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Objective
– To Understand the OpenCL programming model

– basic concepts and data types
– Kernel structure
– Application programming interface 
– Simple examples
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Background
– OpenCL was initiated by Apple and maintained by the Khronos

Group (also  home of OpenGL) as an industry standard API
– For cross-platform parallel programming in CPUs, GPUs, DSPs, FPGAs,…

– OpenCL draws heavily on CUDA
– Easy to learn for CUDA programmers

– OpenCL  host code is much more complex and tedious due to 
desire to maximize portability and to minimize burden on 
vendors
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OpenCL Programs
– An OpenCL “program” is a C program that contains one or more 

“kernels” and any supporting routines that run on a target device
– An OpenCL kernel is the basic unit of parallel code that can be 

executed on a target device

Kernel A

Kernel B

Kernel C

Misc support
functions

OpenCL Program
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OpenCL Execution Model
– Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

. . .

. . .
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OpenCL Parallelism 
Concept

CUDA Equivalent

host host
device device
kernel kernel
host program host program
NDRange (index space) grid
work item thread
work group block

Mapping between OpenCL and CUDA 
data parallelism model concepts.
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OpenCL Kernels
– Code that executes on target devices
– Kernel body is instantiated once for each work item

– An OpenCL work item is equivalent to a CUDA thread
– Each OpenCL work item gets a unique index

__kernel void  vadd(__global const float *a,
__global const float *b,
__global float *result) 

{
int id = get_global_id(0);
result[id] = a[id] + b[id];

}
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Array of Work Items
– An OpenCL kernel is executed by an array of work items

– All work items run the same code (SPMD)
– Each work item can call get_global_id() to get its index for computing memory 

addresses and make control decisions

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work items

work group 0

…
…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 1

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 7
76543210 15141312111098 6362616059585756
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Work Groups: Scalable Cooperation
– Divide monolithic work item array into work groups

– Work items within a work group cooperate via shared memory and barrier 
synchronization

– Work items in different work groups cannot cooperate
– OpenCL counter part of CUDA Thread Blocks
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OpenCL API Call Explanation CUDA Equivalent
get_global_id(0); global index of the 

work item in the x 
dimension

blockIdx.x*blockDim.x
+threadIdx.x

get_local_id(0) local index of the work 
item within the work 
group in the x 
dimension

threadIdx.x

get_global_size(0); size of NDRange in 
the x dimension

gridDim.x*blockDim.x

get_local_size(0); Size of each work 
group in the x 
dimension

blockDim.x

OpenCL Dimensions and Indices
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Multidimensional Work Indexing
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OpenCL Data Parallel Model Summary
– Parallel work is submitted to devices by launching 

kernels
– Kernels run over global dimension index ranges 

(NDRange), broken up into “work groups”, and “work 
items”

– Work items executing within the same work group can 
synchronize with each other with barriers or memory 
fences

– Work items in different work groups can’t sync with each 
other, except by terminating the kernel
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Objective
– To Understand the OpenCL device architecture

– Foundation to terminology used in the host code
– Also needed to understand the memory model for kernels
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OpenCL Hardware Abstraction
– OpenCL exposes CPUs, GPUs, and other Accelerators 

as “devices”
– Each device contains one or more “compute units”, i.e. 

cores, Streaming Multicprocessors, etc...
– Each compute unit contains one or more SIMD 

“processing elements”, (i.e. SP in CUDA) 

OpenCL Device
Compute Unit
PEPEPEPE

PEPEPEPE

Compute Unit

PEPEPEPE

PEPEPEPE
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OpenCL Device Architecture
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Memory Type Host access Device access CUDA Equivalent
global memory Dynamic 

allocation;
Read/write 
access

No allocation; 
Read/write access 
by all work items in 
all work groups, 
large and slow but 
may be cached in 
some devices.

global memory

constant memory Dynamic 
allocation; 
read/write 
access

Static allocation; 
read-only access by 
all work items.

constant memory

local memory Dynamic 
allocation; no 
access

Static allocation; 
shared read-write 
access by all work 
items in a work 
group. 

shared memory

private memory No allocation; 
no access

Static allocation; 
Read/write access 
by a single work 
item. 

registers and local 
memory

OpenCL Device Memory Types
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OpenCL Context
– Contains one or more devices
– OpenCL device memory objects are associated with a context, not a 

specific device

OpenCL Device

OpenCL Device

OpenCL Context
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Objective
– To learn to write OpenCL host code

– Create OpenCL context
– Create work queues for task parallelism
– Device memory Allocation
– Kernel compilation
– Kernel launch
– Host-device data copy
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OpenCL Context
– Contains one or more devices
– OpenCL memory objects are associated with a context, not a 

specific device
– clCreateBuffer() is the main data object allocation function

– error if an allocation is too large for any device in the context

– Each device needs its own work queue(s)
– Memory copy transfers are associated with a command queue (thus 

a specific device)
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OpenCL Context Setup Code (simple)
cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL, 
NULL, &clerr);

size_t parmsz;

