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So far, we have learned how to write a CUDA kernel function and how to configure 
and coordinate its execution by a massive number of threads. In this chapter, we 
will study how one can organize and position the data for efficient access by a mas-
sive number of threads. We discussed in Chapter  2, Data parallel computing that 
the data are first transferred from the host memory to the device global memory. In 
Chapter 3, Scalable parallel execution we determined how to direct the threads to 
access their portions of the data from the global memory by using their block indexes 
and thread indexes. We have also explored resource assignment and thread schedul-
ing. Although the scope we have covered is a very good start, the CUDA kernels that 
we have learned thus far will likely achieve only a tiny fraction of the potential speed 
of the underlying hardware. The poor performance is attributable to the long access 
latencies (hundreds of clock cycles) and finite access bandwidth of global memory, 
which is typically implemented with Dynamic Random Access Memory. While hav-
ing numerous threads available for execution can theoretically tolerate long memory 
access latencies, one can easily run into a situation where traffic congestion in the 
global memory access paths prevents all but very few threads from making progress, 
thus rendering some of the Streaming Multiprocessors (SMs) idle. To circumvent 
such congestion, CUDA provides a number of additional resources and methods for 
accessing memory that can remove the majority of traffic to and from the global 
memory. In this chapter, you will learn to use different memory types to boost the 
execution efficiency of CUDA kernels.
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4.1  IMPORTANCE OF MEMORY ACCESS EFFICIENCY
We can illustrate the effect of memory access efficiency by calculating the expected 
performance level of the most executed portion of the image blur kernel code in  
Fig. 3.8, which is replicated in Fig. 4.1. The most important part of the kernel  
in terms of execution time is the nested for-loop that performs pixel value accumu-
lation with the blurring patch.

In every iteration of the inner loop, one global memory access is performed for 
one floating-point addition. The global memory access fetches an in[] array ele-
ment. The floating-point add operation accumulates the value of the in[] array ele-
ment into pixVal. Thus, the ratio of floating-point calculation to global memory 
access operation is 1 to 1, or 1.0. We will refer to this ratio as the compute-to-global-
memory-access ratio, defined as the number of floating-point calculation performed 
for each access to the global memory within a region of a program.

The compute-to-global-memory-access ratio has major implications on the per-
formance of a CUDA kernel. In a high-end device today, the global memory band-
width is around 1,000 GB/s, or 1 TB/s. With four bytes in each single-precision 
floating-point value, no more than 1000/4 = 250 giga single-precision operands per 
second can be expected to load. With a compute-to-global-memory ratio of 1.0, the 
execution of the image blur kernel will be limited by the rate at which the operands 
(e.g., the elements of in[]) can be delivered to the GPU. We will refer to programs 
whose execution speed is limited by memory access throughput as memory-bound 
programs. In our example, the kernel will achieve no more than 250 giga floating-
point operations per second (GFLOPS).

While 250 GFLOPS is a respectable number, it is only a tiny fraction (2%) of 
the peak single-precision performance of 12 TFLOPS or higher for these high-end 
devices. In order to achieve a higher level of performance for the kernel, we need to 
increase the ratio by reducing the number of global memory accesses. To achieve 
the peak 12 TFLOPS rating of the processor, we need a ratio of 48 or higher. In gen-
eral, the desired ratio has been increasing in the past few generations of devices as 

FIGURE 4.1

The most executed part of the image blurring kernel in Fig. 3.8.
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computational throughput has been increasing faster than memory bandwidth. The 
rest of this chapter introduces a commonly used technique for reducing the number 
of global memory accesses.

4.2  MATRIX MULTIPLICATION
Matrix–matrix multiplication, or matrix multiplication for short, between an  
i × j (i rows by j columns) matrix M and a j × k matrix N produces an i × k matrix 
P. Matrix multiplication is an important component of the Basic Linear Algebra 
Subprograms (BLAS) standard (see the “Linear Algebra Functions” sidebar in 
Chapter 3: Scalable Parallel Execution). This function is the basis of many linear 
algebra solvers such as LU decomposition. As we will see, matrix multiplica-
tion presents opportunities for reduction of global memory accesses that can be 
captured with relatively simple techniques. The execution speed of matrix mul-
tiplication functions can vary by orders of magnitude, depending on the level of 
reduction of global memory accesses. Therefore, matrix multiplication provides 
an excellent initial example for such techniques.

When performing a matrix multiplication, each element of the output matrix P 
is an inner product of a row of M and a column of N. We will continue to use the 
convention where PRow,Col is the element at Rowth position in the vertical direc-
tion and Colth position in the horizontal direction. As shown in Fig. 4.2, PRow,Col 
(the small square in P) is the inner product of the vector formed from the Rowth 
row of M (shown as a horizontal strip in M) and the vector formed from the Colth 
column of N (shown as a vertical strip in N). The inner product, also called the 
dot product, of two vectors is the sum of products of the individual vector ele-
ments, i.e., P M N kk kRow Col Row Col for Width, , ,* , , ,= = −∑ 0 1 1… . For instance,

	P M N M N M N M N1 5 1 0 0 5 11 1 5 1 2 2 5 1 1, , , , , , , ,* * * *= + + + + −    Width Width� −−1 5,

In our initial matrix multiplication implementation, we map threads to elements 
of P with the same approach that we used for colorToGreyscaleConversion; i.e., 
each thread is responsible for calculating one P element. The row and column indexes 
for the P element to be calculated by each thread are as follows:

    Row=blockIdx.y*blockDim.y+threadIdx.y
and
    Col=blockIdx.x*blockDim.x+threadIdx.x.

With this one-to-one mapping, the Row and Col thread indexes are also the row and 
column indexes for output array. Fig. 4.3 shows the source code of the kernel based on 
this thread-to-data mapping. The reader should immediately see the familiar pattern of 
calculating Row, Col and the if statement testing if both Row and Col are within range. 
These statements are almost identical to their counterparts in colorToGreyscale 
Conversion. The only significant difference is that we are assuming square matrices 
for matrixMulKernel, thus replacing both width and height with Width.
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FIGURE 4.2

Matrix multiplication using multiple blocks by tiling P.

The thread-to-data mapping effectively divides P into tiles, one of which is 
shown as a large square in Fig. 4.2. Each block is responsible for calculating one of  
these tiles.

We now turn our attention to the work done by each thread. Recall that PRow, Col 
is the inner product of the Rowth row of M and the Colth column of N. In Fig. 4.3, we 
use a for-loop to perform this inner product operation. Before entering the loop, we 
initialize a local variable Pvalue to 0. Each iteration of the loop accesses an element 
from the Rowth row of M and one from the Colth column of N, multiplies the two ele-
ments together, and accumulates the product into Pvalue.

First, we focus on accessing the M element within the for-loop. Recall that M 
is linearized into an equivalent 1D array where the rows of M are placed one after 
another in the memory space, starting with the 0th row. Therefore, the beginning ele-
ment of the 1st row is M[1*Width] because we need to account for all elements of the 
0th row. In general, the beginning element of the Rowth row is M[Row*Width]. Since 
all elements of a row is placed in consecutive locations, the kth element of the Rowth 
row is at M[Row*Width+k]. This method was applied in Fig. 4.3.

We now turn our attention to N. As shown in Fig. 4.3, the beginning element of 
the Colth column is the Colth element of the 0th row, which is N[Col]. Accessing each 
additional element in Colth column requires skipping over entire rows. The reason 
is that the next element of the same column is actually the same element in the next 
row. Therefore, the kth element of the Colth column is N[k*Width+Col].
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After the execution exits the for-loop, all threads have their P element values in 
the Pvalue variables. Each thread then uses the one-dimensional equivalent index 
expression Row*Width+Col to write its P element. Again, this index pattern is similar 
to that used in the colorToGreyscaleConversion kernel.

We now use a small example to illustrate the execution of the matrix multiplica-
tion kernel. Fig. 4.4 shows a 4 × 4 P with BLOCK_WIDTH=2. The small sizes allow us 
to fit the entire example in one picture. The P matrix is now divided into four tiles, 
and each block calculates one tile. We do so by creating blocks that are 2 × 2 arrays 
of threads, with each thread calculating one P element. In the example, thread(0,0) of 
block(0,0) calculates P0,0, whereas thread(0,0) of block(1,0) calculates P2,0.

Row and Col in the matrixMulKernel identify the P element to be calculated by 
a thread. Row also identifies the row of M, whereas Col identifies the column of N as 
input values for the thread. Fig. 4.5 illustrates the multiplication operations in each 
thread block. For the small matrix multiplication example, threads in block (0,0) 
produce four dot products. The Row and Col variables of thread(1,0) in block(0,0) are 
0*0 + 1= 1 and 0*0 + 0= 0. It maps to P1,0 and calculates the dot product of row 1 
of M and column 0 of N.

