
Introduction to OpenACC
Lecture 21.1 - Related Programming Models: OpenACC

GPU Teaching Kit
Accelerated Computing

2

Objective
– To understand the OpenACC programming model

– basic concepts and pragma types
– simple examples

2

3

OpenACC
– The OpenACC Application Programming Interface provides a set of

– compiler directives (pragmas)
– library routines and
– environment variables
that can be used to write data parallel Fortran, C and C++ programs that
run on accelerator devices including GPUs and CPUs

3

4

OpenACC Pragmas
– In C and C++, the #pragma directive is the method to provide to the

compiler information that is not specified in the standard language.
– These pragmas extend the base language

4

5

Vector Addition in OpenACC

void VecAdd(float * __restrict__ output, const float * input1, const float * input 2, int inputLength)
{
#pragma acc parallel loop copyin(input1[0:inputLength],input2[0:inputLength]),

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

}

5

6

Simple Matrix-Matrix Multiplication in OpenACC

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5

7

Some Observations (1)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The code is almost identical to the sequential version,
except for the two lines with #pragma at line 3 and line 5.

8

Some Observations (2)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The #pragma at line 3 tells the compiler to generate code for the ‘i’
loop at line 4 through 15 so that the loop iterations are executed at
the first level of parallelism on the accelerator.

9

Some Observations (3)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The copyin() clause and the copyout() clause specify how the compiler
should arrange for the matrix data to be transferred between the host
and the accelerator.

10

Some Observations (4)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The #pragma at line 5 instructs the compiler to map the inner ‘j’ loop
to the second level of parallelism on the accelerator.

11

Motivation
– OpenACC programmers can often start with writing a sequential version

and then annotate their sequential program with OpenACC directives.
– leave most of the details in generating a kernel, memory allocation, and data transfers to

the OpenACC compiler.

– OpenACC code can be compiled by non-OpenACC compilers by ignoring
the pragmas.

7

12

Frequently Encountered Issues
– Some OpenACC pragmas are hints to the OpenACC compiler, which may or may not

be able to act accordingly
– The performance of an OpenACC program depends heavily on the quality of the compiler.
– It may be hard to figure out why the compiler cannot act according to your hints
– The uncertainty is much less so for CUDA or OpenCL programs

8

13

OpenACC Device Model

Currently OpenACC does not expose synchronization
across threads to the programmers.

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

accelerator

14

OpenACC Execution Model

vector
operations

workers

launch

sync

Host Accelerator

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

OpenACC Subtleties
Lecture 21.2 - Related Programming Models: OpenACC

GPU Teaching Kit
Accelerated Computing

2

Objective
– To understand some important and sometimes subtle details in

OpenACC programming
– parallel loops
– simple examples to illustrate basic concepts and functionalities

© Wen-mei W. Hwu and John
Stone, Urbana July 22, 2010

3

Parallel vs. Loop Constructs
#pragma acc parallel loop copyin(M[0:Mh*Mw])
copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
for (int i=0; i<Mh; i++) {
…
}

is equivalent to:

#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw])
copyout(P[0:Mh*Nw])
{

#pragma acc loop
for (int i=0; i<Mh; i++) {

…
}

}
(a parallel region that consists of a single loop)

4

More on Parallel Construct

– A parallel construct is executed on an accelerator
– One can specify the number of gangs and number of workers in

each gang
– Equivalent to CUDA blocks and threads

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{

a = 23;
}

1024*32 workers will be created. a=23 will be executed
redundantly by all 1024 gang leads

5

What Does Each “Gang Loop” Do?

#pragma acc parallel num_gangs(1024)
{

for (int i=0; i<2048; i++) {
…

}
}

#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang

for (int i=0; i<2048; i++) {
…

}
}

6

Worker Loop
#pragma acc parallel num_gangs(1024) num_workers(32)
{

#pragma acc loop gang
for (int i=0; i<2048; i++) {

#pragma acc loop worker
for (int j=0; j<512; j++) {

foo(i,j);
}

}
}

1024*32=32K workers will be created, each executing 1M/32K = 32 instance of foo()

7

A More Substantial Example

– Statements 1, 3, 5, 6 are redundantly
executed by 32 gangs

#pragma acc parallel num_gangs(32)
{

Statement 1;
#pragma acc loop gang
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop gang
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}

8

A More Substantial Example

– The iterations of the n and m for-loop
iterations are distributed to 32 gangs

– Each gang could further distribute the
iterations to its workers

– The number of workers in each gang
will be determined by the
compiler/runtime

#pragma acc parallel num_gangs(32)
{

Statement 1;
#pragma acc loop gang
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop gang
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}

9

Avoiding Redundant Execution

#pragma acc parallel
num_gangs(1) num_workers(32)
{

Statement 1;
#pragma acc loop worker
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop worker
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}

– Statements 1, 3, 5, 6 will be executed
only once

– Iterations of the n and m loops will be
distributed to 32 workers

10

Kernel Regions

#pragma acc kernels
{

#pragma acc loop gang(1024)
for (int i=0; i<2048; i++) {

a[i] = b[i];
}
#pragma acc loop gang(512)
for (int j=0; j<2048; j++) {

c[j] = a[j]*2;
}
for (int k=0; k<2048; k++) {

d[k] = c[k];
}

}

– Kernel constructs are descriptive of
programmer intentions

– The compiler has a lot of flexibility in its
use of the information

– This is in contrast with Parallel,
which is prescriptive of the action for
the compile follow

11

Kernel Regions

#pragma acc kernels
{

#pragma acc loop gang(1024)
for (int i=0; i<2048; i++) {

a[i] = b[i];
}
#pragma acc loop gang(512)
for (int j=0; j<2048; j++) {

c[j] = a[j]*2;
}
for (int k=0; k<2048; k++) {

d[k] = c[k];
}

}

– Code in a kernel region can be broken
into multiple CUDA/OpenCL kernels

– The i, j, k loops can each become a
kernel

– The k-loop may even remain as host code

– Each kernel can have a different
gang/worker configuration

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

