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Objective
– To understand the OpenACC programming model

– basic concepts and pragma types
– simple examples
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OpenACC
– The OpenACC Application Programming Interface provides a set of

– compiler directives (pragmas)
– library routines and 
– environment variables 
that can be used to write data parallel Fortran, C and C++ programs that 
run on accelerator devices including GPUs and CPUs
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OpenACC Pragmas
– In C and C++, the #pragma directive is the method to provide to the 

compiler information that is not specified in the standard language.
– These pragmas extend the  base language
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Vector Addition in OpenACC

void VecAdd(float * __restrict__ output, const float * input1, const float * input 2, int inputLength)
{
#pragma acc parallel loop copyin(input1[0:inputLength],input2[0:inputLength]),  

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

}

5



6

Simple Matrix-Matrix Multiplication in OpenACC

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }
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Some Observations (1)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The code is almost identical to the sequential version,
except for the two lines with #pragma at line 3 and line 5. 
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Some Observations (2)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The #pragma at line 3 tells the compiler to generate code for the ‘i’ 
loop at line 4 through 15 so that the loop iterations are executed at 
the first level of parallelism on the accelerator. 
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Some Observations (3)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The copyin() clause and the copyout() clause specify how the compiler 
should arrange for the matrix data to be transferred between the host 
and the accelerator. 
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Some Observations (4)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The #pragma at line 5 instructs the compiler to map the inner ‘j’ loop 
to the second level of parallelism on the accelerator. 
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Motivation
– OpenACC programmers can often start with writing a sequential version 

and then annotate their sequential program with OpenACC directives. 
– leave most of the details in generating a kernel, memory allocation, and data transfers to 

the OpenACC compiler. 

– OpenACC code can be compiled by non-OpenACC compilers by ignoring 
the pragmas.
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Frequently Encountered Issues
– Some OpenACC pragmas are hints to the OpenACC compiler, which may or may not 

be able to act accordingly
– The performance of an OpenACC program depends heavily on the quality of the compiler.
– It may be hard to figure out why the compiler cannot act according to your hints
– The uncertainty is much less so for CUDA or OpenCL programs
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OpenACC Device Model

Currently OpenACC does not expose synchronization 
across threads to the programmers.
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OpenACC Execution Model
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Objective
– To understand some important and sometimes subtle details in 

OpenACC programming 
– parallel loops
– simple examples to illustrate basic concepts and functionalities

© Wen-mei W. Hwu and John 
Stone, Urbana July 22, 2010
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Parallel vs. Loop Constructs
#pragma acc parallel loop copyin(M[0:Mh*Mw]) 
copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
for (int i=0; i<Mh; i++) {
…
}

is equivalent to: 

#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) 
copyout(P[0:Mh*Nw])
{

#pragma acc loop 
for (int i=0; i<Mh; i++) {

…
}

} 
(a parallel region that consists of a single loop)
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More on Parallel Construct

– A parallel construct is executed on an accelerator
– One can specify the number of gangs and number of workers in 

each gang
– Equivalent to CUDA blocks and threads

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{

a = 23;
} 

1024*32 workers will be created. a=23 will be executed 
redundantly by all 1024 gang leads 
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What Does Each “Gang Loop” Do?

#pragma acc parallel num_gangs(1024)
{

for (int i=0; i<2048; i++) {
…

}
} 

#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang

for (int i=0; i<2048; i++) {
…

}
}     
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Worker Loop
#pragma acc parallel num_gangs(1024) num_workers(32)
{

#pragma acc loop gang
for (int i=0; i<2048; i++) {

#pragma acc loop worker 
for (int j=0; j<512; j++) {

foo(i,j);
}

}
} 

1024*32=32K workers will be created, each executing 1M/32K = 32 instance of foo()



7

A More Substantial Example

– Statements 1, 3, 5, 6 are redundantly 
executed by 32 gangs

#pragma acc parallel num_gangs(32)
{

Statement 1; 
#pragma acc loop gang
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop gang
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}
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A More Substantial Example

– The iterations of the n and m for-loop 
iterations are distributed to 32 gangs

– Each gang could further distribute the 
iterations to its workers

– The number of workers in each gang 
will be determined by the 
compiler/runtime

#pragma acc parallel num_gangs(32)
{

Statement 1; 
#pragma acc loop gang
for (int i=0; i<n; i++) {

Statement 2; 
}
Statement 3;
#pragma acc loop gang
for (int i=0; i<m; i++) {

Statement 4;  
}
Statement 5;
if (condition) Statement 6;

}
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Avoiding Redundant Execution

#pragma acc parallel 
num_gangs(1) num_workers(32)
{

Statement 1;
#pragma acc loop worker
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop worker
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}

– Statements 1, 3, 5, 6 will be executed 
only once

– Iterations of the n and m loops will be 
distributed to 32 workers
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Kernel Regions

#pragma acc kernels
{

#pragma acc loop gang(1024)
for (int i=0; i<2048; i++) {

a[i] = b[i];
}
#pragma acc loop gang(512)
for (int j=0; j<2048; j++) {

c[j] = a[j]*2;
}
for (int k=0; k<2048; k++) {

d[k] = c[k];
}

} 

– Kernel constructs are descriptive of 
programmer intentions 

– The compiler has a lot of flexibility in its 
use of the information

– This is in contrast with Parallel, 
which is prescriptive of the action for 
the compile follow
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Kernel Regions

#pragma acc kernels
{

#pragma acc loop gang(1024)
for (int i=0; i<2048; i++) {

a[i] = b[i];
}
#pragma acc loop gang(512)
for (int j=0; j<2048; j++) {

c[j] = a[j]*2;
}
for (int k=0; k<2048; k++) {

d[k] = c[k];
}

} 

– Code in a kernel region can be broken 
into multiple CUDA/OpenCL kernels

– The i, j, k loops can each become a 
kernel

– The k-loop may even remain as host code

– Each kernel can have a different 
gang/worker configuration



GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