We walk through the execution of the for-loop in Fig. 4.3 for thread(0,0) 
in block(0,0). During the 0th iteration (k=0), Row*Width+k=0*4 + 0 = 0 and 
k*Width+Col=0*4 + 0= 0. Therefore, we are accessing M[0] and N[0], which are 
the 1D equivalent of M0,0 and N0,0, according to Fig. 3.3. Note that these are indeed 
the 0th elements of row 0 of M and column 0 of N. During the 1st iteration (k=1), 
Row*Width+k=0*4+1=1 and k*Width+Col=1*4+0=4. We are accessing M[1] and N[4], 
which are the 1D equivalent of M0,1 and N1,0, according to Fig. 3.3. These are the 1st 
elements of row 0 of M and column 0 of N.

During the 2nd iteration (k=2), Row*Width+k=0*4+2=2 and k*Width+Col=8, which 
results in M[2] and N[8]. Therefore, the elements accessed are the 1D equivalent of 
M0,2 and d_N2,0. Finally, during the 3rd iteration (k=3), Row*Width+ k=0*4+ 3 and 

__global__ void MatrixMulKernel(float* M, float* N, float* P, 
int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}

FIGURE 4.3

A simple matrix multiplication kernel using one thread to compute one P element.
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k*Width+ Col= 12, which results in M[3] and N[12], the 1D equivalent of M0,3 and 
N3,0. We now have verified that the for-loop performs inner product between the 0th 
row of M and the 0th column of N. After the loop, the thread writes P[Row*Width+Col], 
which is P[0], the 1D equivalent of P0,0. Thus, thread(0,0) in block(0,0) successfully 
calculated the inner product between the 0th row of M and the 0th column of N and 
deposited the result in P0,0.

We will leave it as an exercise for the reader to hand-execute and verify the for-
loop for other threads in block(0,0) or in other blocks.
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FIGURE 4.4

A small execution example of matrixMulKernel.
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Matrix multiplication actions of one thread block.
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Note that matrixMulKernel can handle matrices of up to 16 × 65,535 elements in 
each dimension. In a situation where matrices larger than this limit are to be multi-
plied, one can divide the P matrix into submatrices with sizes that can be covered by 
a grid. We can then use the host code to iteratively launch kernels and complete the 
P matrix. Alternatively, we can change the kernel code so that each thread calculates 
more P elements.

We can estimate the effect of memory access efficiency by calculating the 
expected performance level of the matrix multiplication kernel code in Fig. 4.3. The 
dominating part of the kernel in terms of execution time is the for-loop that performs 
inner product calculation:

for(int k 0;k < Width; k)Pvalue
M[Row * Width k] * N[k * Width Cool];

In every iteration of this loop, two global memory accesses are performed for 
one floating-point multiplication and one floating-point addition. One global memory 
access fetches an M element, and the other fetches an N element. One floating-point 
operation multiplies the M and N elements fetched, and the other accumulates the prod-
uct into Pvalue. Thus, the compute-to-global-memory-access ratio of the loop is 1.0. 
From our discussion in Chapter 3, Scalable parallel execution, this ratio will likely 
result in less than 2% utilization of the peak execution speed of the modern GPUs. 
We need to increase the ratio by at least an order of magnitude for the computation 
throughput of modern devices to achieve good utilization. In the next section, we will 
show that we can use special memory types in CUDA devices to accomplish this goal.

4.3  CUDA MEMORY TYPES
A CUDA device contains several types of memory that can help programmers 
improve compute-to-global-memory-access ratio and thus achieve high execution 
speed. Fig. 4.6 shows these CUDA device memories. Global memory and constant 
memory appear at the bottom of the picture. These types of memory can be written 
(W) and read (R) by the host by calling API functions.1 We have already introduced 
global memory in Chapter 2, Data parallel computing. The global memory can be 
written and read by the device. The constant memory supports short-latency, high-
bandwidth read-only access by the device.

Registers and shared memory, as shown in Fig. 4.6, are on-chip memories. 
Variables that reside in these types of memory can be accessed at very high-speed in 
a highly parallel manner. Registers are allocated to individual threads; each thread 
can only access its own registers. A kernel function typically uses registers to hold 
frequently accessed variables that are private to each thread. Shared memory loca-
tions are allocated to thread blocks; all threads in a block can access shared memory 
variables allocated to the block. Shared memory is an efficient means for threads to 

1 See CUDA Programming Guide for zero-copy access to the global memory.
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cooperate by sharing their input data and intermediate results. By declaring a CUDA 
variable in one of the CUDA memory types, a CUDA programmer dictates the vis-
ibility and access speed of the variable.

In order to fully appreciate the difference between registers, shared memory, and 
global memory, we need to go into a little more detail of how these different memory 
types are realized and used in modern processors. Virtually all modern processors 
find their root in the model proposed by John von Neumann in 1945, which is shown 
in Fig. 4.7. The CUDA devices are no exception. The Global Memory in a CUDA 
device maps to the Memory box in Fig. 4.7. The processor box corresponds to the 
processor chip boundary that we typically see today. The Global Memory is off the 
processor chip and is implemented with DRAM technology, which implies long 
access latencies and relatively low access bandwidths. The Registers correspond to 
the Register File of the von Neumann model. The Register File is on the processor 
chip, which implies very short access latency and drastically higher access band-
width compared with the global memory. In a typical device, the aggregated access 
bandwidth of the register files is at least two orders of magnitude higher than that of 
the global memory. Furthermore, when a variable is stored in a register, its accesses 
no longer consume off-chip global memory bandwidth. This reduced bandwidth con-
sumption will be reflected as an increased compute-to-global-memory-access ratio.

A subtler point is that each access to registers involves fewer instructions than 
an access to the global memory. Arithmetic instructions in most modern processors 
have “built-in” register operands. For example, a floating-point addition instruction 
might be of the form

fadd r1, r2, r3

where r2 and r3 are the register numbers that specify the location in the regis-
ter file where the input operand values can be found. The location for storing the 
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FIGURE 4.6

Overview of the CUDA device memory model.
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floating-point addition result value is specified by r1. Therefore, when an operand 
of an arithmetic instruction is in a register, no additional instruction is required to 
make the operand value available to the arithmetic and logic unit (ALU), where the 
arithmetic calculation is performed.

Memory

Processing unit

Control unit

I/O

ALU
Register

file

PC IR

Processor

FIGURE 4.7

Memory vs. registers in a modern computer based on the von Neumann model.

THE VON NEUMANN MODEL
In his seminal 1945 report, John von Neumann described a model for build-
ing electronic computers, which is based on the design of the pioneering 
Electronic Discrete Variable Automatic Computer (EDVAC) computer. This 
model, now commonly referred to as the von Neumann Model, has been the 
foundational blueprint for virtually all modern computers.

The von Neumann Model is illustrated in Fig. 4.7. The computer has an 
input/output function that allows both programs and data to be provided to 
and generated from the system. To execute a program, the computer first 
inputs the program and its data into the Memory.

The program consists of a collection of instructions. The Control Unit 
maintains a Program Counter (PC), which contains the memory address of 
the next instruction to be executed. In each “instruction cycle,” the Control 
Unit uses the PC to fetch an instruction into the Instruction Register (IR). The 
instruction bits are then used to determine the action to be taken by all com-
ponents of the computer, which is why the model is also called the “stored 
program” model. The term implies that a user can change the behavior of a 
computer by storing a different program into its memory.
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Meanwhile, if an operand value is in the global memory, the processor needs to 
perform a memory load operation to make the operand value available to the ALU. 
For example, if the first operand of a floating-point addition instruction is in the 
global memory, the instructions involved will likely be

load r2, r4, offset
fadd r1, r2, r3

where the load instruction adds an offset value to the contents of r4 to form an address 
for the operand value. It then accesses the global memory and places the value into 
register r2. Once the operand value is in r2, the fadd instruction performs the floating-
point addition by using the values in r2 and r3 and then places the result into r1. 
Since the processor can only fetch and execute a limited number of instructions per 
clock cycle, the version with an additional load will likely take more time to process 
than the one without an additional load. Thus, placing the operands in registers can 
improve execution speed.

