution throughput of a large number of threads while allowing individual threads
to take a potentially much longer time to execute.

The CPUs, on the other hand, are designed to minimize the execution latency of
a single thread. Large last-level on-chip caches are designed to capture frequently
accessed data and convert some of the long-latency memory accesses into short-
latency cache accesses. The arithmetic units and operand data delivery logic are also
designed to minimize the effective latency of operation at the cost of increased use of
chip area and power. By reducing the latency of operations within the same thread, the
CPU hardware reduces the execution latency of each individual thread. However,
the large cache memory, low-latency arithmetic units, and sophisticated operand
delivery logic consume chip area and power that could be otherwise used to provide
more arithmetic execution units and memory access channels. This design style is
commonly referred to as latency-oriented design.

It should be clear now that GPUs are designed as parallel, throughput-oriented
computing engines and they will not perform well on some tasks on which CPUs are
designed to perform well. For programs that have one or very few threads, CPUs with
lower operation latencies can achieve much higher performance than GPUs. When
a program has a large number of threads, GPUs with higher execution throughput
can achieve much higher performance than CPUs. Therefore, one should expect that
many applications use both CPUs and GPUs, executing the sequential parts on the

51.1  Heterogeneous parallel computing

CPU and numerically intensive parts on the GPUs. This is why the CUDA program-
ming model, introduced by NVIDIA in 2007, is designed to support joint CPU–GPU
execution of an application.1 The demand for supporting joint CPU–GPU execution is
further reflected in more recent programming models such as OpenCL (Appendix A),
OpenACC (see chapter: Parallel programming with OpenACC), and C++AMP
(Appendix D).

It is also important to note that speed is not the only decision factor when appli-
cation developers choose the processors for running their applications. Several other
factors can be even more important. First and foremost, the processors of choice must
have a very large presence in the market place, referred to as the installed base of
the processor. The reason is very simple. The cost of software development is best
justified by a very large customer population. Applications that run on a processor
with a small market presence will not have a large customer base. This has been a
major problem with traditional parallel computing systems that have negligible mar-
ket presence compared to general-purpose microprocessors. Only a few elite applica-
tions funded by government and large corporations have been successfully developed
on these traditional parallel computing systems. This has changed with many-thread
GPUs. Due to their popularity in the PC market, GPUs have been sold by the hun-
dreds of millions. Virtually all PCs have GPUs in them. There are nearly 1 billion
CUDA enabled GPUs in use to date. Such a large market presence has made these
GPUs economically attractive targets for application developers.

Another important decision factor is practical form factors and easy accessibility.
Until 2006, parallel software applications usually ran on data center servers or
departmental clusters. But such execution environments tend to limit the use of these
applications. For example, in an application such as medical imaging, it is fine to
publish a paper based on a 64-node cluster machine. However, real-world clinical
applications on MRI machines utilize some combination of a PC and special hard-
ware accelerators. The simple reason is that manufacturers such as GE and Siemens
cannot sell MRIs with racks of computer server boxes into clinical settings, while
this is common in academic departmental settings. In fact, NIH refused to fund paral-
lel programming projects for some time; they felt that the impact of parallel software
would be limited because huge cluster-based machines would not work in the clini-
cal setting. Today, many companies ship MRI products with GPUs, and NIH funds
research using GPU computing.

Yet another important consideration in selecting a processor for executing numeric
computing applications is the level of support for IEEE Floating-Point Standard. The
standard enables predictable results across processors from different vendors. While
the support for the IEEE Floating-Point Standard was not strong in early GPUs,
this has also changed for new generations of GPUs since 2006. As we will discuss
in Chapter 6, Numerical considerations, GPU support for the IEEE Floating-Point
Standard has become comparable with that of the CPUs. As a result, one can expect

1 See Appendix A for more background on the evolution of GPU computing and the creation of CUDA.

6 CHAPTER 1  Introduction

that more numerical applications will be ported to GPUs and yield comparable result
values as the CPUs. Up to 2009, a major barrier was that the GPU floating-point
arithmetic units were primarily single precision. Applications that truly require dou-
ble precision floating-point were not suitable for GPU execution. However, this has
changed with the recent GPUs whose double precision execution speed approaches
about half that of single precision, a level that only high-end CPU cores achieve.
This makes the GPUs suitable for even more numerical applications. In addition,
GPUs support Fused Multiply-Add, which reduces errors due to multiple rounding
operations.

Until 2006, graphics chips were very difficult to use because programmers had
to use the equivalent of graphics application programming interface (API) functions to
access the processing units, meaning that OpenGL or Direct3D techniques were
needed to program these chips. Stated more simply, a computation must be expressed
as a function that paints a pixel in some way in order to execute on these early GPUs.
This technique was called GPGPU, for General-Purpose Programming using a GPU.
Even with a higher level programming environment, the underlying code still needs
to fit into the APIs that are designed to paint pixels. These APIs limit the kinds of
applications that one can actually write for early GPUs. Consequently, it did not
become a widespread programming phenomenon. Nonetheless, this technology was
sufficiently exciting to inspire some heroic efforts and excellent research results.

