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Objective

– To learn the important concepts involved in copying (transferring) data 
between host and device
– Direct Memory Access
– Pinned memory
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CPU-GPU Data Transfer using DMA

– DMA (Direct Memory Access) hardware is used by cudaMemcpy() for 
better efficiency
– Frees CPU for other tasks
– Hardware unit specialized to transfer a number of bytes requested by OS
– Between physical memory address space regions (some can be mapped I/O memory 

locations)
– Uses system interconnect, typically PCIe in today’s systems

CPU Main Memory (DRAM)

GPU card 
(or other I/O cards)

DMAGlobal 
Memory

PCIe
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Virtual Memory Management 

– Modern computers use virtual memory management
– Many virtual memory spaces mapped into a single physical memory
– Virtual addresses (pointer values) are translated into physical addresses

– Not all variables and data structures are always in the physical 
memory
– Each virtual address space is divided into pages that are mapped into and out of 

the physical memory
– Virtual memory pages can be mapped out of the physical memory (page-out) to 

make room
– Whether or not a variable is in the physical memory is checked at address 

translation time
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Data Transfer and Virtual Memory 

– DMA uses physical addresses
– When cudaMemcpy() copies an array, it is implemented as one or more DMA 

transfers
– Address is translated and page presence checked for the entire source and 

destination regions at the beginning of each DMA transfer
– No address translation for the rest of the same DMA transfer so that high efficiency 

can be achieved

– The OS could accidentally page-out the data that is being read or written 
by a DMA and page-in another virtual page into the same physical location
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Pinned Memory and DMA Data Transfer 

– Pinned memory are virtual memory pages that are specially marked so that 
they cannot be paged out

– Allocated with a special system API function call
– a.k.a. Page Locked Memory, Locked Pages, etc.
– CPU memory that serve as the source or destination of a DMA transfer must 

be allocated as pinned memory
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CUDA data transfer uses pinned memory.

– The DMA used by cudaMemcpy() requires that any source or destination in 
the host memory is allocated as pinned memory

– If a source or destination of a cudaMemcpy() in the host memory is not 
allocated in pinned memory, it needs to be first copied to a pinned memory –
extra overhead

– cudaMemcpy() is faster if the host memory source or destination is 
allocated in pinned memory since no extra copy is needed
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Allocate/Free Pinned Memory

– cudaHostAlloc(), three parameters
– Address of pointer to the allocated memory
– Size of the allocated memory in bytes
– Option – use cudaHostAllocDefault for now

– cudaFreeHost(), one parameter
– Pointer to the memory to be freed
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Using Pinned Memory in CUDA

– Use the allocated pinned memory and its pointer the same way as those 
returned by malloc();

– The only difference is that the allocated memory cannot be paged by the OS

– The cudaMemcpy() function should be about 2X faster with pinned memory

– Pinned memory is a limited resource
– over-subscription can have serious consequences 
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Putting It Together - Vector Addition Host Code Example

int main()
{

float *h_A, *h_B, *h_C;
…

cudaHostAlloc((void **) &h_A, N* sizeof(float),
cudaHostAllocDefault);

cudaHostAlloc((void **) &h_B, N* sizeof(float),
cudaHostAllocDefault); 

cudaHostAlloc((void **) &h_C, N* sizeof(float),
cudaHostAllocDefault); 

…
// cudaMemcpy() runs 2X faster

}
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Objective

– To learn task parallelism in CUDA
– CUDA Streams
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Serialized Data Transfer and Computation

– So far, the way we use cudaMemcpy serializes data transfer and 
GPU computation for VecAddKernel()

Trans. A Trans. B Comp Trans. C

time

Only use one direction, 
GPU idle

PCIe Idle
Only use one 
direction, GPU 
idle



4

Device Overlap

– Some CUDA devices support device overlap
– Simultaneously execute a kernel while copying data between device and host 

memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount( &dev_count);
for (int i = 0; i < dev_count; i++) {

cudaGetDeviceProperties(&prop, i);
if (prop.deviceOverlap) … 
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Ideal, Pipelined Timing