Finally, there is another subtle reason why placing an operand value in registers 
is preferable. In modern computers, the energy consumed for accessing a value from 
the register file is at least an order of magnitude lower than that for accessing a 
value from the global memory. We will examine the speed and energy difference in 
accessing these two hardware structures in modern computers. However, as we will 
soon learn, the number of registers available to each thread (see “Processing Units 
and Threads” sidebar) is quite limited in today’s GPUs. We need to be careful not to 
oversubscribe to this limited resource.

Fig. 4.8 shows the shared memory and registers in a CUDA device. Although 
both are on-chip memories, they differ significantly in functionality and cost of 
access. Shared memory is designed as part of the memory space that resides on the 
processor chip. When the processor accesses data that reside in the shared memory, 
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FIGURE 4.8

Shared memory vs. registers in a CUDA device SM.



814.3  Cuda memory types

it needs to perform a memory load operation, similar to accessing data in the global 
memory. However, because shared memory resides on-chip, it can be accessed with 
much lower latency and much higher throughput than the global memory. Shared 
memory has longer latency and lower bandwidth than registers because of the need to 
perform a load operation. In computer architecture terminology, the shared memory 
is a form of scratchpad memory.

One important difference between the shared memory and registers in CUDA is 
that the variables that reside in the shared memory are accessible by all threads in 
a block, whereas register data are private to a thread. Shared memory is designed 
to support efficient, high-bandwidth sharing of data among threads in a block. As 
shown in Fig. 4.8, a CUDA device SM typically employs multiple processing units, 
to allow multiple threads to make simultaneous progress (see Processing Units and 
Threads sidebar). Threads in a block can be spread across these processing units. 
Therefore, the hardware implementations of the shared memory in these CUDA 
devices are typically designed to allow multiple processing units to simultaneously 
access its contents to support efficient data sharing among threads in a block. We will 
be learning several important types of parallel algorithms that can greatly benefit 
from such efficient data sharing among threads.

PROCESSING UNITS AND THREADS
Now that we have introduced the von Neumann model, we are ready to dis-
cuss how threads are implemented. A thread in modern computers is the state 
of executing a program on a von Neumann Processor. Recall that a thread 
consists of the code of a program, the particular point in the code that is being 
executed, and value of its variables and data structures.

In a computer based on the von Neumann model, the code of the program 
is stored in the memory. The PC keeps track of the particular point of the pro-
gram that is being executed. The IR holds the instruction that is fetched from 
the point execution. The register and memory hold the values of the variables 
and data structures.

Modern processors are designed to allow context-switching, where mul-
tiple threads can time-share a processor by taking turns to make progress. By 
carefully saving and restoring the PC value and the contents of registers and 
memory, we can suspend the execution of a thread and then correctly resume 
the execution of the thread later.
Some processors provide multiple processing units, which allow multiple 
threads to make simultaneous progress. Fig. 4.8 shows a Single-Instruction, 
Multiple-Data design style where multiple processing units share a PC and 
IR. Under this design, all threads make simultaneous progress by executing 
the same instruction in the program.
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It should be clear by now that registers, shared memory, and global memory 
have different functionalities, latencies, and bandwidths. Therefore, the process of 
declaring a variable must be understood so that it will reside in the intended type of 
memory. Table 4.1 presents the CUDA syntax for declaring program variables into 
the various memory types. Each such declaration also gives its declared CUDA vari-
able a scope and lifetime. Scope identifies the range of threads that can access the 
variable: a single thread only, all threads of a block, or all threads of all grids. If the 
scope of a variable is a single thread, a private version of the variable will be created 
for every thread; each thread can only access its private version of the variable. To 
illustrate, if a kernel declares a variable whose scope is a thread and it is launched 
with one million threads, one million versions of the variable will be created so that 
each thread initializes and uses its own version of the variable.

Lifetime indicates the portion of the program execution duration when the vari-
able is available for use: either within a kernel execution or throughout the entire 
application. If the lifetime of a variable is within a kernel execution, it must be 
declared within the kernel function body and will be available for use only by the 
kernel code. If the kernel is invoked several times, the value of the variable is not 
maintained across these invocations. Each invocation must initialize the variable in 
order to use them. Meanwhile, if the lifetime of a variable continues throughout the 
entire application, it must be declared outside of any function body. The contents of 
these variables are maintained throughout the execution of the application and avail-
able to all kernels.

We refer to variables that are not arrays or matrices as scalar variables. As shown 
in Table 4.1, all automatic scalar variables declared in kernel and device functions are 
placed into registers. The scopes of these automatic variables are within individual 
threads. When a kernel function declares an automatic variable, a private copy of 
that variable is generated for every thread that executes the kernel function. When a 
thread terminates, all its automatic variables also cease to exist. In Fig. 4.1, variables 
blurRow, blurCol, curRow, curCol, pixels, and pixVal are automatic variables and 
fall into this category. Note that accessing these variables is extremely fast and paral-
lel; however, one must be careful not to exceed the limited capacity of the register 
storage in hardware implementations. Using a large number of registers can nega-
tively affect the number of active threads assigned to each SM. We will address this 
point in Chapter 5, Performance considerations.

Table 4.1  CUDA Variable Type Qualifiers

Variable declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Kernel
Automatic array variables Local Thread Kernel
__device__ __shared__ int SharedVar; Shared Block Kernel
__device__ int GlobalVar; Global Grid Application
__device__ __constant__ int ConstVar; Constant Grid Application
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Automatic array variables are not stored in registers.2 Instead, they are stored 
into the global memory and may incur long access delays and potential access con-
gestions. Similar to automatic scalar variables, the scope of these arrays is limited 
to individual threads; i.e., a private version of each automatic array is created for 
and used by every thread. Once a thread terminates its execution, the contents of its 
automatic array variables also cease to exist. From our experience, automatic array 
variables are rarely used in kernel functions and device functions.

If a variable declaration is preceded by the “__shared__’’ (each “__’’ consists of 
two “_’’ characters) keyword, it declares a shared variable in CUDA. An optional 
“__device__” in front of “__shared__” keyword may also be added in the declaration 
to achieve the same effect. Such declaration typically resides within a kernel func-
tion or a device function. Shared variables reside in the shared memory. The scope 
of a shared variable is within a thread block; i.e., all threads in a block see the same 
version of a shared variable. A private version of the shared variable is created for 
and used by each thread block during kernel execution. The lifetime of a shared vari-
able is within the duration of the kernel. When a kernel terminates its execution, the 
contents of its shared variables cease to exist. As discussed earlier, shared variables 
are an efficient means for threads within a block to collaborate with one another. 
Accessing shared variables from the shared memory is extremely fast and highly 
parallel. CUDA programmers often use shared variables to hold the portion of global 
memory data that are heavily used in a kernel execution phase. The algorithms may 
need to be adjusted to create execution phases that heavily focus on small portions 
of the global memory data, as we will demonstrate with matrix multiplication in 
Section 4.4.

If a variable declaration is preceded by the keyword “__constant__’’ (each “__’’ 
consists of two “_’’ characters), it declares a constant variable in CUDA. An optional 
“__device__” keyword may also be added in front of “__constant__” to achieve the 
same effect. Declaration of constant variables must be outside any function body. 
The scope of a constant variable spans all grids, meaning that all threads in all grids 
see the same version of a constant variable. The lifetime of a constant variable is 
the entire application execution. Constant variables are often used for variables that 
provide input values to kernel functions. Constant variables are stored in the global 
memory but are cached for efficient access. With appropriate access patterns, access-
ing constant memory is extremely fast and parallel. Currently, the total size of con-
stant variables in an application is limited to 65,536 bytes. The input data volume 
may need to be divided to fit within this limitation, as we will illustrate in Chapter 7, 
Parallel pattern: convolution.

A variable whose declaration is preceded only by the keyword “__device__” 
(each “__’’ consists of two “_’’ characters) is a global variable and will be placed in 
the global memory. Accesses to a global variable are slow. Latency and throughput 
of accessing global variables have been improved with caches in relatively recent 

2 There are some exceptions to this rule. The compiler may decide to store an automatic array into 
registers if all accesses are done with constant index values.
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devices. One important advantage of global variables is that they are visible to all 
threads of all kernels. Their contents also persist throughout the entire execution. 
Thus, global variables can be used as a means for threads to collaborate across blocks. 
However, the only easy way to synchronize between threads from different thread 
blocks or to ensure data consistency across threads when accessing global memory 
is by terminating the current kernel execution.3 Therefore, global variables are often 
used to pass information from one kernel invocation to another kernel invocation.