But everything changed in 2007 with the release of CUDA [NVIDIA 2007].
NVIDIA actually devoted silicon area to facilitate the ease of parallel programming,
so this did not represent software changes alone; additional hardware was added to
the chip. In the G80 and its successor chips for parallel computing, CUDA programs
no longer go through the graphics interface at all. Instead, a new general-purpose
parallel programming interface on the silicon chip serves the requests of CUDA
programs. The general-purpose programming interface greatly expands the types of
applications that one can easily develop for GPUs. Moreover, all the other software
layers were redone as well, so that the programmers can use the familiar C/C++ pro-
gramming tools. Some of our students tried to do their lab assignments using the old
OpenGL-based programming interface, and their experience helped them to greatly
appreciate the improvements that eliminated the need for using the graphics APIs for
general-purpose computing applications.

1.2  ARCHITECTURE OF A MODERN GPU
Fig. 1.2 shows a high level view of the architecture of a typical CUDA-capable GPU.
It is organized into an array of highly threaded streaming multiprocessors (SMs). In
Fig. 1.2, two SMs form a building block. However, the number of SMs in a build-
ing block can vary from one generation to another. Also, in Fig. 1.2, each SM has a
number of streaming processors (SPs) that share control logic and instruction cache.
Each GPU currently comes with gigabytes of Graphics Double Data Rate (GDDR),
Synchronous DRAM (SDRAM), referred to as Global Memory in Fig. 1.2. These

Input assembler

Host

Thread execution manager

Cache Cache Cache Cache Cache Cache Cache Cache

Texture Texture Texture Texture Texture Texture TextureTexture

Load/store

Global memory

Load/storeLoad/store Load/store Load/store Load/store

FIGURE 1.2

Architecture of a CUDA-capable GPU.

8 CHAPTER 1  Introduction

GDDR SDRAMs differ from the system DRAMs on the CPU motherboard in that
they are essentially the frame buffer memory that is used for graphics. For graph-
ics applications, they hold video images and texture information for 3D rendering.
For computing, they function as very high-bandwidth off-chip memory, though with
somewhat longer latency than typical system memory. For massively parallel appli-
cations, the higher bandwidth makes up for the longer latency. More recent products,
such as NVIDIA’s Pascal architecture, may use High-Bandwidth Memory (HBM) or
HBM2 architecture. For brevity, we will simply refer to all of these types of memory
as DRAM for the rest of the book.

The G80 introduced the CUDA architecture and had a communication link to
the CPU core logic over a PCI-Express Generation 2 (Gen2) interface. Over PCI-E
Gen2, a CUDA application can transfer data from the system memory to the global
memory at 4 GB/S, and at the same time upload data back to the system memory
at 4 GB/S. Altogether, there is a combined total of 8 GB/S. More recent GPUs use
PCI-E Gen3 or Gen4, which supports 8–16 GB/s in each direction. The Pascal fam-
ily of GPUs also supports NVLINK, a CPU–GPU and GPU–GPU interconnect that
allows transfers of up to 40 GB/s per channel. As the size of GPU memory grows,
applications increasingly keep their data in the global memory and only occasionally
use the PCI-E or NVLINK to communicate with the CPU system memory if there
is need for using a library that is only available on the CPUs. The communication
bandwidth is also expected to grow as the CPU bus bandwidth of the system memory
grows in the future.

A good application typically runs 5000 to 12,000 threads simultaneously on this
chip. For those who are used to multithreading in CPUs, note that Intel CPUs sup-
port 2 or 4 threads, depending on the machine model, per core. CPUs, however, are
increasingly using Single Instruction Multiple Data (SIMD) instructions for high
numerical performance. The level of parallelism supported by both GPU hardware
and CPU hardware is increasing quickly. It is therefore very important to strive for
high levels of parallelism when developing computing applications.

1.3  WHY MORE SPEED OR PARALLELISM?
As we stated in Section 1.1, the main motivation for massively parallel programming
is for applications to enjoy continued speed increase in future hardware generations.
One might question if applications will continue to demand increased speed. Many
applications that we have today seem to be running fast enough. As we will discuss in
the case study chapters (see chapters: Application case study—non-Cartesian MRI,
Application case study—molecular visualization and analysis, and Application case
study—machine learning), when an application is suitable for parallel execution, a
good implementation on a GPU can achieve more than 100 times (100x) speedup
over sequential execution on a single CPU core. If the application contains what we
call “data parallelism,” it is often possible to achieve a 10x speedup with just a few
hours of work. For anything beyond that, we invite you to keep reading!

91.3  Why more speed or parallelism?

Despite the myriad of computing applications in today’s world, many exciting
mass market applications of the future are what we previously consider “supercom-
puting applications,” or super-applications. For example, the biology research com-
munity is moving more and more into the molecular-level. Microscopes, arguably the
most important instrument in molecular biology, used to rely on optics or electronic
instrumentation. But there are limitations to the molecular-level observations that we
can make with these instruments. These limitations can be effectively addressed by
incorporating a computational model to simulate the underlying molecular activities
with boundary conditions set by traditional instrumentation. With simulation we can
measure even more details and test more hypotheses than can ever be imagined with
traditional instrumentation alone. These simulations will continue to benefit from
the increasing computing speed in the foreseeable future in terms of the size of the
biological system that can be modeled and the length of reaction time that can be
simulated within a tolerable response time. These enhancements will have tremen-
dous implications for science and medicine.

For applications such as video and audio coding and manipulation, consider our
satisfaction with digital high-definition (HD) TV vs. older NTSC TV. Once we expe-
rience the level of details in an HDTV, it is very hard to go back to older technology.
But consider all the processing needed for that HDTV. It is a very parallel process,
as are 3D imaging and visualization. In the future, new functionalities such as view
synthesis and high-resolution display of low resolution videos will demand more
computing power in the TV. At the consumer level, we will begin to have an increas-
ing number of video and image processing applications that improve the focus, light-
ing, and other key aspects of the pictures and videos.

