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Objective
– To understand the fundamentals of floating-point representation
– To understand the IEEE-754 Floating Point Standard
– CUDA GPU Floating-point speed, accuracy and precision

– Cause of errors
– Algorithm considerations
– Accuracy of device runtime functions 
– -fastmath compiler option
– Future performance considerations
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What is IEEE floating-point format?
– An industrywide standard for representing floating-point numbers to ensure 

that hardware from different vendors generate results that are consistent with 
each other

– A floating point binary number consists of three parts:
– sign (S), exponent (E), and mantissa (M)
– Each (S, E, M) pattern uniquely identifies a floating point number

– For each bit pattern, its IEEE floating-point value is derived as:
– value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

– The interpretation of S is simple: S=0 results in a positive number and S=1 a 
negative number
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Normalized Representation
– Specifying that 1.0B ≤ M < 10.0B makes the mantissa value for each 

floating point number unique. 
– For example, the only mantissa value allowed for 0.5D is M =1.0

– 0.5D = 1.0B * 2-1

– Neither 10.0B * 2 -2  nor  0.1B * 2 0  qualifies

– Because all mantissa values are of the form 1.XX…, one can omit 
the “1.” part in the representation.

– The mantissa value of 0.5D in a 2-bit mantissa is 00, which is derived by omitting “1.” 
from 1.00.

– Mantissa without implied 1 is called the fraction
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Exponent Representation
– In an n-bit exponent 

representation, 2n-1-1 is 
added to its 2's complement 
representation to form its 
excess representation. 
– See Table for a 3-bit exponent 

representation
– A simple unsigned integer 

comparator can be used to 
compare the magnitude of 
two FP numbers

– Symmetric range for +/-
exponents (111 reserved)

2’s complement Actual decimal Excess-3

000 0 011

001 1 100

010 2 101

011 3 110

100 (reserved 
pattern)

111

101 -3 000

110 -2 001

111 -1 010
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A simple, hypothetical 5-bit FP format
2’s 
complement

Actual decimal Excess-
1

00 0 01

01 1 10

10 (reserved 
pattern)

11

11 -1 00

– Assume 1-bit S, 2-bit E, 
and 2-bit M
– 0.5D = 1.00B * 2-1
– 0.5D = 0 00 00, where S = 0, 

E = 00, and M = (1.)00 
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Representable Numbers
000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

– The representable numbers 
of a given format is the set of 
all numbers that can be 
exactly represented in the 
format. 

– See Table for representable 
numbers of an unsigned 3-bit 
integer format

0 71 42 3 5 6-1 98
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Representable Numbers of a 5-bit Hypothetical IEEE Format

Non-zero Abrupt underflow Gradual underflow

E M S=0 S=1 S=0 S=1 S=0 S=1

00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)

01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)

10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)

01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)

10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 University of Illinois, Urbana-Champaign8

Cannot Represent Zero!
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Flush to Zero
– Treat all bit patterns with E=0 as 0.0

– This takes away several representable numbers near zero and 
lump them all into 0.0

– For a representation with large M, a large number of 
representable numbers will be removed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign

9
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Flush to Zero
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1

00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)

01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)

10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)

01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)

10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 University of Illinois, Urbana-Champaign10
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Why is flushing to zero problematic?
– Many physical model calculations work on values that are 

very close to zero
– Dark (but not totally black) sky in movie rendering
– Small distance fields in electrostatic potential calculation
– …

– Without Denormalization, these calculations tend to 
create artifacts that compromise the integrity of the 
models
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Denormalized Numbers
– The actual method adopted by the IEEE 

standard is called “denormalized numbers” or 
“gradual underflow”.

– The method relaxes the normalization requirement for numbers very 
close to 0. 

– Whenever E=0, the mantissa is no longer assumed to be of the form 
1.XX. Rather, it is assumed to be 0.XX. In general, if the n-bit exponent is 
0, the value is 0.M * 2 - 2 ^(n-1) + 2

0 1 2 3
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Denormalization
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 University of Illinois, Urbana-Champaign13
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IEEE 754 Format and Precision
– Single Precision

– 1-bit sign, 8 bit exponent (bias-127 excess), 23 bit fraction

– Double Precision
– 1-bit sign, 11-bit exponent (1023-bias excess), 52 bit fraction
– The largest error for representing a number is reduced to 1/229 of single 

precision representation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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Special Bit Patterns

– An ∞ can be created by overflow, e.g., divided by zero. Any 
representable number divided by +∞ or -∞ results in 0.

– NaN (Not a Number) is generated by operations whose input values 
do not make sense, for example, 0/0, 0*∞, ∞/∞, ∞ - ∞.