– Divide large vectors into segments
– Overlap transfer and compute of adjacent segments

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1 = A.1 + B.1

Trans 
A.2

Trans 
B.2

Trans 
C.1

Comp 
C.2 = A.2 + B.2

Trans 
A.3

Trans 
B.3
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CUDA Streams

– CUDA supports parallel execution of kernels and 
cudaMemcpy() with “Streams”

– Each stream is a queue of operations (kernel launches and 
cudaMemcpy()calls)

– Operations (tasks) in different streams can go in parallel
– “Task parallelism”
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Streams

– Requests made from the host code are put into First-In-First-Out 
queues
– Queues are read and processed asynchronously by the driver and device
– Driver ensures that commands in a queue are processed in sequence.  E.g., 

Memory copies end before kernel launch, etc.

host thread

cudaMemcpy()
kernel launch
device sync
cudaMemcpy()

FIFO

device driver
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Streams cont.

– To allow concurrent copying and kernel execution, use multiple 
queues, called “streams”
– CUDA “events” allow the host thread to query and synchronize with individual 

queues (i.e. streams).

Event

host thread

Stream 0

device driver

Stream 1
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Conceptual View of Streams

MemCpy A.0
MemCpy B.0

Kernel 0
MemCpy C.0

MemCpy A.1
MemCpy B.1

Kernel 1
MemCpy C.1

Stream 0 Stream 1

Copy Engine

PCIe
up

Kernel 
Engine

Operations (Kernel launches, cudaMemcpy() calls)

PCIe
down
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Objective

– To learn how to overlap data transfer with computation
– Asynchronous data transfer in CUDA
– Practical limitations of CUDA streams
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Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go 
here
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Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {

cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0,…);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);

cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);

vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),…, stream1);

}
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A View Closer to Reality in Previous GPUs

MemCpy A.0

MemCpy B.0

MemCpy C.0

MemCpy A.1

MemCpy B.1

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy 
Engine

PCIe
up

PCIe
down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1
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Not quite the overlap we want in some GPUs

– C.0 blocks A.1 and B.1 in the copy engine queue

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1= A.1 + B.1

Trans 
C.1
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Better Multi-Stream Host Code 

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1); 

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),…, stream1);

}
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C.0 no longer blocks A.1 and B.1

MemCpy A.0

MemCpy B.0

MemCpy A.1

MemCpy B.1

MemCpy C.0

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy 
Engine

PCIe
up

PCIe
down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1
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Better, not quite the best overlap

– C.1 blocks next iteration A.0 and B.0 in the copy engine queue

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1= A.1 + B.1

Trans 
C.1

Trans 
A.2

Trans 
B.2

Trans 
A.2

Comp 
C.2 = A.2 
+ 

Iteration n

Iteration n+1
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Ideal, Pipelined Timing

– Will need at least three buffers for each original A, B, and C, 
code is more complicated 

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1 = A.1 + B.1

Trans 
A.2

Trans 
B.2

Trans 
C.1

Comp 
C.2 = A.2 + B.2

Trans 
A.3

Trans 
B.3
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Hyper Queues

– Provide multiple queues for each engine
– Allow more concurrency by allowing some streams to make 

progress for an engine while others are blocked 

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 0

Stream 1

Stream 2
Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z
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Wait until all tasks have completed

– cudaStreamSynchronize(stream_id)
– Used in host code
– Takes one parameter – stream identifier
– Wait until all tasks in a stream have completed
– E.g., cudaStreamSynchronize(stream0)in host code ensures that all tasks 

in the queues of stream0 have completed

– This is different from cudaDeviceSynchronize()
– Also used in host code
– No parameter
– cudaDeviceSynchronize() waits until all tasks in all streams have completed 

for the current device
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