User interfaces can also be improved by improved computing speeds. Modern smart
phone users enjoy a more natural interface with high-resolution touch screens that
rival that of large-screen televisions. Undoubtedly future versions of these devices will
incorporate sensors and displays with three-dimensional perspectives, applications that
combine virtual and physical space information for enhanced usability, and voice and
computer vision-based interfaces, requiring even more computing speed.

Similar developments are underway in consumer electronic gaming. In the past,
driving a car in a game was in fact simply a prearranged set of scenes. If the player’s
car collided with obstacles, the behavior of the car did not change to reflect the dam-
age. Only the game score changes—and the score determines the winner. The car
would drive the same—despite the fact that the wheels should be bent or damaged.
With increased computing speed, the races can actually proceed according to simu-
lation instead of approximate scores and scripted sequences. We can expect to see
more of these realistic effects in the future: collisions will damage your wheels and
the player’s driving experience will be much more realistic. Realistic modeling and
simulation of physics effects are known to demand very large amounts of computing
power.

All the new applications that we mentioned involve simulating a physical, con-
current world in different ways and at different levels, with tremendous amounts of
data being processed. In fact, the problem of handling massive amounts of data is

10 CHAPTER 1  Introduction

so prevalent that the term “Big Data” has become a household phrase. And with this
huge quantity of data, much of the computation can be done on different parts of the
data in parallel, although they will have to be reconciled at some point. In most cases,
effective management of data delivery can have a major impact on the achievable
speed of a parallel application. While techniques for doing so are often well known
to a few experts who work with such applications on a daily basis, the vast majority
of application developers can benefit from more intuitive understanding and practical
working knowledge of these techniques.

We aim to present the data management techniques in an intuitive way to applica-
tion developers whose formal education may not be in computer science or computer
engineering. We also aim to provide many practical code examples and hands-on
exercises that help the reader to acquire working knowledge, which requires a practi-
cal programming model that facilitates parallel implementation and supports proper
management of data delivery. CUDA offers such a programming model and has been
well tested by a large developer community.

1.4  SPEEDING UP REAL APPLICATIONS
What kind of speedup can we expect from parallelizing an application? It depends
on the portion of the application that can be parallelized. If the percentage of time
spent in the part that can be parallelized is 30%, a 100X speedup of the parallel
portion will reduce the execution time by no more than 29.7%. The speedup for the
entire application will be only about 1.4X. In fact, even infinite amount of speedup
in the parallel portion can only slash 30% off execution time, achieving no more than
1.43X speedup. The fact that the level of speedup one can achieve through parallel
execution can be severely limited by the parallelizable portion of the application is
referred to as Amdahl’s Law. On the other hand, if 99% of the execution time is in
the parallel portion, a 100X speedup of the parallel portion will reduce the applica-
tion execution to 1.99% of the original time. This gives the entire application a 50X
speedup. Therefore, it is very important that an application has the vast majority of
its execution in the parallel portion for a massively parallel processor to effectively
speed up its execution.

Researchers have achieved speedups of more than 100X for some applications.
However, this is typically achieved only after extensive optimization and tuning after
the algorithms have been enhanced so that more than 99.9% of the application execu-
tion time is in parallel execution. In practice, straightforward parallelization of appli-
cations often saturates the memory (DRAM) bandwidth, resulting in only about a
10X speedup. The trick is to figure out how to get around memory bandwidth limita-
tions, which involves doing one of many transformations to utilize specialized GPU
on-chip memories to drastically reduce the number of accesses to the DRAM. One
must, however, further optimize the code to get around limitations such as limited
on-chip memory capacity. An important goal of this book is to help the reader to fully
understand these optimizations and become skilled in them.

111.4  Speeding up real applications

Keep in mind that the level of speedup achieved over single core CPU execution
can also reflect the suitability of the CPU to the application: in some applications,
CPUs perform very well, making it harder to speed up performance using a GPU.
Most applications have portions that can be much better executed by the CPU. Thus,
one must give the CPU a fair chance to perform and make sure that code is written so
that GPUs complement CPU execution, thus properly exploiting the heterogeneous
parallel computing capabilities of the combined CPU/GPU system.

Fig. 1.3 illustrates the main parts of a typical application. Much of a real applica-
tion’s code tends to be sequential. These sequential parts are illustrated as the “pit”
area of the peach: trying to apply parallel computing techniques to these portions is
like biting into the peach pit—not a good feeling! These portions are very hard to
parallelize. CPUs are pretty good with these portions. The good news is that these
portions, although they can take up a large portion of the code, tend to account for
only a small portion of the execution time of super-applications.

The rest is what we call the “peach meat” portions. These portions are easy to
parallelize, as are some early graphics applications. Parallel programming in hetero-
geneous computing systems can drastically improve the speed of these applications.
As illustrated in Fig. 1.3 early GPGPUs cover only a small portion of the meat sec-
tion, which is analogous to a small portion of the most exciting applications. As we
will see, the CUDA programming model is designed to cover a much larger section
of the peach meat portions of exciting applications. In fact, as we will discuss in
Chapter 20, More on CUDA and GPU computing, these programming models and
their underlying hardware are still evolving at a fast pace in order to enable efficient
parallelization of even larger sections of applications.