In CUDA, pointers are used to point to data objects in the global memory. Pointer 
usage arises in kernel and device functions in two ways: (1) if an object is allocated 
by a host function, the pointer to the object is initialized by cudaMalloc and can be 
passed to the kernel function as a parameter (e.g., the parameters M, N, and P in  
Fig. 4.3) and (2) the address of a variable declared in the global memory is assigned 
to a pointer variable. To illustrate, the statement {float* ptr= &GlobalVar;} in a 
kernel function assigns the address of GlobalVar into an automatic pointer variable 
ptr. The reader should refer to the CUDA Programming Guide for using pointers in 
other memory types.

4.4  TILING FOR REDUCED MEMORY TRAFFIC
We have an intrinsic tradeoff in the use of device memories in CUDA: the global 
memory is large but slow, whereas the shared memory is small but fast. A com-
mon strategy is to partition the data into subsets called tiles so that each tile fits 
into the shared memory. The term “tile” draws on the analogy that a large wall (i.e.,  
the global memory data) can be covered by tiles (i.e., subsets that each can fit  
into the shared memory). An important criterion is that kernel computation on these 
tiles can be performed independently of each other. Note that not all data structures 
can be partitioned into tiles given an arbitrary kernel function.

The concept of tiling can be illustrated using the matrix multiplication example in 
Fig. 4.5, which corresponds to the kernel function in Fig. 4.3. We replicate the exam-
ple in Fig. 4.9 for convenient reference by the reader. For brevity, we use Py,x, My,x, 
and Ny,x to represent P[y*Width+ x], M[y*Width+ x], and N[y*Width+ x], respec-
tively. This example assumes that we use four 2× 2 blocks to compute the P matrix. 
Fig. 4.9 highlights the computation performed by the four threads of block(0,0). 
These four threads compute for P0,0, P0,1, P1,0, and P1,1. The accesses to the M and 
N elements by thread(0,0) and thread(0,1) of block(0,0) are highlighted with black 
arrows; e.g., thread(0,0) reads M0,0 and N0,0, followed by M0,1 and N1,0, followed by 
M0,2 and N2,0, followed by M0,3 and N3,0.

Fig. 4.10 shows the global memory accesses performed by all threads in block0,0. 
The threads are listed in the vertical direction, with time of access increasing to the 

3 Note that one can use CUDA memory fencing to ensure data coherence between thread blocks if 
the number of thread blocks is smaller than the number of SMs in the CUDA device. See the CUDA 
programming guide for more details.
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right in the horizontal direction. Each thread accesses four elements of M and four 
elements of N during execution. Among the four threads highlighted, a significant 
overlap occurs in the M and N elements they access. For instance, both thread0,0 and 
thread0,1 access M0,0 and the rest of row 0 of M. Similarly, both thread0,1 and thread1,1 
access N0,1 and the rest of column 1 of N.

The kernel in Fig. 4.3 is written so that both thread0,0 and thread0,1 access row 0 
elements of M from the global memory. If thread0,0 and thread0,1 can be made to col-
laborate so that these M elements are only loaded from the global memory once, the 
total number of accesses to the global memory can be reduced by half. Every M and 
N element is accessed exactly twice during the execution of block0,0. Therefore, if all 
four threads can be made to collaborate in their accesses to global memory, traffic to 
the global memory can be reduced by half.

Readers should verify that the potential reduction in global memory traffic in the 
matrix multiplication example is proportional to the dimension of the blocks used. 

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

P0,2 P0,3

N3,0 N3,1

N2,1

N1,1

N0,1N0,0
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P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

FIGURE 4.9

A small example of matrix multiplication. For brevity, we show M[y*Width+ x], N[y*Width 
+ x], P[y*Width+ x] as My,x, Ny,x Py,x.

thread0,0 M0,0 * N0,0 M0,1 * N1,0 M0,2 * N2,0 M0,3 * N3,0

thread0,1 M0,0 * N0,1 M0,1 * N1,1 M0,2 * N2,1 M0,3 * N3,1

thread1,0 M1,0 * N0,0 M1,1 * N1,0 M1,2 * N2,0 M1,3 * N3,0

thread1,1 M1,0 * N0,1 M1,1 * N1,1 M1,2 * N2,1 M1,3 * N3,1

Access order

FIGURE 4.10

Global memory accesses performed by threads in block0,0.
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With Width × Width blocks, the potential reduction of global memory traffic would 
be Width. Thus, if we use 16 × 16 blocks, the global memory traffic can be poten-
tially reduced to 1/16 through collaboration between threads.

Traffic congestion arises not only in computing but in highway systems as well, 
as illustrated in Fig. 4.11. The root cause of highway traffic congestion is too many 
cars squeezing through a road that is designed for a much smaller number of vehi-
cles. When congestion occurs, the travel time for each vehicle is greatly increased. 
Commute time to work can easily double or triple during traffic congestion.

Most solutions for reduced traffic congestion involve reduction of cars on the 
road. Assuming that the number of commuters is constant, people need to share rides 
in order to reduce the number of cars on the road. A common way to share rides in 
the US is carpooling, where a group of commuters take turns to drive the group to 
work in one vehicle. The government usually needs to create policies encouraging 
carpooling. In some countries, the government simply bans certain classes of cars 
from the road on a daily basis. For example, cars with odd license plates may not be 
allowed on the road on Monday, Wednesday, or Friday. This rule encourages people 
whose cars are allowed on different days to form a carpool group. In some countries, 
gasoline price is so high that people form carpools to save money. In other countries, 
the government may provide incentives for behaviors that reduce the number of cars 
on the road. In the US, some lanes of congested highways are designated as carpool 
lanes; only cars with more than two or three people are allowed to use these lanes. 
All of these measures for encouraging carpooling are designed to overcome the fact 
that carpooling requires extra effort, as shown in Fig. 4.12.

FIGURE 4.11

Reducing traffic congestion in highway systems.
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Carpooling requires workers who wish to carpool to compromise and agree on 
a common commute schedule. The top half of Fig. 4.12 presents a good schedule 
pattern for carpooling. Time goes from left to right. Workers A and B share a similar 
schedule for sleep, work, and dinner. This schedule allows these two workers to con-
veniently go to work and return home in one car. Their similar schedules allow them 
to easily agree on common departure and return times. By contrast, the schedules in 
the bottom half of Fig. 4.12 show Workers A and B having different habits: Worker A 
parties until sunrise, sleeps during the day, and goes to work in the evening; Worker 
B sleeps at night, goes to work in the morning, and returns home for dinner at 6 p.m. 
The schedules are so different that these two workers cannot arrange a common time 
to drive to work and return home in one car. For these workers to form a carpool, 
they need to negotiate a common schedule similar to that in the top half of Fig. 4.12.

Tiled algorithms are highly similar to carpooling arrangements. We can consider 
threads accessing data values as commuters and DRAM access requests as vehicles. 
When the rate of DRAM requests exceeds the provisioned access bandwidth of the 
DRAM system, traffic congestion arises and the arithmetic units become idle. If mul-
tiple threads access data from the same DRAM location, they can potentially form a 
“carpool” and combine their accesses into one DRAM request. However, this process 
requires a similar execution schedule for the threads so that their data accesses can 
be combined. This scenario is shown in Fig. 4.13, where the cells at the center rep-
resent DRAM locations. An arrow from a DRAM location pointing to a thread rep-
resents an access by the thread to that location at the time marked by the head of the 
arrow. Note that the time goes from left to right. The top portion shows two threads 
that access the same data elements with similar timing. The bottom half shows two 
threads that access their common data at varying times; i.e., the accesses by Thread 
2 lag significantly behind their corresponding accesses by Thread 1. The reason the 

Good – people have similar schedules

Bad – people have very different schedules

Worker A

Worker B

Time
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party

FIGURE 4.12

Carpooling requires synchronization among people.
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bottom is an undesirable arrangement is that data elements that are brought back 
from the DRAM need to be stored in the on-chip memory for an extended time, wait-
ing to be consumed by Thread 2. A large number of data elements will need to be 
stored, resulting in an excessive on-chip memory requirement.

In the context of parallel computing, tiling is a program transformation technique 
that localizes the memory locations accessed among threads and the timing of their 
accesses. It divides the long access sequences of each thread into phases and uses bar-
rier synchronization to keep the timing of accesses to each section at close intervals. 
This technique controls the amount of on-chip memory required by localizing the  
accesses both in time and in space. In terms of our carpool analogy, we force  
the threads that form the “carpool” group to follow approximately the same execu-
tion timing.

We now present a tiled matrix multiplication algorithm. The basic idea is for 
the threads to collaboratively load subsets of the M and N elements into the shared 
memory before they individually use these elements in their dot product calcula-
tion. The size of the shared memory is quite small, and the capacity of the shared 
memory should not be exceeded when these M and N elements are loaded into the 
shared memory. This condition can be satisfied by dividing the M and N matrices 
into smaller tiles so that they can fit into the shared memory. In the simplest form, the 
tile dimensions equal those of the block, as illustrated in Fig. 4.11.

