
Accelerated Computing

GPU Teaching Kit

Lecture 20.1 - OpenCL Data Parallelism Model
Lecture 20 – Related Programming Models: OpenCL

2

Objective
– To Understand the OpenCL programming model

– basic concepts and data types
– Kernel structure
– Application programming interface
– Simple examples

3

Background
– OpenCL was initiated by Apple and maintained by the Khronos

Group (also home of OpenGL) as an industry standard API
– For cross-platform parallel programming in CPUs, GPUs, DSPs, FPGAs,…

– OpenCL draws heavily on CUDA
– Easy to learn for CUDA programmers

– OpenCL host code is much more complex and tedious due to
desire to maximize portability and to minimize burden on
vendors

4

OpenCL Programs
– An OpenCL “program” is a C program that contains one or more

“kernels” and any supporting routines that run on a target device
– An OpenCL kernel is the basic unit of parallel code that can be

executed on a target device

Kernel A

Kernel B

Kernel C

Misc support
functions

OpenCL Program

5

OpenCL Execution Model
– Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

. . .

. . .

6

OpenCL Parallelism
Concept

CUDA Equivalent

host host
device device
kernel kernel
host program host program
NDRange (index space) grid
work item thread
work group block

Mapping between OpenCL and CUDA
data parallelism model concepts.

7

OpenCL Kernels
– Code that executes on target devices
– Kernel body is instantiated once for each work item

– An OpenCL work item is equivalent to a CUDA thread
– Each OpenCL work item gets a unique index

__kernel void vadd(__global const float *a,
__global const float *b,
__global float *result)

{
int id = get_global_id(0);
result[id] = a[id] + b[id];

}

8

Array of Work Items
– An OpenCL kernel is executed by an array of work items

– All work items run the same code (SPMD)
– Each work item can call get_global_id() to get its index for computing memory

addresses and make control decisions

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work items

work group 0

…
…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 1

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 7
76543210 15141312111098 6362616059585756

9

Work Groups: Scalable Cooperation
– Divide monolithic work item array into work groups

– Work items within a work group cooperate via shared memory and barrier
synchronization

– Work items in different work groups cannot cooperate
– OpenCL counter part of CUDA Thread Blocks

10

OpenCL API Call Explanation CUDA Equivalent
get_global_id(0); global index of the

work item in the x
dimension

blockIdx.x*blockDim.x
+threadIdx.x

get_local_id(0) local index of the work
item within the work
group in the x
dimension

threadIdx.x

get_global_size(0); size of NDRange in
the x dimension

gridDim.x*blockDim.x

get_local_size(0); Size of each work
group in the x
dimension

blockDim.x

OpenCL Dimensions and Indices

11

Multidimensional Work Indexing

12

OpenCL Data Parallel Model Summary
– Parallel work is submitted to devices by launching

kernels
– Kernels run over global dimension index ranges

(NDRange), broken up into “work groups”, and “work
items”

– Work items executing within the same work group can
synchronize with each other with barriers or memory
fences

– Work items in different work groups can’t sync with each
other, except by terminating the kernel

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 20.2 - OpenCL Device Architecture
Module 20 – Related Programming Models: OpenCL

2

Objective
– To Understand the OpenCL device architecture

– Foundation to terminology used in the host code
– Also needed to understand the memory model for kernels

3

OpenCL Hardware Abstraction
– OpenCL exposes CPUs, GPUs, and other Accelerators

as “devices”
– Each device contains one or more “compute units”, i.e.

cores, Streaming Multicprocessors, etc...
– Each compute unit contains one or more SIMD

“processing elements”, (i.e. SP in CUDA)

OpenCL Device
Compute Unit
PEPEPEPE

PEPEPEPE

Compute Unit

PEPEPEPE

PEPEPEPE

4

OpenCL Device Architecture

5

Memory Type Host access Device access CUDA Equivalent
global memory Dynamic

allocation;
Read/write
access

No allocation;
Read/write access
by all work items in
all work groups,
large and slow but
may be cached in
some devices.

global memory

constant memory Dynamic
allocation;
read/write
access

Static allocation;
read-only access by
all work items.

constant memory

local memory Dynamic
allocation; no
access

Static allocation;
shared read-write
access by all work
items in a work
group.

shared memory

private memory No allocation;
no access

Static allocation;
Read/write access
by a single work
item.

registers and local
memory

OpenCL Device Memory Types

6

OpenCL Context
– Contains one or more devices
– OpenCL device memory objects are associated with a context, not a

specific device

OpenCL Device

OpenCL Device

OpenCL Context

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 20.3 - OpenCL Host Code

Module 20 – Related Programming Models: OpenCL

2

Objective
– To learn to write OpenCL host code

– Create OpenCL context
– Create work queues for task parallelism
– Device memory Allocation
– Kernel compilation
– Kernel launch
– Host-device data copy

3

OpenCL Context
– Contains one or more devices
– OpenCL memory objects are associated with a context, not a

specific device
– clCreateBuffer() is the main data object allocation function

– error if an allocation is too large for any device in the context

– Each device needs its own work queue(s)
– Memory copy transfers are associated with a command queue (thus

a specific device)

4

OpenCL Context Setup Code (simple)
cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL,
NULL, &clerr);

size_t parmsz;

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz);

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs,
NULL);

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0,
&clerr);

Where commands
will be sent.