Sequential portions

Data parallel portions

Traditional CPU coverage

GPGPU coverage
Obstacles

FIGURE 1.3

Coverage of sequential and parallel application portions.

12 CHAPTER 1  Introduction

1.5  CHALLENGES IN PARALLEL PROGRAMMING
What makes parallel programming hard? Someone once said that if you don’t care
about performance, parallel programming is very easy. You can literally write a par-
allel program in an hour. But then why bother to write a parallel program if you do
not care about performance?

This book addresses several challenges in achieving high-performance in parallel
programming. First and foremost, it can be challenging to design parallel algorithms
with the same level of algorithmic (computational) complexity as sequential algo-
rithms. Some parallel algorithms can add large overheads over their sequential coun-
ter parts so much that they can even end up running slower for larger input data sets.

Second, the execution speed of many applications is limited by memory access
speed. We refer to these applications as memory-bound, as opposed to compute
bound, which are limited by the number of instructions performed per byte of data.
Achieving high-performance parallel execution in memory-bound applications often
requires novel methods for improving memory access speed.

Third, the execution speed of parallel programs is often more sensitive to the
input data characteristics than their sequential counter parts. Many real world appli-
cations need to deal with inputs with widely varying characteristics, such as erratic
or unpredictable data rates, and very high data rates. The performance of parallel
programs can sometimes vary dramatically with these characteristics.

Fourth, many real world problems are most naturally described with mathemati-
cal recurrences. Parallelizing these problems often requires nonintuitive ways of
thinking about the problem and may require redundant work during execution.

Fortunately, most of these challenges have been addressed by researchers in the
past. There are also common patterns across application domains that allow us to
apply solutions derived from one domain to others. This is the primary reason why
we will be presenting key techniques for addressing these challenges in the context
of important parallel computation patterns.

1.6  PARALLEL PROGRAMMING LANGUAGES AND MODELS
Many parallel programming languages and models have been proposed in the past
several decades [Mattson, 2004]. The ones that are the most widely used are message
passing interface (MPI) [MPI 2009] for scalable cluster computing, and OpenMP
[Open 2005] for shared memory multiprocessor systems. Both have become stand-
ardized programming interfaces supported by major computer vendors. An OpenMP
implementation consists of a compiler and a runtime. A programmer specifies direc-
tives (commands) and pragmas (hints) about a loop to the OpenMP compiler. With
these directives and pragmas, OpenMP compilers generate parallel code. The runt-
ime system supports the execution of the parallel code by managing parallel threads
and resources. OpenMP was originally designed for CPU execution. More recently,
a variation called OpenACC (see chapter: Parallel programming with OpenACC)

131.6  Parallel programming languages and models

has been proposed and supported by multiple computer vendors for programming
heterogeneous computing systems.

The major advantage of OpenACC is that it provides compiler automation and
runtime support for abstracting away many parallel programming details from pro-
grammers. Such automation and abstraction can help make the application code more
portable across systems produced by different vendors, as well as different genera-
tions of systems from the same vendor. We can refer to this property as “performance
portability.” This is why we teach OpenACC programming in Chapter 19, Parallel
programming with OpenACC. However, effective programming in OpenACC still
requires the programmers to understand all the detailed parallel programming con-
cepts involved. Because CUDA gives programmers explicit control of these paral-
lel programming details, it is an excellent learning vehicle even for someone who
would like to use OpenMP and OpenACC as their primary programming inter-
face. Furthermore, from our experience, OpenACC compilers are still evolving and
improving. Many programmers will likely need to use CUDA style interfaces for
parts where OpenACC compilers fall short.

MPI is a model where computing nodes in a cluster do not share memory
[MPI 2009]. All data sharing and interaction must be done through explicit message
passing. MPI has been successful in high-performance computing (HPC). Applications
written in MPI have run successfully on cluster computing systems with more than
100,000 nodes. Today, many HPC clusters employ heterogeneous CPU/GPU nodes.
While CUDA is an effective interface with each node, most application developers
need to use MPI to program at the cluster level. It is therefore important that a parallel
programmer in HPC understands how to do joint MPI/CUDA programming, which is
presented in Chapter 18, Programming a Heterogeneous Computing Cluster.

The amount of effort needed to port an application into MPI, however, can be
quite high due to lack of shared memory across computing nodes. The programmer
needs to perform domain decomposition to partition the input and output data into
cluster nodes. Based on the domain decomposition, the programmer also needs to
call message sending and receiving functions to manage the data exchange between
nodes. CUDA, on the other hand, provides shared memory for parallel execution
in the GPU to address this difficulty. As for CPU and GPU communication, CUDA
previously provided very limited shared memory capability between the CPU and
the GPU. The programmers needed to manage the data transfer between CPU and
GPU in a manner similar to the “one-sided” message passing. New runtime sup-
port for global address space and automated data transfer in heterogeneous comput-
ing systems, such as GMAC [GCN 2010], are now available. With such support, a
CUDA programmer can declare variables and data structures as shared between CPU
and GPU. The runtime hardware and software transparently maintains coherence by
automatically performing optimized data transfer operations on behalf of the pro-
grammer as needed. Such support significantly reduces the programming complexity
involved in overlapping data transfer with computation and I/O activities. As will
be discussed later in Chapter 20, More on CUDA and GPU Computing, the Pascal
architecture supports both a unified global address space and memory.