In Fig. 4.14, we divide M and N into 2 × 2 tiles, as delineated by the thick lines. 
The dot product calculations performed by each thread are now divided into phases. 
In each phase, all threads in a block collaborate to load a tile of M and a tile of N 
into the shared memory. This collaboration can be accomplished by having every 
thread in a block to load one M element and one N element into the shared memory, 

Good — threads have similar access timing

Bad — threads have very different timing
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Time

Thread 1

Thread 2

Time

FIGURE 4.13

Tiled Algorithms require synchronization among threads.
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as illustrated in Fig. 4.15. Each row in Fig. 4.15 shows the execution activities of a 
thread. Note that time progresses from left to right. We only need to show the activi-
ties of threads in block0,0; all of the other blocks have the same behavior. The shared 
memory array for the M elements is called Mds, and that for the N elements is called 
Nds. At the beginning of Phase 1, the four threads of block0,0 collaboratively load a 
tile of M into a shared memory: thread0,0 loads M0,0 into Mds0,0, thread0,1 loads M0,1 
into Mds0,1, thread1,0 loads M1,0 into Mds1,0, and thread1,1 loads M1,1 into Mds1,1, 

M1,1M1,0 M1,2 M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P0,1M0,2M0,1M0,0 M0,3 P0,0 P0,2 P0,3

FIGURE 4.14

Tiling M and N to utilize shared memory.
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FIGURE 4.15

Execution phases of a tiled matrix multiplication.
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as shown in the second column in Fig. 4.15. A tile of N is also similarly loaded, as 
presented in the third column in Fig. 4.15.

After the two tiles of M and N are loaded into the shared memory, these elements 
are used in the calculation of the dot product. Each value in the shared memory is 
used twice; e.g., the M1,1 value loaded by thread1,1 into Mds1,1 is used twice: the first 
time by thread1,0 and the second time by thread1,1. By loading each global memory 
value into the shared memory so that it can be used multiple times, we reduce the 
number of accesses to the global memory; in this case, we reduce it by half. The 
reader should verify that the reduction occurs by a factor of N if the tiles are N × N 
elements.

Note that the calculation of each dot product in Fig. 4.3 is now performed in two 
phases, Phases 1 and 2 in Fig. 4.15. In each phase, the products of two pairs of the 
input matrix elements are accumulated into the Pvalue variable. Pvalue is an auto-
matic variable; a private version is generated for each thread. We added subscripts 
to indicate different instances of the Pvalue variable created for each thread. The 
first- and second-phase calculations are shown in the fourth and seventh columns in 
Fig. 4.15, respectively. In general, if an input matrix is of the dimension Width and 
the tile size is referred to as TILE_WIDTH, the dot product would be performed in 
Width/TILE_WIDTH phases. The creation of these phases is key to the reduction of 
accesses to the global memory. With each phase focusing on a small subset of the 
input matrix values, the threads can collaboratively load the subset into the shared 
memory and use the values in the shared memory to satisfy their overlapping input 
demands in the phase.

Note also that Mds and Nds are reused to hold the input values. In each phase, 
the same Mds and Nds are used to hold the subset of M and N elements in the phase, 
thereby allowing a much smaller shared memory to serve most of the accesses to 
global memory. This is due to the fact that each phase focuses on a small subset of 
the input matrix elements. Such focused access behavior is called locality. When an 
algorithm exhibits locality, an opportunity arises to use small, high-speed memories 
in order to serve most of the accesses and remove these accesses from the global 
memory. Locality is as important for achieving high-performance in multi-core 
CPUs as in many-thread GPUs. We will return to the concept of locality in Chapter 5, 
Performance considerations.

4.5  A TILED MATRIX MULTIPLICATION KERNEL
We are now ready to present a tiled matrix multiplication kernel that uses shared 
memory to reduce traffic to the global memory. The kernel presented in Fig. 4.16 
implements the phases illustrated in Fig. 4.15. In Fig. 4.16, Lines 1 and 2 declare 
Mds and Nds as shared memory variables. Recall that the scope of shared memory 
variables is a block. Thus, one pair of Mds and Nds will be created for each block, 
and all threads of a block can access the same Mds and Nds. This is important 
since all threads in a block must have access to the M and N elements loaded  
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into Mds and Nds by their peers so that they can use these values to satisfy their 
input needs.

Lines 3 and 4 save the threadIdx and blockIdx values into automatic varia-
bles and thus into registers for fast access. Recall that automatic scalar variables are 
placed into registers. Their scope is in each individual thread; i.e., one private version 
of tx, ty, bx, and by is created by the run-time system for each thread and will reside 
in registers that are accessible by the thread. They are initialized with the threadIdx 
and blockIdx values and used many times during the lifetime of the thread. Once the 
thread ends, the values of these variables cease to exist.

Lines 5 and 6 determine the row and column indexes of the P element to be pro-
duced by the thread. The code assumes that each thread is responsible for calculating 
one P element. As shown in Line 6, the horizontal (x) position, or the column index 
of the P element to be produced by a thread, can be calculated as bx*TILE_WIDTH+ 
tx because each block covers TILE_WIDTH elements in the horizontal dimension. 
A thread in block bx would have bx blocks of threads, or (bx*TILE_WIDTH) threads, 
before it; they cover bx*TILE_WIDTH elements of P. Another tx threads within the 
same block would cover another tx elements. Thus, the thread with bx and tx should 
be responsible for calculating the P element whose x index is bx*TILE_WIDTH+ tx. 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P,
int Width) {

1.   __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2.   __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3.   int bx = blockIdx.x;  int by = blockIdx.y;
4.   int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on
5.   int Row = by * TILE_WIDTH + ty;
6.   int Col = bx * TILE_WIDTH + tx;

7.   float Pvalue = 0;
// Loop over the d_M and d_N tiles required to compute d_P element

8.   for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {

// Collaborative loading of d_M and d_N tiles into shared memory
9.     Mds[ty][tx] = d_M[Row*Width + ph*TILE_WIDTH + tx];
10.     Nds[ty][tx] = d_N[(ph*TILE_WIDTH + ty)*Width + Col];
11.     __syncthreads();

12.     for (int k = 0; k < TILE_WIDTH; ++k) {
13.       Pvalue += Mds[ty][k] * Nds[k][tx];

}
14.     __syncthreads();

}
15.   d_P[Row*Width + Col] = Pvalue;  

}

FIGURE 4.16

A tiled Matrix Multiplication Kernel using shared memory.
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This horizontal index is saved in the variable Col for the thread and is also illustrated 
in Fig. 4.17.

In Fig. 4.14, the x index of the P element to be calculated by thread0,1 of block1,0 is 
0*2+ 1= 1. Similarly, the y index can be calculated as by*TILE_WIDTH+ ty. This ver-
tical index is saved in the variable Row for the thread. Thus, each thread calculates 
the P element at the Colth column and the Rowth row, as shown in Fig. 4.17. Recalling 
the example in Fig. 4.14, the y index of the P element to be calculated by thread1,0 
of block0,1 is 1*2+ 0= 2. Thus, the P element to be calculated by this thread is P2,1.

Line 8 in Fig. 4.16 marks the beginning of the loop that iterates through all the 
phases of calculating the P element. Each iteration of the loop corresponds to one 
phase of the calculation presented in Fig. 4.15. The ph variable indicates the number 
of phases that have already been done for the dot product. Recall that each phase uses 
one tile of M and one tile of N elements. Therefore, at the beginning of each phase, 
ph*TILE_WIDTH pairs of M and N elements have been processed by previous phases.

In each phase, Line 9 loads the appropriate M element into the shared memory. 
Since we already know the row of M and column of N to be processed by the thread, 
we now discuss the column index of M and row index of N. As shown in Fig. 4.17, 
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Calculation of the matrix indexes in tiled multiplication.
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each block has TILE_WIDTH2 threads that will collaborate to load TILE_WIDTH2 
M elements into the shared memory. Thus, we only need to assign each thread to 
load one M element, which can be conveniently accomplished using blockIdx and 
threadIdx. The beginning column index of the section of M elements to be loaded is 
ph*TILE_WIDTH. Therefore, an easy approach is to have every thread load an element 
that is tx (the threadIdx.x value) positions away from that beginning point.

