
Accelerated Computing

GPU Teaching Kit

Lecture 12.1 - Floating-Point Precision and Accuracy
Module 12 – Floating-Point Considerations

2

Objective
– To understand the fundamentals of floating-point representation
– To understand the IEEE-754 Floating Point Standard
– CUDA GPU Floating-point speed, accuracy and precision

– Cause of errors
– Algorithm considerations
– Accuracy of device runtime functions
– -fastmath compiler option
– Future performance considerations

3

What is IEEE floating-point format?
– An industrywide standard for representing floating-point numbers to ensure

that hardware from different vendors generate results that are consistent with
each other

– A floating point binary number consists of three parts:
– sign (S), exponent (E), and mantissa (M)
– Each (S, E, M) pattern uniquely identifies a floating point number

– For each bit pattern, its IEEE floating-point value is derived as:
– value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

– The interpretation of S is simple: S=0 results in a positive number and S=1 a
negative number

4

Normalized Representation
– Specifying that 1.0B ≤ M < 10.0B makes the mantissa value for each

floating point number unique.
– For example, the only mantissa value allowed for 0.5D is M =1.0

– 0.5D = 1.0B * 2-1

– Neither 10.0B * 2 -2 nor 0.1B * 2 0 qualifies

– Because all mantissa values are of the form 1.XX…, one can omit
the “1.” part in the representation.

– The mantissa value of 0.5D in a 2-bit mantissa is 00, which is derived by omitting “1.”
from 1.00.

– Mantissa without implied 1 is called the fraction

5

Exponent Representation
– In an n-bit exponent

representation, 2n-1-1 is
added to its 2's complement
representation to form its
excess representation.
– See Table for a 3-bit exponent

representation
– A simple unsigned integer

comparator can be used to
compare the magnitude of
two FP numbers

– Symmetric range for +/-
exponents (111 reserved)

2’s complement Actual decimal Excess-3

000 0 011

001 1 100

010 2 101

011 3 110

100 (reserved
pattern)

111

101 -3 000

110 -2 001

111 -1 010

6

A simple, hypothetical 5-bit FP format
2’s
complement

Actual decimal Excess-
1

00 0 01

01 1 10

10 (reserved
pattern)

11

11 -1 00

– Assume 1-bit S, 2-bit E,
and 2-bit M
– 0.5D = 1.00B * 2-1
– 0.5D = 0 00 00, where S = 0,

E = 00, and M = (1.)00

7

Representable Numbers
000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

– The representable numbers
of a given format is the set of
all numbers that can be
exactly represented in the
format.

– See Table for representable
numbers of an unsigned 3-bit
integer format

0 71 42 3 5 6-1 98

8

Representable Numbers of a 5-bit Hypothetical IEEE Format

Non-zero Abrupt underflow Gradual underflow

E M S=0 S=1 S=0 S=1 S=0 S=1

00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)

01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)

10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)

01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)

10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 University of Illinois, Urbana-Champaign8

Cannot Represent Zero!

9

Flush to Zero
– Treat all bit patterns with E=0 as 0.0

– This takes away several representable numbers near zero and
lump them all into 0.0

– For a representation with large M, a large number of
representable numbers will be removed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

9

1 2 3 40

10

Flush to Zero
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1

00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)

01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)

10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)

01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)

10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 University of Illinois, Urbana-Champaign10

11

Why is flushing to zero problematic?
– Many physical model calculations work on values that are

very close to zero
– Dark (but not totally black) sky in movie rendering
– Small distance fields in electrostatic potential calculation
– …

– Without Denormalization, these calculations tend to
create artifacts that compromise the integrity of the
models

12

Denormalized Numbers
– The actual method adopted by the IEEE

standard is called “denormalized numbers” or
“gradual underflow”.

– The method relaxes the normalization requirement for numbers very
close to 0.

– Whenever E=0, the mantissa is no longer assumed to be of the form
1.XX. Rather, it is assumed to be 0.XX. In general, if the n-bit exponent is
0, the value is 0.M * 2 - 2 ^(n-1) + 2

0 1 2 3

13

Denormalization
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 University of Illinois, Urbana-Champaign13

14

IEEE 754 Format and Precision
– Single Precision

– 1-bit sign, 8 bit exponent (bias-127 excess), 23 bit fraction

– Double Precision
– 1-bit sign, 11-bit exponent (1023-bias excess), 52 bit fraction
– The largest error for representing a number is reduced to 1/229 of single

precision representation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

14

15

Special Bit Patterns

– An ∞ can be created by overflow, e.g., divided by zero. Any
representable number divided by +∞ or -∞ results in 0.

– NaN (Not a Number) is generated by operations whose input values
do not make sense, for example, 0/0, 0*∞, ∞/∞, ∞ - ∞.