14 CHAPTER 1  Introduction

In 2009, several major industry players, including Apple, Intel, AMD/ATI,
NVIDIA jointly developed a standardized programming model called Open
Computing Language (OpenCL) [Khronos 2009]. Similar to CUDA, the OpenCL
programming model defines language extensions and runtime APIs to allow pro-
grammers to manage parallelism and data delivery in massively parallel processors.
In comparison to CUDA, OpenCL relies more on APIs and less on language exten-
sions. This allows vendors to quickly adapt their existing compilers and tools to
handle OpenCL programs. OpenCL is a standardized programming model in that
applications developed in OpenCL can run correctly without modification on all pro-
cessors that support the OpenCL language extensions and API. However, one will
likely need to modify the applications in order to achieve high-performance for a
new processor.

Those who are familiar with both OpenCL and CUDA know that there is a
remarkable similarity between the key concepts and features of OpenCL and those
of CUDA. That is, a CUDA programmer can learn OpenCL programming with
minimal effort. More importantly, virtually all techniques learned using CUDA can
be easily applied to OpenCL programming. Therefore, we introduce OpenCL in
Appendix A and explain how one can apply the key concepts in this book to OpenCL
programming.

1.7  OVERARCHING GOALS
Our primary goal is to teach you, the reader, how to program massively parallel
processors to achieve high-performance, and our approach will not require a great
deal of hardware expertise. Therefore, we are going to dedicate many pages to tech-
niques for developing high-performance parallel programs. And, we believe that it
will become easy once you develop the right insight and go about it the right way. In
particular, we will focus on computational thinking [Wing 2006] techniques that will
enable you to think about problems in ways that are amenable to high-performance
parallel computing.

Note that hardware architecture features still have constraints and limitations.
High-performance parallel programming on most processors will require some
knowledge of how the hardware works. It will probably take ten or more years before
we can build tools and machines so that most programmers can work without this
knowledge. Even if we have such tools, we suspect that programmers with more
knowledge of the hardware will be able to use the tools in a much more effective way
than those who do not. However, we will not be teaching computer architecture as a
separate topic. Instead, we will teach the essential computer architecture knowledge
as part of our discussions on high-performance parallel programming techniques.

Our second goal is to teach parallel programming for correct functionality and
reliability, which constitutes a subtle issue in parallel computing. Those who have
worked on parallel systems in the past know that achieving initial performance is not
enough. The challenge is to achieve it in such a way that you can debug the code and

151.8  Organization of the book

support users. The CUDA programming model encourages the use of simple forms
of barrier synchronization, memory consistency, and atomicity for managing paral-
lelism. In addition, it provides an array of powerful tools that allow one to debug not
only the functional aspects but also the performance bottlenecks. We will show that
by focusing on data parallelism, one can achieve high performance without sacrific-
ing the reliability of their applications.

Our third goal is scalability across future hardware generations by exploring
approaches to parallel programming such that future machines, which will be more
and more parallel, can run your code faster than today’s machines. We want to help
you to master parallel programming so that your programs can scale up to the level
of performance of new generations of machines. The key to such scalability is to
regularize and localize memory data accesses to minimize consumption of critical
resources and conflicts in accessing and updating data structures.

Still, much technical knowledge will be required to achieve these goals, so we
will cover quite a few principles and patterns [Mattson 2004] of parallel program-
ming in this book. We will not be teaching these principles and patterns in a vacuum.
We will teach them in the context of parallelizing useful applications. We cannot
cover all of them, however, we have selected what we found to be the most useful
and well-proven techniques to cover in detail. To complement your knowledge and
expertise, we include a list of recommended literature. We are now ready to give you
a quick overview of the rest of the book.

1.8  ORGANIZATION OF THE BOOK
Chapter 2, Data parallel computing, introduces data parallelism and CUDA C pro-
gramming. This chapter expects the reader to have had previous experience with
C programming. It first introduces CUDA C as a simple, small extension to C
that supports heterogeneous CPU/GPU joint computing and the widely used sin-
gle program multiple data (SPMD) parallel programming model. It then covers
the thought process involved in (1) identifying the part of application programs
to be parallelized, (2) isolating the data to be used by the parallelized code, using
an API function to allocate memory on the parallel computing device, (3) using an
API function to transfer data to the parallel computing device, (4) developing a ker-
nel function that will be executed by threads in the parallelized part, (5) launching a
kernel function for execution by parallel threads, and (6) eventually transferring the
data back to the host processor with an API function call.

While the objective of Chapter 2, Data parallel computing, is to teach enough
concepts of the CUDA C programming model so that the students can write a simple
parallel CUDA C program, it actually covers several basic skills needed to develop
a parallel application based on any parallel programming model. We use a running
example of vector addition to illustrate these concepts. In the later part of the book,
we also compare CUDA with other parallel programming models including OpenMP,
OpenACC, and OpenCL.

16 CHAPTER 1  Introduction

Chapter 3, Scalable parallel execution, presents more details of the parallel execu-
tion model of CUDA. It gives enough insight into the creation, organization, resource
binding, data binding, and scheduling of threads to enable the reader to implement
sophisticated computation using CUDA C and reason about the performance behav-
ior of their CUDA code.

Chapter 4, Memory and data locality, is dedicated to the special memories that
can be used to hold CUDA variables for managing data delivery and improving pro-
gram execution speed. We introduce the CUDA language features that allocate and
use these memories. Appropriate use of these memories can drastically improve the
data access throughput and help to alleviate the traffic congestion in the memory
system.