This case is represented by Line 9, where each thread loads M[Row*Width + 
ph*TILE_WIDTH + tx], where the linearized index is formed with the row index Row 
and column index ph*TILE_WIDTH + tx. Since the value of Row is a linear function 
of ty, each of the TILE_WIDTH2 threads will load a unique M element into the shared 
memory. Together, these threads will load a dark square subset of M in Fig. 4.17. The 
reader should use the examples in Fig. 4.14 and Fig. 4.15 to verify that the address 
calculation works correctly for individual threads.

The barrier __syncthreads() in Line 11 ensures that all threads have finished 
loading the tiles of M and N into Mds and Nds before any of them can move forward. 
The loop in Line 12 then performs one phase of the dot product on the basis of these 
tile elements. The progression of the loop for threadty,tx is shown in Fig. 4.17, with 
the access direction of the M and N elements along the arrow marked with k, the loop 
variable in Line 12. These elements will be accessed from Mds and Nds, the shared 
memory arrays holding these M and N elements. The barrier __syncthreads() in 
Line 14 ensures that all threads have finished using the M and N elements in the shared 
memory before any of them move on to the next iteration and load the elements from 
the next tiles. In this manner, none of the threads would load the elements too early 
and corrupt the input values for other threads.

The nested loop from Line 8 to Line 14 illustrates a technique called strip-mining, 
which takes a long-running loop and break it into phases. Each phase consists of an 
inner loop that executes a number of consecutive iterations of the original loop. The 
original loop becomes an outer loop whose role is to iteratively invoke the inner loop 
so that all the iterations of the original loop are executed in their original order. By 
adding barrier synchronizations before and after the inner loop, we force all threads 
in the same block to focus their work entirely on a section of their input data. Strip-
mining can create the phases needed by tiling in data parallel programs.4

After all phases of the dot product are completed, the execution exits the loop of 
Line 8. All threads write to their P element by using the linearized index calculated 
from Row and Col.

The tiled algorithm provides a substantial benefit. For matrix multiplication, 
the global memory accesses are reduced by a factor of TILE_WIDTH. If one uses  
16 × 16 tiles, we can reduce the global memory accesses by a factor of 16. This 
increases the compute-to-global-memory-access ratio from 1 to 16. This improvement 

4 Interested reader should note that strip-mining has long been used in programming CPUs. Strip-
mining followed by loop interchange is often used to enable tiling for improved locality in sequential 
programs. Strip-mining is also the main vehicle for vectorizing compilers to generate vector or Single-
Instruction, Multiple-Data instructions for CPU programs.



94 CHAPTER 4  Memory and data locality

allows the memory bandwidth of a CUDA device to support a computation rate close 
to its peak performance; e.g. a device with 150 GB/s global memory bandwidth can 
approach ((150/4)*16) = 600 GFLOPS!

While the performance improvement of the tiled matrix multiplication kernel is 
impressive, it includes a few simplifying assumptions. First, the width of the matri-
ces is assumed to be a multiple of the width of the thread blocks. This assumption 
prevents the kernel from correctly processing arbitrary-sized matrices. The second 
assumption is that the matrices are square matrices, which is not always true in real-
life settings. In the next section, we will present a kernel with boundary checks that 
remove these assumptions.

4.6  BOUNDARY CHECKS
We now extend the tiled matrix multiplication kernel to handle matrices with arbi-
trary widths. The extensions will have to allow the kernel to correctly handle matri-
ces whose width is not a multiple of the tile width. By changing the example in Fig. 
4.14 to 3× 3 M, N, and P matrices, Fig. 4.18 is created. The matrices have a width of 
3, which is not a multiple of the tile width (2). Fig. 4.18 shows the memory access 
pattern during phase 1 of block0,0. Thread0,1 and thread1,1 will attempt to load M ele-
ments that do not exist. Similarly, thread1,0 and thread1,1 will attempt to access N 
elements that do not exist.

Accessing nonexisting elements is problematic in two ways. Accessing a nonex-
isting elements past the end of a row (M accesses by thread1,0 and thread1,1 in Fig. 
4.18) will be done to incorrect elements. In our example, the threads will attempt to 
access M0,3 and M1,3, both of which do not exist. In this case, what will happen to these 

FIGURE 4.18

Loading input matrix elements that are close to the edge–phase 1 of Block0,0.
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memory loads? To answer this question, we need to go back to the linearized layout 
of 2D matrices. The element after M0,2 in the linearized layout is M1,0. Although 
thread0,1 is attempting to access M0,3, it will instead obtain M1,0. The use of this value 
in the subsequent inner product calculation will certainly corrupt the output value.

A similar problem arises when accessing an element past the end of a column (N 
accesses by thread1,0 and thread1,1 in Fig. 4.18). These accesses are to memory loca-
tions outside the allocated area for the array. Some systems will return random values 
from other data structures, whereas others will reject these accesses and cause the 
program to abort. Either way, such accesses lead to undesirable outcomes.

From our discussion thus far, the problematic accesses only seem to arise in the 
last phase of execution of the threads. This observation suggests that the problem can 
be dealt with by taking special actions during the last phase of the tiled kernel execu-
tion. Unfortunately, problematic accesses can occur in all phases. Fig. 4.19 shows 
the memory access pattern of block1,1 during phase 0. We see that thread1,0 and 
thread1,1 attempt to access nonexisting M elements M3,0 and M3,1, whereas thread0,1 
and thread1,1 attempt to access N0,3 and N1,3, which do not exist.

Note that these problematic accesses cannot be prevented by excluding the threads 
that do not calculate valid P elements. For instance, thread1,0 in block1,1 does not cal-
culate any valid P element. However, it needs to load M2,1 during phase 0. Further, 
some threads that calculate valid P elements will attempt to access M or N elements 
that do not exist. As shown in Fig. 4.18, thread0,1 of block 0,0 calculates a valid P 
element P0,1. However, it attempts to access a nonexisting M0,3 during phase 1. These 
observations indicate that different boundary condition tests need to be conducted for 
loading M tiles, loading N tiles, and calculating/storing P elements.

We start with the boundary test condition for loading input tiles. When a thread 
intends to load an input tile element, it should test that input element for validity, 

FIGURE 4.19

Loading input elements during phase 0 of block1,0.
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which is easily done by examining the y and x indexes. To illustrate, at Line 9 in  
Fig. 4.16, the linearized index is derived from a y index of Row and an x index of 
ph*TILE_WIDTH + tx. The boundary condition test would be that both indexes are 
smaller than Width: (Row<Width) && (ph*TILE_WIDTH+tx)<Width. If the condition is 
satisfied, the thread should load the M element. The reader should verify that the con-
dition test for loading the N element is (ph*TILE_WIDTH+ty)<Width && Col<Width.

If the condition is not satisfied, the thread should not load the element, in which 
case, the question is what should be placed into the shared memory location. The 
answer is 0.0, a value that will not cause any harm if used in the inner product cal-
culation. If any thread uses this 0.0 value in the calculation of its inner product, no 
change will be observed in the inner product value.

Finally, a thread should only store its final inner product value if it is responsible 
for calculating a valid P element. The test for this condition is (Row < Width) &&  
(Col < Width). The kernel code with the additional boundary condition checks is 
shown in Fig. 4.20.

With the boundary condition checks, the tile matrix multiplication kernel is just one 
more step away from being a general matrix multiplication kernel. In general, matrix 
multiplication is defined for rectangular matrices: a j×k M matrix multiplied by a k×l N 
matrix results in a j×l P matrix. Currently, our kernel can only handle square matrices.

Fortunately, our kernel can be easily extended to a general matrix multiplication 
kernel by making simple modifications. First, the Width argument is replaced by 
three unsigned integer arguments j, k, and l. Where Width is used to refer to the 
height of M or height of P, it may be replaced with j. Where Width is used to refer to 
the width of M or height of N, it may be replaced with k. Where Width is used to refer 
to the width of N or width of P, it may be replaced with l. The revision of the kernel 
with these changes is left as an exercise.

// Loop over the M and N tiles required to compute P element
 8.   for (int ph = 0; ph < ceil(Width/(float)TILE_WIDTH); ++ph) {

// Collaborative loading of M and N tiles into shared memory
9.     if ((Row< Width) && (ph*TILE_WIDTH+tx)< Width) 

Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
10.     if ((ph*TILE_WIDTH+ty)<Width && Col<Width) 

Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];

11.     __syncthreads();

12.     for (int k = 0; k < TILE_WIDTH; ++k) {
13.       Pvalue += Mds[ty][k] * Nds[k][tx];

}
14.     __syncthreads();

}
15.   if ((Row<Width) && (Col<Width)P[Row*Width + Col] = Pvalue;  

FIGURE 4.20

Tiled matrix multiplication kernel with boundary condition checks.
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4.7  MEMORY AS A LIMITING FACTOR TO PARALLELISM
While CUDA registers and shared memory can be extremely effective in reducing the 
number of accesses to global memory, one must be careful to stay within the capac-
ity of these memories. These memories are forms of resources necessary for thread 
execution. Each CUDA device offers limited resources, thereby limiting the number 
of threads that can simultaneously reside in the SM for a given application. In general, 
the more resources each thread requires, the fewer the threads that can reside in each 
SM, and likewise, the fewer the threads that can run in parallel in the entire device.

