
Accelerated Computing

GPU Teaching Kit

Lecture 14.1 - Pinned Host Memory
Module 14 – Efficient Host-Device Data Transfer

2

Objective

– To learn the important concepts involved in copying (transferring) data
between host and device
– Direct Memory Access
– Pinned memory

3

CPU-GPU Data Transfer using DMA

– DMA (Direct Memory Access) hardware is used by cudaMemcpy() for
better efficiency
– Frees CPU for other tasks
– Hardware unit specialized to transfer a number of bytes requested by OS
– Between physical memory address space regions (some can be mapped I/O memory

locations)
– Uses system interconnect, typically PCIe in today’s systems

CPU Main Memory (DRAM)

GPU card
(or other I/O cards)

DMAGlobal
Memory

PCIe

4

Virtual Memory Management

– Modern computers use virtual memory management
– Many virtual memory spaces mapped into a single physical memory
– Virtual addresses (pointer values) are translated into physical addresses

– Not all variables and data structures are always in the physical
memory
– Each virtual address space is divided into pages that are mapped into and out of

the physical memory
– Virtual memory pages can be mapped out of the physical memory (page-out) to

make room
– Whether or not a variable is in the physical memory is checked at address

translation time

5

Data Transfer and Virtual Memory

– DMA uses physical addresses
– When cudaMemcpy() copies an array, it is implemented as one or more DMA

transfers
– Address is translated and page presence checked for the entire source and

destination regions at the beginning of each DMA transfer
– No address translation for the rest of the same DMA transfer so that high efficiency

can be achieved

– The OS could accidentally page-out the data that is being read or written
by a DMA and page-in another virtual page into the same physical location

6

Pinned Memory and DMA Data Transfer

– Pinned memory are virtual memory pages that are specially marked so that
they cannot be paged out

– Allocated with a special system API function call
– a.k.a. Page Locked Memory, Locked Pages, etc.
– CPU memory that serve as the source or destination of a DMA transfer must

be allocated as pinned memory

7

CUDA data transfer uses pinned memory.

– The DMA used by cudaMemcpy() requires that any source or destination in
the host memory is allocated as pinned memory

– If a source or destination of a cudaMemcpy() in the host memory is not
allocated in pinned memory, it needs to be first copied to a pinned memory –
extra overhead

– cudaMemcpy() is faster if the host memory source or destination is
allocated in pinned memory since no extra copy is needed

8

Allocate/Free Pinned Memory

– cudaHostAlloc(), three parameters
– Address of pointer to the allocated memory
– Size of the allocated memory in bytes
– Option – use cudaHostAllocDefault for now

– cudaFreeHost(), one parameter
– Pointer to the memory to be freed

9

Using Pinned Memory in CUDA

– Use the allocated pinned memory and its pointer the same way as those
returned by malloc();

– The only difference is that the allocated memory cannot be paged by the OS

– The cudaMemcpy() function should be about 2X faster with pinned memory

– Pinned memory is a limited resource
– over-subscription can have serious consequences

10

Putting It Together - Vector Addition Host Code Example

int main()
{

float *h_A, *h_B, *h_C;
…

cudaHostAlloc((void **) &h_A, N* sizeof(float),
cudaHostAllocDefault);

cudaHostAlloc((void **) &h_B, N* sizeof(float),
cudaHostAllocDefault);

cudaHostAlloc((void **) &h_C, N* sizeof(float),
cudaHostAllocDefault);

…
// cudaMemcpy() runs 2X faster

}

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 14.2 - Task Parallelism in CUDA

Module 14 – Efficient Host-Device Data Transfer

2

Objective

– To learn task parallelism in CUDA
– CUDA Streams

3

Serialized Data Transfer and Computation

– So far, the way we use cudaMemcpy serializes data transfer and
GPU computation for VecAddKernel()