– Also used to for data that has not been properly initialized in a program.
– Signaling NaNs (SNaNs) are represented with most significant mantissa bit cleared whereas

quiet NaNs are represented with most significant mantissa bit set.

exponent mantissa meaning

11…1 ≠ 0 NaN

11…1 =0 (-1)S * ∞

00…0 ≠0 denormalized

00…0 =0 0

16

Floating Point Accuracy and Rounding
– The accuracy of a floating point arithmetic operation is measured by

the maximal error introduced by the operation.
– The most common source of error in floating point arithmetic is when

the operation generates a result that cannot be exactly represented
and thus requires rounding.

– Rounding occurs if the mantissa of the result value needs too many
bits to be represented exactly.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

16

17

Rounding and Error
– Assume our 5-bit representation, consider

1.0*2-2 (0, 00, 01) + 1.00*21 (0, 10, 00)

– The hardware needs to shift the mantissa bits in order to align the
correct bits with equal place value

0.001*21 (0, 00, 0001) + 1.00*21 (0, 10, 00)

The ideal result would be 1.001 * 21 (0, 10, 001) but this would
require 3 mantissa bits!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

17

exponent is 00 →denorm

18

Rounding and Error
– In some cases, the hardware may only perform the operation on a

limited number of bits for speed and area cost reasons
– An adder may only have 3 bit positions in our example so the first operand would be

treated as a 0.00

0.001*21 (0, 00, 0001) + 1.00*21 (0, 10, 00)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

18

19

Error Measure
– If a hardware adder has at least two more bit positions than the total

(both implicit and explicit) number of mantissa bits, the error would
never be more than half of the place value of the mantissa

– 0.001 in our 5-bit format

– We refer to this as 0.5 ULP (Units in the Last Place)
– If the hardware is designed to perform arithmetic and rounding operations perfectly,

the most error that one should introduce should be no more than 0.5 ULP
– The error is limited by the precision for this case.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

19

20

Order of Operations Matter
– Floating point operations are not strictly associative
– The root cause is that some times a very small number can

disappear when added to or subtracted from a very large number.
– (Large + Small) + Small ≠ Large + (Small + Small)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

20

21

Algorithm Considerations
– Sequential sum

1.00*20 +1.00*20 + 1.00*2-2 + 1.00*2-2

= 1.00*21 + 1.00*2-2 + 1.00*2-2

= 1.00*21 + 1.00*2-2

= 1.00*21

– Parallel reduction
(1.00*20 +1.00*20) + (1.00*2-2 + 1.00*2-2)

= 1.00*21 + 1.00*2-1

= 1.01*21

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

21

22

Runtime Math Library
– There are two types of runtime math operations

– __func(): direct mapping to hardware ISA
– Fast but low accuracy
– Examples: __sin(x), __exp(x), __pow(x,y)

– func() : compile to multiple instructions
– Slower but higher accuracy (0.5 ulp, units in the least place, or less)
– Examples: sin(x), exp(x), pow(x,y)

– The -use_fast_math compiler option forces every func() to
compile to __func()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

22

23

Make your program float-safe!
– Double precision likely have performance cost

– Careless use of double or undeclared types may run more
slowly

– Important to be explicit whenever you want single
precision to avoid using double precision where it is not
needed
– Add ‘f’ specifier on float literals:

– foo = bar * 0.123; // double assumed
– foo = bar * 0.123f; // float explicit

– Use float version of standard library functions
– foo = sin(bar); // double assumed
– foo = sinf(bar); // single precision explicit

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

23

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 12.2 - Numerical Stability
Module 12 – Floating-Point Considerations

2

Objective

– Understand numerical stability in linear system solver algorithms
– Cause of numerical instability
– Pivoting for increased stability

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

2

3

Numerical Stability
– Linear system solvers may require different ordering of floating-point

operations for different input values in order to find a solution
– An algorithm that can always find an appropriate operation order and

thus a solution to the problem is a numerically stable algorithm
– An algorithm that falls short is numerically unstable

3

4

3X + 5Y +2Z = 19

2X + 3Y + Z = 11

X + 2Y + 2Z = 11

Original
X + 5/3Y + 2/3Z = 19/3

X + 3/2Y + 1/2Z = 11/2

X + 2Y + 2Z = 11

Step 1: divide equation 1 by
3, equation 2 by 2

X + 5/3Y +2/3Z = 19/3

- 1/6Y - 1/6Z = -5/6

1/3Y + 4/3Z = 14/3

Step 2: subtract equation 1 from
equation 2 and equation 3

Gaussian Elimination Example

5

X + 5/3Y +2/3Z = 19/3

- 1/6Y - 1/6Z = -5/6

1/3Y + 4/3Z = 14/3

X + 5/3Y + 2/3Z = 19/3

Y + Z = 5

Y + 4Z = 14

Step 3: divide equation 2 by -1/6
and equation 3 by 1/3

X + 5/3Y + 2/3Z = 19/3

Y + Z = 5

+ 3Z = 9
Step 4: subtract equation 2
from equation 3

Gaussian Elimination Example (Cont.)