5

Set compiler flags, compile source, and
retrieve a handle to the “vadd” kernel

OpenCL Kernel Compilation: vadd
const char* vaddsrc =
 “__kernel void vadd(__global float *d_A, __global float *d_B,
__global float *d_C, int N) { \n“ […etc and so forth…]

cl_program clpgm;
clpgm = clCreateProgramWithSource(clctx, 1, &vaddsrc, NULL,
&clerr);

char clcompileflags[4096];
sprintf(clcompileflags, “-cl-mad-enable");
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL,
NULL);
cl_kernel clkern = clCreateKernel(clpgm, “vadd", &clerr);

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

6

OpenCL Device Memory Allocation
– clCreateBuffer();

– Allocates object in the device Global Memory
– Returns a pointer to the object
– Requires five parameters

– OpenCL context pointer
– Flags for access type by device (read/write, etc.)
– Size of allocated object
– Host memory pointer, if used in copy-from-host mode
– Error code

– clReleaseMemObject()
– Frees object

– Pointer to freed object

7

OpenCL Device Memory Allocation (cont.)

– Code example:
– Allocate a 1024 single precision float array

– Attach the allocated storage to d_a

– “d_” is often used to indicate a device data structure

VECTOR_SIZE = 1024;
cl_mem d_a;
int size = VECTOR_SIZE* sizeof(float);

d_a = clCreateBuffer(clctx,
CL_MEM_READ_ONLY, size, NULL, NULL);

…
clReleaseMemObject(d_a);

8

OpenCL Device Command Execution

OpenCL Device

Cmd QueueCommandApplication

Cmd Queue
Command

OpenCL Device

OpenCL Context

9

OpenCL Host-to-Device Data Transfer
– clEnqueueWriteBuffer();

– Memory data transfer to device
– Requires nine parameters

– OpenCL command queue pointer
– Destination OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size (in bytes) of written data
– Source host memory pointer
– List of events to be completed before execution of this command
– Event object tied to this command

10

OpenCL Device-to-Host Data Transfer
– clEnqueueReadBuffer();

– Memory data transfer to host
– requires nine parameters

– OpenCL command queue pointer
– Source OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size of bytes of read data
– Destination host memory pointer
– List of events to be completed before execution of this command
– Event object tied to this command

11

OpenCL Host-Device Data Transfer (cont.)
– Code example:

– Transfer a 64 * 64 single precision float array
– a is in host memory and d_a is in device memory

clEnqueueWriteBuffer(clcmdq, d_a, CL_FALSE, 0,
mem_size, (const void *)a, 0, 0,

NULL);

clEnqueueReadBuffer(clcmdq, d_result, CL_FALSE,
0,

mem_size, (void *) host_result, 0,
0, NULL);

12

OpenCL Host-Device Data Transfer (cont.)
– clCreateBuffer and clEnqueueWriteBuffer can be

combined into a single command using special flags.
– Eg:

– d_A=clCreateBuffer(clctxt,
– CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

mem_size, h_A, NULL);

– Combination of 2 flags here. CL_MEM_COPY_HOST_PTR to be used only if a valid
host pointer is specified.

– This creates a memory buffer on the device, and copies data from h_A into d_A.
– Includes an implicit clEnqueueWriteBuffer operation, for all devices/command

queues tied to the context clctxt.

13

Device Memory Allocation and Data Transfer for vadd

float *h_A = …, *h_B = …;
 // allocate device (GPU) memory
 cl_mem d_A, d_B, d_C;
 d_A = clCreateBuffer(clctx, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_A, NULL);
 d_B = clCreateBuffer(clctx, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_B, NULL);
 d_C = clCreateBuffer(clctx, CL_MEM_WRITE_ONLY,

N *sizeof(float), NULL, NULL);

14

Device Kernel Configuration Setting for vadd

 clkern=clCreateKernel(clpgm, “vadd", NULL);
 …
 clerr= clSetKernelArg(clkern, 0, sizeof(cl_mem),(void *)&d_A);
 clerr= clSetKernelArg(clkern, 1, sizeof(cl_mem),(void *)&d_B);
 clerr= clSetKernelArg(clkern, 2, sizeof(cl_mem),(void *)&d_C);
 clerr= clSetKernelArg(clkern, 3, sizeof(int), &N);

15

Device Kernel Launch and Remaining Code for vadd

cl_event event=NULL;
clerr= clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL,

Gsz, Bsz, 0, NULL, &event);
clerr= clWaitForEvents(1, &event);
clEnqueueReadBuffer(clcmdq, d_C, CL_TRUE, 0,

N*sizeof(float), h_C, 0, NULL, NULL);
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);
clReleaseMemObject(d_C);
}

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