Trans. A Trans. B Comp Trans. C

time

Only use one direction,
GPU idle

PCIe Idle
Only use one
direction, GPU
idle

4

Device Overlap

– Some CUDA devices support device overlap
– Simultaneously execute a kernel while copying data between device and host

memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount(&dev_count);
for (int i = 0; i < dev_count; i++) {

cudaGetDeviceProperties(&prop, i);
if (prop.deviceOverlap) …

5

Ideal, Pipelined Timing

– Divide large vectors into segments
– Overlap transfer and compute of adjacent segments

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1 = A.1 + B.1

Trans
A.2

Trans
B.2

Trans
C.1

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

6

CUDA Streams

– CUDA supports parallel execution of kernels and
cudaMemcpy() with “Streams”

– Each stream is a queue of operations (kernel launches and
cudaMemcpy()calls)

– Operations (tasks) in different streams can go in parallel
– “Task parallelism”

7

Streams

– Requests made from the host code are put into First-In-First-Out
queues
– Queues are read and processed asynchronously by the driver and device
– Driver ensures that commands in a queue are processed in sequence. E.g.,

Memory copies end before kernel launch, etc.

host thread

cudaMemcpy()
kernel launch
device sync
cudaMemcpy()

FIFO

device driver

8

Streams cont.

– To allow concurrent copying and kernel execution, use multiple
queues, called “streams”
– CUDA “events” allow the host thread to query and synchronize with individual

queues (i.e. streams).

Event

host thread

Stream 0

device driver

Stream 1

9

Conceptual View of Streams

MemCpy A.0
MemCpy B.0

Kernel 0
MemCpy C.0

MemCpy A.1
MemCpy B.1

Kernel 1
MemCpy C.1

Stream 0 Stream 1

Copy Engine

PCIe
up

Kernel
Engine

Operations (Kernel launches, cudaMemcpy() calls)

PCIe
down

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 14.3 - Overlapping Data Transfer with Computation
Module 14 – Efficient Host-Device Data Transfer

2

Objective

– To learn how to overlap data transfer with computation
– Asynchronous data transfer in CUDA
– Practical limitations of CUDA streams

3

Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go
here

4

Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {

cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0,…);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);

cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);

vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),…, stream1);

}

5

A View Closer to Reality in Previous GPUs

MemCpy A.0

MemCpy B.0

MemCpy C.0

MemCpy A.1

MemCpy B.1

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy
Engine

PCIe
up

PCIe
down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1

6

Not quite the overlap we want in some GPUs

– C.0 blocks A.1 and B.1 in the copy engine queue

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1= A.1 + B.1

Trans
C.1

7

Better Multi-Stream Host Code

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),…, stream1);

}

8

C.0 no longer blocks A.1 and B.1

MemCpy A.0

MemCpy B.0

MemCpy A.1

MemCpy B.1

MemCpy C.0

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy
Engine

PCIe
up

PCIe
down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1

9

Better, not quite the best overlap

– C.1 blocks next iteration A.0 and B.0 in the copy engine queue

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1= A.1 + B.1

Trans
C.1

Trans
A.2

Trans
B.2

Trans
A.2

Comp
C.2 = A.2
+

Iteration n

Iteration n+1

10

Ideal, Pipelined Timing

– Will need at least three buffers for each original A, B, and C,
code is more complicated

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1 = A.1 + B.1

Trans
A.2

Trans
B.2

Trans
C.1

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

11

Hyper Queues

– Provide multiple queues for each engine
– Allow more concurrency by allowing some streams to make

progress for an engine while others are blocked

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 0

Stream 1

Stream 2
Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z

12

Wait until all tasks have completed

– cudaStreamSynchronize(stream_id)
– Used in host code
– Takes one parameter – stream identifier
– Wait until all tasks in a stream have completed
– E.g., cudaStreamSynchronize(stream0)in host code ensures that all tasks

in the queues of stream0 have completed

– This is different from cudaDeviceSynchronize()
– Also used in host code
– No parameter
– cudaDeviceSynchronize() waits until all tasks in all streams have completed

for the current device

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