To illustrate the interaction between register usage of a kernel and the level of par-
allelism that a device can support, assume that in a current-generation device D, each 
SM can accommodate up to 1536 threads and 16,384 registers. While 16,384 is a large 
number, each thread is only allowed to use a very limited number of registers, consid-
ering the number of threads that can reside in each SM. To support 1536 threads, each 
thread can use only 16,384/1536 = 10 registers. If each thread uses 11 registers, the 
number of threads that can be executed concurrently in each SM will be reduced. Such 
reduction occurs at the block granularity; e.g., if each block contains 512 threads, the 
reduction of threads will be accomplished by reducing 512 threads at a time. Thus, the 
next smaller number of threads from 1536 will be 1024, indicating a 1/3 reduction of 
threads that can simultaneously reside in each SM. This procedure can substantially 
reduce the number of warps available for scheduling, thereby decreasing the ability of 
the processor to find useful work in the presence of long-latency operations.

The number of registers available to each SM varies from one device to another. 
An application can dynamically determine the number of registers available in each 
SM of the device used and choose a version of the kernel that uses the number of 
registers appropriate for the device. The number of registers can be determined by 
calling the cudaGetDeviceProperties function, which was discussed in Section 3.6. 
Assume that the variable &dev_prop is passed to the function for the device property 
and the field dev_prop.regsPerBlock generates the number of registers available in 
each SM. For device D, the returned value for this field should be 16,384. The appli-
cation can then divide this number by the targeted number of threads to reside in each 
SM to determine the number of registers that can be used in the kernel.

Shared memory usage can also limit the number of threads assigned to each SM. 
We can assume that the same device D has 16,384 (16K) bytes of shared memory, 
is allocated to thread blocks, in each SM. We can also assume that each SM in D 
can accommodate up to 8 blocks. To reach this maximum, each block must not use 
more than 2K bytes of shared memory; otherwise, the number of blocks that can 
reside in each SM is reduced such that the total amount of shared memory used by 
these blocks does not exceed 16K bytes. For instance, if each block uses 5K bytes of 
shared memory, no more than three blocks can be assigned to each SM.

For the matrix multiplication example, shared memory can become a limiting fac-
tor. For a tile size of 16 × 16, each block needs 16 × 16 × 4=1K bytes of storage for Mds. 
(Note that each element is a float type, which is 4 bytes.) Another 1KB is needed for Nds. 
Thus, each block uses 2K bytes of shared memory. The 16K-byte shared memory allows 
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8 blocks to simultaneously reside in an SM. Since this is the same as the maximum 
allowed by the threading hardware, shared memory is not a limiting factor for this tile 
size. In this case, the real limitation is the threading hardware limitation that only allows 
1536 threads in each SM. This constraint limits the number of blocks in each SM to six. 
Consequently, only 6*2KB= 12KB of the shared memory will be used. These limits 
change from one device to another but can be determined at runtime with device queries.

The size of shared memory in each SM can also vary depending on the device. 
Each generation or model of device can have different amounts of shared memory 
in each SM. It is often desirable for a kernel to be able to use different amount of 
shared memory according to the amount available in the hardware. We may want a 
host code to dynamically determine the size of the shared memory and adjust the 
amount of shared memory used by a kernel, which can be done by calling the cuda-
GetDeviceProperties function. We make the assumption that variable &dev_prop is 
passed to the function and that field dev_prop.sharedMemPerBlock gives the number 
of registers available in each SM. The programmer can then determine the amount of 
shared memory that should be used by each block.

Unfortunately, the kernel in Fig. 4.16 does not support this. The declarations used 
in Fig. 4.16 hardwire the size of its shared memory usage to a compile-time constant:

    __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
    __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

That is, the size of Mds and Nds is set to be TILE_WIDTH2 elements, regardless of 
the value of TILE_WIDTH at compile-time. To illustrate, assume that the file contains

    #define TILE_WIDTH 16.

Both Mds and Nds will have 256 elements. If we want to change the size of Mds 
and Nds, we change the value of TILE_WIDTH and recompile the code. The kernel can-
not easily adjust its shared memory usage at runtime without recompilation.

We can enable such an adjustment with a different style of declaration in CUDA. 
We can add a C “extern” keyword in front of the shared memory declaration and 
omit the size of the array in the declaration. In this manner, the declarations for Mds 
and Nds read as

    extern __shared__ Mds[];
    extern __shared__ Nds[];

Note that the arrays are now one-dimensional. We will need to use a linearized 
index based on the vertical and horizontal indexes.

At runtime when we launch the kernel, we can dynamically determine the amount 
of shared memory to be used according to the device query result and supply that 
as a third configuration parameter to the kernel launch. The revised kernel could be 
launched with the following statements:

  size_t size=
    calculate_appropriate_SM_usage(dev_prop.sharedMemPerBlock,...);
  matrixMulKernel<<<dimGrid, dimBlock, size>>>(Md, Nd, Pd, Width);
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where size_t is a built-in type for declaring a variable to holds the size information for dynami-
cally allocated data structures. The size is expressed in bytes. In our matrix multiplication 
example, for a 16 × 16 tile, we have a size of 16 × 16 × 4=1024 bytes. The details of the 
calculation for setting the value of size at run-time have been omitted.

4.8  SUMMARY
In summary, the execution speed of a program in modern processors can be severely 
limited by the speed of the memory. To achieve good utilization of the execution 
throughput of CUDA devices, a high compute-to-global-memory-access ratio in 
the kernel code should be obtained. If the ratio obtained is low, the kernel is mem-
ory-bound; i.e., its execution speed is limited by the rate at which its operands are 
accessed from memory.

CUDA defines registers, shared memory, and constant memory. These memo-
ries are much smaller than the global memory but can be accessed at much higher 
rates. Using these memories effectively requires a redesign of the algorithm. We use 
matrix multiplication to illustrate tiling, a widely used technique to enhance locality 
of data access and effectively use shared memory. In parallel programming, tiling 
forces multiple threads to jointly focus on a subset of the input data at each phase 
of execution so that the subset data can be placed into these special memory types, 
consequently increasing the access speed. We demonstrate that with 16 × 16 tiling, 
global memory accesses are no longer the major limiting factor for matrix multipli-
cation performance.

However, CUDA programmers need to be aware of the limited sizes of these 
types of memory. Their capacities are implementation-dependent. Once their capaci-
ties are exceeded, they limit the number of threads that can simultaneously execute 
in each SM. The ability to reason about hardware limitations when developing an 
application is a key aspect of computational thinking.

Although we introduced tiled algorithms in the context of CUDA programming, 
the technique is an effective strategy for achieving high-performance in virtually all 
types of parallel computing systems. The reason is that an application must exhibit 
locality in data access in order to effectively use high-speed memories in these sys-
tems. In a multicore CPU system, data locality allows an application to effectively 
use on-chip data caches to reduce memory access latency and achieve high-perfor-
mance. Therefore, the reader will find the tiled algorithm useful when he/she devel-
ops a parallel application for other types of parallel computing systems using other 
programming models.

Our goal for this chapter is to introduce the concept of locality, tiling, and dif-
ferent CUDA memory types. We introduced a tiled matrix multiplication kernel by 
using shared memory. The use of registers and constant memory in tiling has yet to 
be discussed. The use of these memory types in tiled algorithms will be explained 
when parallel algorithm patterns are discussed.
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4.9  EXERCISES

	 1.	 Consider matrix addition. Can one use shared memory to reduce the global 
memory bandwidth consumption? Hint: Analyze the elements accessed by 
each thread and see if there is any commonality between threads.

	 2.	 Draw the equivalent of Fig. 4.14 for an 8× 8 matrix multiplication with 2× 2 
tiling and 4× 4 tiling. Verify that the reduction in global memory bandwidth 
is indeed proportional to the dimensions of the tiles.

	 3.	 What type of incorrect execution behavior can happen if one or both  
__syncthreads() are omitted in the kernel of Fig. 4.16?