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz); 

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz); 

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, 
NULL); 

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, 
&clerr); 

Where commands
will be sent.
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Set compiler flags, compile source, and 
retrieve a handle to the “vadd” kernel

OpenCL Kernel Compilation: vadd
const char* vaddsrc = 
   “__kernel void vadd(__global float *d_A, __global float *d_B, 
__global float *d_C, int N) { \n“   […etc and so forth…]

cl_program clpgm;
clpgm = clCreateProgramWithSource(clctx, 1, &vaddsrc, NULL, 
&clerr);

char clcompileflags[4096]; 
sprintf(clcompileflags, “-cl-mad-enable");
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, 
NULL);
cl_kernel clkern = clCreateKernel(clpgm, “vadd", &clerr); 

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL
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OpenCL Device Memory Allocation
– clCreateBuffer(); 

– Allocates object in the device Global Memory
– Returns a pointer to the object
– Requires five parameters

– OpenCL context pointer
– Flags for access type by device (read/write, etc.)
– Size of allocated object
– Host memory pointer, if used in copy-from-host mode
– Error code

– clReleaseMemObject()
– Frees object 

– Pointer to freed object
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OpenCL Device Memory Allocation (cont.)

– Code example: 
– Allocate a  1024 single precision float array

– Attach the allocated storage to d_a

– “d_” is often used to indicate a device data structure

VECTOR_SIZE = 1024;
cl_mem d_a;
int size = VECTOR_SIZE* sizeof(float);

d_a = clCreateBuffer(clctx, 
CL_MEM_READ_ONLY, size, NULL, NULL);

…
clReleaseMemObject(d_a);
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OpenCL Device Command Execution

OpenCL Device

Cmd QueueCommandApplication

Cmd Queue
Command

OpenCL Device

OpenCL Context
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OpenCL Host-to-Device Data Transfer
– clEnqueueWriteBuffer();

– Memory data transfer to device
– Requires nine parameters

– OpenCL command queue pointer
– Destination OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size (in bytes) of written data 
– Source host memory pointer
– List of events to be completed before execution of  this command
– Event object tied to this command
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OpenCL Device-to-Host Data Transfer
– clEnqueueReadBuffer();

– Memory data transfer to host
– requires nine parameters

– OpenCL command queue pointer
– Source OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size of bytes of read data 
– Destination host memory pointer
– List of events to be completed before execution of  this command
– Event object tied to this command
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OpenCL Host-Device Data Transfer (cont.)
– Code example: 

– Transfer a  64 * 64 single precision float array
– a is in host memory and d_a is in device memory

clEnqueueWriteBuffer(clcmdq, d_a, CL_FALSE, 0, 
mem_size, (const void * )a, 0, 0, 

NULL);

clEnqueueReadBuffer(clcmdq, d_result, CL_FALSE, 
0, 

mem_size, (void * ) host_result, 0, 
0, NULL);
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OpenCL Host-Device Data Transfer (cont.)
– clCreateBuffer and clEnqueueWriteBuffer can be 

combined into a single command using special flags.
– Eg:   

–  d_A=clCreateBuffer(clctxt, 
– CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

mem_size, h_A, NULL);

– Combination of  2 flags here.  CL_MEM_COPY_HOST_PTR to be used only if a valid 
host pointer is specified.

– This creates a memory buffer on the device, and copies data from h_A into d_A. 
– Includes an implicit clEnqueueWriteBuffer operation, for all devices/command 

queues tied to the context clctxt.
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Device Memory Allocation and Data Transfer for vadd

float *h_A = …,   *h_B = …;
    // allocate device (GPU) memory
   cl_mem d_A, d_B, d_C;
   d_A = clCreateBuffer(clctx, CL_MEM_READ_ONLY | 
          CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_A, NULL);
   d_B = clCreateBuffer(clctx, CL_MEM_READ_ONLY | 
          CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_B, NULL);
   d_C = clCreateBuffer(clctx, CL_MEM_WRITE_ONLY, 

N *sizeof(float), NULL, NULL);        
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Device Kernel Configuration Setting for vadd

   clkern=clCreateKernel(clpgm, “vadd", NULL); 
   …
   clerr= clSetKernelArg(clkern, 0, sizeof(cl_mem),(void *)&d_A);
   clerr= clSetKernelArg(clkern, 1, sizeof(cl_mem),(void *)&d_B);
   clerr= clSetKernelArg(clkern, 2, sizeof(cl_mem),(void *)&d_C);
   clerr= clSetKernelArg(clkern, 3, sizeof(int), &N);
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Device Kernel Launch and Remaining Code for vadd

cl_event event=NULL; 
clerr= clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL, 

Gsz, Bsz, 0, NULL, &event);
clerr= clWaitForEvents(1, &event);
clEnqueueReadBuffer(clcmdq, d_C, CL_TRUE, 0, 

N*sizeof(float), h_C, 0, NULL, NULL);
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);
clReleaseMemObject(d_C);
}
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