Chapter 5, Performance considerations, presents several important performance
considerations in current CUDA hardware. In particular, it gives more details in
desirable patterns of thread execution, memory data accesses, and resource alloca-
tion. These details form the conceptual basis for programmers to reason about the
consequence of their decisions on organizing their computation and data.

Chapter 6, Numerical considerations, introduces the concepts of IEEE-754 float-
ing-point number format, precision, and accuracy. It shows why different parallel
execution arrangements can result in different output values. It also teaches the con-
cept of numerical stability and practical techniques for maintaining numerical stabil-
ity in parallel algorithms.

Chapters 7, Parallel patterns: convolution, Chapter 8, Parallel patterns: prefix
sum, Chapter 9, Parallel patterns—parallel histogram computation, Chapter 10,
Parallel patterns: sparse matrix computation, Chapter 11, Parallel patterns: merge
sort, Chapter 12, Parallel patterns: graph search, present six important parallel
computation patterns that give the readers more insight into parallel programming
techniques and parallel execution mechanisms. Chapter 7, Parallel patterns: convo-
lution, presents convolution and stencil, frequently used parallel computing patterns
that require careful management of data access locality. We also use this pattern
to introduce constant memory and caching in modern GPUs. Chapter 8, Parallel
patterns: prefix sum, presents reduction tree and prefix sum, or scan, an impor-
tant parallel computing pattern that converts sequential computation into parallel
computation. We also use this pattern to introduce the concept of work-efficiency
in parallel algorithms. Chapter 9, Parallel patterns—parallel histogram computa-
tion, covers histogram, a pattern widely used in pattern recognition in large data
sets. We also cover merge operation, a widely used pattern in divide-and-concur
work partitioning strategies. Chapter 10, Parallel patterns: sparse matrix computa-
tion, presents sparse matrix computation, a pattern used for processing very large
data sets. This chapter introduces the reader to the concepts of rearranging data for
more efficient parallel access: data compression, padding, sorting, transposition, and
regularization. Chapter 11, Parallel patterns: merge sort, introduces merge sort,
and dynamic input data identification and organization. Chapter 12, Parallel pat-
terns: graph search, introduces graph algorithms and how graph search can be effi-
ciently implemented in GPU programming.

171.8  Organization of the book

While these chapters are based on CUDA, they help the readers build-up the
foundation for parallel programming in general. We believe that humans understand
best when they learn from concrete examples. That is, we must first learn the con-
cepts in the context of a particular programming model, which provides us with solid
footing to allow applying our knowledge to other programming models. As we do so,
we can draw on our concrete experience from the CUDA model. An in-depth experi-
ence with the CUDA model also enables us to gain maturity, which will help us learn
concepts that may not even be pertinent to the CUDA model.

Chapter 13, CUDA dynamic parallelism, covers dynamic parallelism. This is the
ability of the GPU to dynamically create work for itself based on the data or program
structure, rather than waiting for the CPU to launch kernels exclusively.

Chapters 14, Application case study—non-Cartesian MRI, Chapter 15, Application
case study—molecular visualization and analysis, Chapter 16, Application case
study—machine learning, are case studies of three real applications, which take the
readers through the thought process of parallelizing and optimizing their applications
for significant speedups. For each application, we start by identifying alternative ways
of formulating the basic structure of the parallel execution and follow up with reason-
ing about the advantages and disadvantages of each alternative. We then go through
the steps of code transformation needed to achieve high-performance. These three
chapters help the readers put all the materials from the previous chapters together and
prepare for their own application development projects. Chapter 14, Application case
study—non-Cartesian MRI, covers non-Cartesian MRI reconstruction, and how the
irregular data affects the program. Chapter 15, Application case study—molecular
visualization and analysis, covers molecular visualization and analysis. Chapter 16,
Application case study—machine learning, covers Deep Learning, which is becom-
ing an extremely important area for GPU computing. We provide an introduction,
and leave more in-depth discussion to other sources.

Chapter 17, Parallel programming and computational thinking, introduces com-
putational thinking. It does so by covering the concept of organizing the computation
tasks of a program so that they can be done in parallel. We start by discussing the
translational process of organizing abstract scientific concepts into computational
tasks, which is an important first step in producing quality application software, serial
or parallel. It then discusses parallel algorithm structures and their effects on appli-
cation performance, which is grounded in the performance tuning experience with
CUDA. Although we do not go into these alternative parallel programming styles,
we expect that the readers will be able to learn to program in any of them with the
foundation they gain in this book. We also present a high level case study to show
the opportunities that can be seen through creative computational thinking.

Chapter 18, Programming a heterogeneous computing cluster, covers CUDA pro-
gramming on heterogeneous clusters where each compute node consists of both CPU
and GPU. We discuss the use of MPI alongside CUDA to integrate both inter-node com-
puting and intra-node computing, and the resulting communication issues and practices.

Chapter 19, Parallel programming with OpenACC, covers Parallel Programming
with OpenACC. OpenACC is a directive-based high level programming approach

18 CHAPTER 1  Introduction

which allows the programmer to identify and specify areas of code that can be sub-
sequently parallelized by the compiler and/or other tools. OpenACC is an easy way
for a parallel programmer to get started.

Chapter 20, More on CUDA and GPU computing and Chapter 21, Conclusion
and outlook, offer concluding remarks and an outlook for the future of massively
parallel programming. We first revisit our goals and summarize how the chapters fit
together to help achieve the goals. We then present a brief survey of the major trends
in the architecture of massively parallel processors and how these trends will likely
impact parallel programming in the future. We conclude with a prediction that these
fast advances in massively parallel computing will make it one of the most exciting
areas in the coming decade.