– Also used to for data that has not been properly initialized in a program. 
– Signaling NaNs (SNaNs) are represented with most significant mantissa bit cleared whereas 

quiet NaNs are represented with most significant mantissa bit set.

exponent mantissa meaning

11…1 ≠ 0 NaN

11…1 =0 (-1)S * ∞

00…0 ≠0 denormalized

00…0 =0 0
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Floating Point Accuracy and Rounding
– The accuracy of a floating point arithmetic operation is measured by 

the maximal error introduced by the operation. 
– The most common source of error in floating point arithmetic is when 

the operation generates a result that cannot be exactly represented 
and thus requires rounding. 

– Rounding occurs if the mantissa of the result value needs too many 
bits to be represented exactly. 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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Rounding and Error
– Assume our 5-bit representation, consider

1.0*2-2 (0, 00, 01) + 1.00*21 (0, 10, 00)

– The hardware needs to shift the mantissa bits in order to align the 
correct bits with equal place value

0.001*21 (0, 00, 0001) + 1.00*21 (0, 10, 00)

The ideal result would be 1.001 * 21 (0, 10, 001) but this would
require 3 mantissa bits!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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exponent is 00 →denorm
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Rounding and Error
– In some cases, the hardware may only perform the operation on a 

limited number of bits for speed and area cost reasons
– An adder may only have 3 bit positions in our example so the first operand would be 

treated as a 0.00

0.001*21 (0, 00, 0001) + 1.00*21 (0, 10, 00)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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Error Measure 
– If a hardware adder has at least two more bit positions than the total 

(both implicit and explicit) number of mantissa bits, the error would 
never be more than half of the place value of the mantissa

– 0.001 in our 5-bit format

– We refer to this as 0.5 ULP (Units in the Last Place)
– If the hardware is designed to perform arithmetic and rounding operations perfectly, 

the most error that one should introduce should be no more than 0.5 ULP
– The error is limited by the precision for this case.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign

19
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Order of Operations Matter
– Floating point operations are not strictly associative
– The root cause is that some times a very small number can 

disappear when added to or subtracted from a very large number.
– (Large + Small) + Small ≠ Large + (Small + Small)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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Algorithm Considerations
– Sequential sum

1.00*20 +1.00*20 + 1.00*2-2 + 1.00*2-2  

= 1.00*21 + 1.00*2-2 + 1.00*2-2  

= 1.00*21 + 1.00*2-2 

= 1.00*21

– Parallel reduction
(1.00*20 +1.00*20) + (1.00*2-2 + 1.00*2-2 )

= 1.00*21 + 1.00*2-1 

= 1.01*21

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign

21
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Runtime Math Library
– There are two types of runtime math operations

– __func(): direct mapping to hardware ISA
– Fast but low accuracy
– Examples: __sin(x), __exp(x), __pow(x,y)

– func() : compile to multiple instructions
– Slower but higher accuracy (0.5 ulp, units in the least place, or less)
– Examples: sin(x), exp(x), pow(x,y)

– The -use_fast_math compiler option forces every func() to 
compile to __func()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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Make your program float-safe!
– Double precision likely have performance cost

– Careless use of double or undeclared types may run more 
slowly

– Important to be explicit whenever you want single 
precision to avoid using double precision where it is not 
needed
– Add ‘f’ specifier on float literals:

– foo = bar * 0.123; // double assumed 
– foo = bar * 0.123f; // float explicit

– Use float version of standard library functions
– foo = sin(bar); // double assumed 
– foo = sinf(bar); // single precision explicit

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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Objective

– Understand numerical stability in linear system solver algorithms
– Cause of numerical instability
– Pivoting for increased stability

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
University of Illinois, Urbana-Champaign
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Numerical Stability
– Linear system solvers may require different ordering of floating-point 

operations for different input values in order to find a solution
– An algorithm that can always find an appropriate operation order and 

thus a solution to the problem is a numerically stable algorithm
– An algorithm that falls short is numerically unstable

3
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3X + 5Y +2Z = 19

2X + 3Y +  Z = 11

X + 2Y + 2Z = 11

Original
X + 5/3Y + 2/3Z = 19/3

X + 3/2Y + 1/2Z = 11/2

X +     2Y +     2Z = 11

Step 1: divide equation 1 by 
3, equation 2 by 2

X + 5/3Y +2/3Z = 19/3

- 1/6Y - 1/6Z =  -5/6

1/3Y + 4/3Z = 14/3

Step 2: subtract equation 1 from 
equation 2 and equation 3

Gaussian Elimination Example
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X + 5/3Y +2/3Z = 19/3

- 1/6Y - 1/6Z =  -5/6

1/3Y + 4/3Z = 14/3

X + 5/3Y + 2/3Z = 19/3

Y + Z =       5

Y +    4Z = 14

Step 3: divide equation 2 by -1/6 
and equation 3 by 1/3

X + 5/3Y + 2/3Z = 19/3

Y + Z =       5

+    3Z =       9
Step 4: subtract equation 2 
from equation 3 

Gaussian Elimination Example (Cont.)
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X + 5/3Y +2/3Z = 19/3

Y + Z =       5

Z =       3

Step 5: divide equation 3 by 3
We have solution for Z!