6

X + 5/3Y +2/3Z = 19/3

Y + Z = 5

Z = 3

Step 5: divide equation 3 by 3
We have solution for Z!

X + 5/3Y +2/3Z = 19/3

Y = 2

Z = 3Step 6: substitute Z solution into
equation 2. Solution for Y!

X = 1

Y = 2

Z = 3
Step 7: substitute Y and Z into
equation 1. Solution for X!

X + 5/3Y + 2/3Z = 19/3

Y + Z = 5

+ 3Z = 9

Gaussian Elimination Example (Cont.)

7

3 5 2 19

2 3 1 11

1 2 2 11

Original

1 5/3 2/3 19/3

1 3/2 1/2 11/2

1 2 2 11

Step 1: divide row 1 by 3, row 2
by 2

1 5/3 2/3 19/3

- 1/6 - 1/6 -5/6

1/3 4/3 14/3

Step 2: subtract row 1 from row
2 and row 3

1 5/3 2/3 19/3

1 1 5

1 4 14

Step 3: divide row 2 by -1/6 and
row 3 by 1/3

1 5/3 2/3 19/3

1 1 5

3 9
Step 4: subtract row 2 from row 3

1 5/3 2/3 19/3

1 1 5

1 3

Step 5: divide equation 3 by 3
Solution for Z!

1 5/3 2/3 19/3

1 2

1 3

Step 6: substitute Z solution into
equation 2. Solution for Y!

1 1

1 2

1 3
Step 7: substitute Y and Z into
equation 1. Solution for X!

8

Basic Gaussian Elimination is Easy to Parallelize

– Have each thread to perform all calculations for a row
– All divisions in a division step can be done in parallel
– All subtractions in a subtraction step can be done in parallel
– Will need barrier synchronization after each step

– However, there is a problem with numerical stability

9

Pivoting

5 2 16

2 3 1 11

1 2 2 11

2 3 1 11

5 2 16

1 2 2 11

Pivoting: Swap row 1 (Equation 1) with
row 2 (Equation 2)

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 1: divide row 1 by 3, no need
to divide row 2 or row 3

10

Pivoting (Cont.)

1 3/2 1/2 11/2

5 2 16

1/2 3/2 11/2

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 2: subtract row 1 from row 3
(column 1 of row 2 is already 0)

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

Step 3: divide row 2 by 5 and row
3 by 1/2

11

Pivoting (Cont.)

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

1 3/2 1/2 11/2

1 2/5 16/5

13/5 39/5

Step 4: subtract row 2 from
row 3

Step 5: divide row 3 by 13/5
Solution for Z!

1 5/3 2/3 19/3

1 2/5 16/5

1 3

12

Step 6: substitute Z solution into
equation 2. Solution for Y!

1 1

1 2

1 3

Step 7: substitute Y and Z into
equation 1. Solution for X!

1 5/3 2/3 19/3

1 2

1 3

Pivoting (Cont.)

1 5/3 2/3 19/3

1 2/5 16/5

1 3

13

5 2 16

2 3 1 11

1 2 2 11

Original

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

Step 1: divide row 1 by 3, no need to
divide row 2 or row 3

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 2: subtract row 1 from row 3
(column 1 of row 2 is already 0)

1 3/2 1/2 11/2

5 2 16

1/2 3/2 11/2

Step 3: divide row 2 by 5 and row 3 by
1/2

Step 4: subtract row 2 from row 3

1 3/2 1/2 11/2

1 2/5 16/5

13/5 39/5

Step 5: divide row 3 by 13/5
Solution for Z!

1 5/3 2/3 19/3

1 2/5 16/5

1 3

Step 6: substitute Z solution into
equation 2. Solution for Y!

1 1

1 2

1 3

Step 7: substitute Y and Z into equation
1. Solution for X!

2 3 1 11

5 2 16

1 2 2 11
Pivoting: Swap row 1 (Equation 1)
with row 2 (Equation 2)

1 5/3 2/3 19/3

1 2

1 3

Figure 7.11

14

Why is Pivoting Hard to Parallelize?
– Need to scan through all rows (in fact columns in general) to find the

best pivoting candidate
– A major disruption to the parallel computation steps
– Most parallel algorithms avoid full pivoting
– Thus most parallel algorithms have some level of numerical instability

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