REFERENCES
Gelado, I., Cabezas, J., Navarro, N., Stone, J.E., Patel, S.J., Hwu, W.W. (2010). An asynchro-

nous distributed shared memory model for heterogeneous parallel systems. International
conference on architectural support for programming languages and operating systems.

Hwu, W. W., Keutzer, K., & Mattson, T. (2008). The concurrency challenge. IEEE Design and
Test of Computers, 25, 312–320.

Mattson, T. G., Sanders, B. A., & Massingill, B. L. (2004). Patterns of parallel programming.
Boston, MA: Addison-Wesley Professional.

Message Passing Interface Forum. MPI – A Message Passing Interface Standard Version 2.2.
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf, September 4, 2009.

NVIDIA Corporation. CUDA Programming Guide. February 2007.
OpenMP Architecture Review Board, “OpenMP application program interface,” May 2005.
Sutter, H., & Larus, J. (September 2005). Software and the concurrency revolution. ACM

Queue, 3(7), 54–62.
The Khronos Group. The OpenCL Specification version 1.0. http://www.khronos.org/registry/

cl/specs/opencl-1.0.29.pdf.
von Neumann, J. (1972). First draft of a report on the EDVAC. In H. H. Goldstine (Ed.), The

computer: from Pascal to von Neumann. Princeton, NJ: Princeton University Press. ISBN
0-691-02367-0.

Wing, J. (March 2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref1
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref1
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref2
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref2
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref3
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref3
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref4
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref4
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref4
http://refhub.elsevier.com/B978-0-12-811986-0.00001-7/sbref5

Accelerated Computing

GPU Teaching Kit

Course Introduction and Overview

Lecture 1.1 – Course Introduction

GPU Teaching Kit

2

Course Goals
– Learn how to program heterogeneous parallel computing systems

and achieve
– High performance and energy-efficiency
– Functionality and maintainability
– Scalability across future generations
– Portability across vendor devices

– Technical subjects
– Parallel programming API, tools and techniques
– Principles and patterns of parallel algorithms
– Processor architecture features and constraints

2

3

People
– Wen-mei Hwu (University of Illinois)
– David Kirk (NVIDIA)
– Joe Bungo (NVIDIA)
– Mark Ebersole (NVIDIA)
– Abdul Dakkak (University of Illinois)
– Izzat El Hajj (University of Illinois)
– Andy Schuh (University of Illinois)
– John Stratton (Colgate College)
– Isaac Gelado (NVIDIA)
– John Stone (University of Illinois)
– Javier Cabezas (NVIDIA)
– Michael Garland (NVIDIA)

4

Course Content
Module 1
Course Introduction

• Course Introduction and Overview
• Introduction to Heterogeneous Parallel Computing
• Portability and Scalability in Heterogeneous Parallel Computing

Module 2
Introduction to CUDA C

• CUDA C vs. CUDA Libs vs. OpenACC
• Memory Allocation and Data Movement API Functions
• Data Parallelism and Threads
• Introduction to CUDA Toolkit

Module 3
CUDA Parallelism Model

• ​Kernel-Based SPMD Parallel Programming
• Multidimensional Kernel Configuration
• Color-to-Greyscale Image Processing Example
• Blur Image Processing Example

Module 4
Memory Model and Locality

• ​CUDA Memories
• ​Tiled Matrix Multiplication
• ​Tiled Matrix Multiplication Kernel
• ​Handling Boundary Conditions in Tiling
• ​Tiled Kernel for Arbitrary Matrix Dimensions

Module 5
Kernel-based Parallel
Programming

• Histogram (Sort) Example
• Basic​ Matrix-Matrix Multiplication Example
• ​Thread Scheduling
• Control Divergence

5

Course Content
Module 6
Performance Considerations:
Memory

• DRAM Bandwidth
• ​Memory Coalescing in CUDA

Module 7
Atomic Operations • Atomic Operations

Module 8
Parallel Computation Patterns
(Part 1)

• Convolution
• Tiled Convolution
• 2D Tiled Convolution Kernel

Module 9
Parallel Computation Patterns
(Part 2)

• Tiled Convolution Analysis
• Data Reuse in Tiled Convolution

Module 10
Performance Considerations:
Parallel Computation Patterns

• Reduction
• Basic Reduction Kernel
• Improved Reduction Kernel

Module 11
Parallel Computation Patterns
(Part 3)

• Scan (Parallel Prefix Sum)
• Work-Inefficient Parallel Scan Kernel
• Work-Efficient Parallel Scan Kernel
• More on Parallel Scan

6

Course Content
Module 12
Performance Considerations: Scan
Applications

• Scan Applications: Per-thread Output Variable Allocation
• Scan Applications: Radix Sort
• Performance Considerations (Histogram (Atomics) Example)
• Performance Considerations (Histogram (Scan) Example)

Module 13
Advanced CUDA Memory Model

• Advanced CUDA Memory Model
• Constant Memory
• Texture Memory

Module 14
Floating Point Considerations

• Floating Point Precision Considerations
• Numerical Stability

Module 15
GPU as part of the PC Architecture • GPU as part of the PC Architecture

Module 16
Efficient Host-Device Data
Transfer

• Data Movement API vs. Unified Memory
• Pinned Host Memory
• Task Parallelism/CUDA Streams
• Overlapping Transfer with Computation