X + 5/3Y +2/3Z = 19/3

Y =       2

Z =       3Step 6: substitute Z solution into 
equation 2. Solution for Y!

X =       1

Y =       2

Z =       3
Step 7: substitute Y and Z into 
equation 1.  Solution for X!

X + 5/3Y + 2/3Z = 19/3

Y + Z =       5

+    3Z =       9

Gaussian Elimination Example (Cont.)
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3 5 2 19

2 3 1 11

1 2 2 11

Original

1 5/3 2/3 19/3

1 3/2 1/2 11/2

1 2 2 11

Step 1: divide row 1 by 3, row 2 
by 2

1 5/3 2/3 19/3

- 1/6 - 1/6 -5/6

1/3 4/3 14/3

Step 2: subtract row 1 from row 
2 and row 3

1 5/3 2/3 19/3

1 1 5

1 4 14

Step 3: divide row 2 by -1/6 and 
row 3 by 1/3

1 5/3 2/3 19/3

1 1 5

3 9
Step 4: subtract row 2 from row 3 

1 5/3 2/3 19/3

1 1 5

1 3

Step 5: divide equation 3 by 3
Solution for Z!

1 5/3 2/3 19/3

1 2

1 3

Step 6: substitute Z solution into 
equation 2. Solution for Y!

1 1

1 2

1 3
Step 7: substitute Y and Z into 
equation 1.  Solution for X!
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Basic Gaussian Elimination is Easy to Parallelize

– Have each thread to perform all calculations for a row
– All divisions in a division step can be done in parallel
– All subtractions in a subtraction step can be done in parallel
– Will need barrier synchronization after each step

– However, there is a problem with numerical stability
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Pivoting

5 2 16

2 3 1 11

1 2 2 11

2 3 1 11

5 2 16

1 2 2 11

Pivoting: Swap row 1 (Equation 1) with 
row 2 (Equation 2)

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 1: divide row 1 by 3, no need 
to divide row 2 or row 3
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Pivoting (Cont.)

1 3/2 1/2 11/2

5 2 16

1/2 3/2 11/2

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 2: subtract row 1 from row  3 
(column 1 of row 2 is already 0)

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

Step 3: divide row 2 by 5 and row 
3 by 1/2
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Pivoting (Cont.)

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

1 3/2 1/2 11/2

1 2/5 16/5

13/5 39/5

Step 4: subtract row 2 from 
row 3 

Step 5: divide row 3 by 13/5
Solution for Z!

1 5/3 2/3 19/3

1 2/5         16/5

1 3
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Step 6: substitute Z solution into 
equation 2. Solution for Y!

1 1

1 2

1 3

Step 7: substitute Y and Z into 
equation 1.  Solution for X!

1 5/3 2/3 19/3

1 2

1 3

Pivoting (Cont.)

1 5/3 2/3 19/3

1 2/5         16/5

1 3
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5 2 16

2 3 1 11

1 2 2 11

Original

1 3/2 1/2 11/2

1 2/5 16/5

1 3 11

Step 1: divide row 1 by 3, no need to 
divide row 2 or row 3

1 3/2 1/2 11/2

5 2 16

1 2 2 11

Step 2: subtract row 1 from row  3 
(column 1 of row 2 is already 0)

1 3/2 1/2 11/2

5 2 16

1/2 3/2 11/2

Step 3: divide row 2 by 5 and row 3 by 
1/2

Step 4: subtract row 2 from row 3 

1 3/2 1/2 11/2

1 2/5 16/5

13/5 39/5

Step 5: divide row 3 by 13/5
Solution for Z!

1 5/3 2/3 19/3

1 2/5         16/5

1 3

Step 6: substitute Z solution into 
equation 2. Solution for Y!

1 1

1 2

1 3

Step 7: substitute Y and Z into equation 
1.  Solution for X!

2 3 1 11

5 2 16

1 2 2 11
Pivoting: Swap row 1 (Equation 1) 
with row 2 (Equation 2)

1 5/3 2/3 19/3

1 2

1 3

Figure 7.11
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Why is Pivoting Hard to Parallelize?
– Need to scan through all rows (in fact columns in general) to find the 

best pivoting candidate
– A major disruption to the parallel computation steps
– Most parallel algorithms avoid full pivoting
– Thus most parallel algorithms have some level of numerical instability
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