Module 17
Application Case Study: Advanced
MRI Reconstruction

• Advanced MRI Reconstruction

Module 18
Application Case Study:
Electrostatic Potential Calculation

• Electrostatic Potential Calculation (Part 1)
• Electrostatic Potential Calculation (part 2)

7

Course Content
Module 19
Computational Thinking For
Parallel Programming

• Computational Thinking for Parallel Programming

Module 20
Related Programming Models: MPI

• Joint MPI-CUDA Programming
• Joint MPI-CUDA Programming (Vector Addition - Main

Function)
• Joint MPI-CUDA Programming (Message Passing and Barrier)

(Data Server and Compute Processes)
• Joint MPI-CUDA Programming (Adding CUDA)
• Joint MPI-CUDA Programming (Halo Data Exchange)

Module 21
CUDA Python Using Numba • CUDA Python using Numba

Module 22
Related Programming Models:
OpenCL

• OpenCL Data Parallelism Model
• OpenCL Device Architecture
• OpenCL Host Code (Part 1)
• OpenCL Host Code (Part 2)

Module 23
Related Programming Models:
OpenACC

• Introduction to OpenACC
• OpenACC Subtleties

Module 24
Related Programming Models:
OpenGL

• OpenGL and CUDA Interoperability

8

Course Content
Module 25
Dynamic Parallelism

• Effective use of Dynamic Parallelism
• Advanced Architectural Features: Hyper-Q

Module 26
Multi-GPU • Multi-GPU

Module 27
Using CUDA Libraries

• Example Applications Using Libraries: CUBLAS
• Example Applications Using Libraries: CUFFT
• Example Applications Using Libraries: CUSOLVER

Module 28
Advanced Thrust • Advanced Thrust

Module 29
Other GPU Development
Platforms: QwickLABS

• Other GPU Development Platforms: QwickLABS

Where to Find Support

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Introduction to Heterogeneous Parallel Computing

Lecture 1.2 – Course Introduction

Accelerated Computing

GPU Teaching Kit

2

Objectives
– To learn the major differences between latency devices (CPU cores)

and throughput devices (GPU cores)
– To understand why winning applications increasingly use both types

of devices

3

Heterogeneous Parallel Computing
– Use the best match for the job (heterogeneity in mobile SOC)

Latency
Cores

Throughput
Cores

DSP Cores

HW IPs

Configurable
Logic/Cores

On-chip
Memories

Cloud
Services

4

CPU and GPU are designed very differently

CPU
Latency Oriented Cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
ontrol

GPU
Throughput Oriented Cores

Chip

Compute Unit
Cache/Local Mem

Registers

SIMD
Unit

Threading

5

CPUs: Latency Oriented Design

5

– Powerful ALU
– Reduced operation latency

– Large caches
– Convert long latency memory

accesses to short latency cache
accesses

– Sophisticated control
– Branch prediction for reduced

branch latency
– Data forwarding for reduced data

latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

6

GPUs: Throughput Oriented Design
– Small caches

– To boost memory throughput
– Simple control

– No branch prediction
– No data forwarding

– Energy efficient ALUs
– Many, long latency but heavily

pipelined for high throughput
– Require massive number of

threads to tolerate latencies
– Threading logic
– Thread state

6

DRAM

GPU

7

Winning Applications Use Both CPU and GPU

– CPUs for sequential parts
where latency matters
– CPUs can be 10X+ faster

than GPUs for sequential
code

– GPUs for parallel parts
where throughput wins
– GPUs can be 10X+ faster

than CPUs for parallel code

7

8

GPU computing reading resources

90 articles in two volumes

9

Heterogeneous Parallel Computing in Many Disciplines

9

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital Audio
Processing

Computer
Vision

Digital Video
Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray Tracing
Rendering

Interactive
Physics

Numerical
Methods

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Portability and Scalability in Heterogeneous Parallel Computing

Lecture 1.3 – Course Introduction

Accelerated Computing

GPU Teaching Kit

2

Objectives
– To understand the importance and nature of scalability and

portability in parallel programming

3

Software Dominates System Cost
– SW lines per chip increases at 2x/10 months

– HW gates per chip increases at 2x/18 months

– Future systems must
minimize software
redevelopment

4

Keys to Software Cost Control

– Scalability

App

Core A

5

Keys to Software Cost Control

– Scalability
– The same application runs efficiently on new generations of cores

App

Core A 2.0

6

Keys to Software Cost Control

– Scalability
– The same application runs efficiently on new generations of cores
– The same application runs efficiently on more of the same cores

App

Core A Core ACore A

7

More on Scalability
– Performance growth with HW generations

– Increasing number of compute units (cores)
– Increasing number of threads
– Increasing vector length
– Increasing pipeline depth
– Increasing DRAM burst size
– Increasing number of DRAM channels
– Increasing data movement latency

The programming style we use in this course
supports scalability through fine-grained
problem decomposition and dynamic thread
scheduling

8

Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores

App

Core A

App

Core C

App

Core B

9

Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores
– The same application runs efficiently on systems with different organizations and

interfaces

App AppApp

10

More on Portability
– Portability across many different HW types

– Across ISAs (Instruction Set Architectures) - X86 vs. ARM, etc.
– Latency oriented CPUs vs. throughput oriented GPUs
– Across parallelism models - VLIW vs. SIMD vs. threading
– Across memory models - Shared memory vs. distributed memory

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