	 4.	 Assuming that capacity is not an issue for registers or shared memory, give 
one important reason why it would be valuable to use shared memory instead 
of registers to hold values fetched from global memory? Explain your answer.

	 5.	 For our tiled matrix–matrix multiplication kernel, if we use a 32x32 tile, what 
is the reduction of memory bandwidth usage for input matrices M and N?
A.	 1/8 of the original usage
B.	 1/16 of the original usage
C.	 1/32 of the original usage
D.	 1/64 of the original usage

	 6.	 Assume that a CUDA kernel is launched with 1,000 thread blocks, with each 
having 512 threads. If a variable is declared as a local variable in the kernel, 
how many versions of the variable will be created through the lifetime of the 
execution of the kernel?
A.	 1
B.	 1000
C.	 512
D.	 512000

	 7.	 In the previous question, if a variable is declared as a shared memory 
variable, how many versions of the variable will be created throughout the 
lifetime of the execution of the kernel?
A.	 1
B.	 1000
C.	 512
D.	 51200

	 8.	 Consider performing a matrix multiplication of two input matrices with 
dimensions N × N. How many times is each element in the input matrices 
requested from global memory in the following situations?
A.	 There is no tiling.
B.	 Tiles of size T × T are used.



1014.9  Exercises

	 9.	 A kernel performs 36 floating-point operations and 7 32-bit word global 
memory accesses per thread. For each of the following device properties, 
indicate whether this kernel is compute- or memory-bound.
A.	 Peak FLOPS= 200 GFLOPS, Peak Memory Bandwidth= 100 GB/s
B.	 Peak FLOPS= 300 GFLOPS, Peak Memory Bandwidth= 250 GB/s

	10.	 To manipulate tiles, a new CUDA programmer has written the following 
device kernel, which will transpose each tile in a matrix. The tiles are of 
size BLOCK_WIDTH by BLOCK_WIDTH, and each of the dimensions of matrix A 
is known to be a multiple of BLOCK_WIDTH. The kernel invocation and code 
are shown below. BLOCK_WIDTH is known at compile time, but could be set 
anywhere from 1 to 20.
dim3 blockDim(BLOCK_WIDTH,BLOCK_WIDTH);
dim3 gridDim(A_width/blockDim.x,A_height/blockDim.y);
BlockTranspose<<<gridDim, blockDim>>>(A, A_width, A_height);
__global__ void
BlockTranspose(float* A_elements, int A_width, int A_height)
{
  __shared__ float blockA[BLOCK_WIDTH][BLOCK_WIDTH];
  int baseIdx=blockIdx.x * BLOCK_SIZE + threadIdx.x;
  baseIdx += (blockIdx.y * BLOCK_SIZE + threadIdx.y) * A_width;
  blockA[threadIdx.y][threadIdx.x]=A_elements[baseIdx];
  A_elements[baseIdx]=blockA[threadIdx.x][threadIdx.y];
}

A.	 Out of the possible range of values for BLOCK_SIZE, for what values of 
BLOCK_SIZE will this kernel function execute correctly on the device?

B.	 If the code does not execute correctly for all BLOCK_SIZE values, 
suggest a fix to the code to make it work for all BLOCK_SIZE values.
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Objective
– To learn to effectively use the CUDA memory types in a parallel 

program
– Importance of memory access efficiency
– Registers, shared memory, global memory
– Scope and lifetime

2
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// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Review: Image Blur Kernel.
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How about performance on a GPU
– All threads access global memory for their input matrix elements

– One memory accesses (4 bytes) per floating-point addition
– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

– This limits the execution rate to 3.3% (50/1500) of the peak 
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to 
the1,500 GFLOPS
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Example – Matrix Multiplication
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A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}
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Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}
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A Toy Example: Thread to P Data Mapping

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)
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Calculation of P0,0 and P0,1

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P0,1
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Memory and Registers in the Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit
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Programmer View of  CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory
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Declaring CUDA Variables

– __device__ is optional when used with  __shared__, or __constant__
– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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Example:
Shared Memory Variable Declaration 

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}
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Where to Declare Variables?

Can host 
access it?

Outside of 
any Function In the kernel

global
constant

register
shared
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Shared Memory in CUDA
– A special type of memory whose contents are explicitly defined and 

used in the kernel source code
– One in each SM
– Accessed at much higher speed (in both latency and throughput) than global 

memory
– Scope of access and sharing - thread blocks
– Lifetime – thread block, contents will disappear after the corresponding thread 

finishes terminates execution
– Accessed by memory load/store instructions
– A form of scratchpad memory in computer architecture
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Hardware View of CUDA Memories
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Objective
– To understand the motivation and ideas for tiled parallel algorithms 

– Reducing the limiting effect of memory bandwidth on parallel kernel performance
– Tiled algorithms and barrier synchronization
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Global Memory Access Pattern 
of the Basic Matrix Multiplication Kernel

Thread 1 Thread 2 …

Global Memory
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Tiling/Blocking - Basic Idea

Thread 1 Thread 2
…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number 
of tiles at each point in time  
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Tiling/Blocking - Basic Idea

Thread 1 Thread 2
…

Global Memory

On-chip Memory
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Basic Concept of Tiling
– In a congested traffic system, significant reduction of  vehicles 

can greatly improve the delay seen by all vehicles
– Carpooling for commuters
– Tiling for global memory accesses

– drivers = threads accessing their memory data operands
– cars = memory access requests

6
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Some Computations are More Challenging to Tile

– Some carpools may be easier than others
– Car pool participants need to have similar work schedule
– Some vehicles may be more suitable for carpooling

– Similar challenges exist in tiling
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Carpools need synchronization.
– Good: when people have similar schedule

8

Worker A

Worker B
Time

sleep

sleep work

work

dinner

dinner
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Carpools need synchronization.
– Bad: when people have very different schedule

9

Worker A

Worker B
time

sleep

sleep work

work

dinner

party
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Same with Tiling
– Good: when threads have similar access timing

– Bad: when threads have very different timing
10

Thread 1

Thread 2
Time

Thread 1

Thread 2
Time

…
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Barrier Synchronization for Tiling
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Outline of Tiling Technique
– Identify a tile of global memory contents that are accessed by 

multiple threads
– Load the tile from global memory into on-chip memory
– Use barrier synchronization to make sure that all threads are ready 

to start the phase
– Have the multiple threads to access their data from the on-chip 

memory
– Use barrier synchronization to make sure that all threads have 

completed the current phase
– Move on to the next tile

12
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Objective
– To understand the design of a tiled parallel algorithm for matrix 

multiplication
– Loading a tile
– Phased execution
– Barrier Synchronization
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Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a 
column of N

– Each thread block – a strip of M and a 
strip of N



4

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Tiled Matrix Multiplication
– Break up the execution of each 

thread into phases 
– so that the data accesses by the 

thread block in each phase are 
focused on one tile of M and one 
tile of N

– The tile is of BLOCK_SIZE 
elements in each dimension
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Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

5
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Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1
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M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory
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Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1
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P3,0 P3,2 P3,3P3,1

M0,1M0,0
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M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory
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Phase 0 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory
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Phase 1 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory
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Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory
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Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory
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Execution Phases of Toy Example
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Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple 
threads 
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Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before 
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase
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Objective
– To learn to write a tiled matrix-multiplication kernel

– Loading and using tiles for matrix multiplication
– Barrier synchronization, shared memory
– Resource Considerations
– Assume that Width is a multiple of tile size for simplicity

2
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M

N

P

TILE_WIDTH

WIDTHWIDTH

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 0 of M (Phase 0) 
– Have each thread load an M 

element and an N element at the 
same relative position as its P 
element.

int Row = by * blockDim.y + ty;
int Col =   bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]
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M

N

P

BLOCK_WIDTH

WIDTHWIDTH
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Row

Col

Loading Input Tile 0 of N (Phase 0) 
– Have each thread load an M 

element and an N element at the 
same relative position as its P 
element.

int Row = by * blockDim.y + ty;
int Col =   bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]
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Loading Input Tile 1 of M (Phase 1) 

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]
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Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]
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M[Row][p*TILE_WIDTH+tx]
M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]
N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}
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Tile (Thread Block) Size Considerations
– Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads
– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float 
loads from global memory for 256 * (2*16) = 8,192 mul/add 
operations. (16 floating-point operations for each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float 
loads from global memory for 1024 * (2*32) = 65,536 mul/add 
operations. (32 floating-point operation for each memory load)

11
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Shared Memory and Threading
– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared 

memory. 
– For 16KB shared memory, one can potentially have up to 8 thread blocks 

executing
– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared 
memory usage per thread block, allowing 2 thread blocks active at the same time 
– However, in a GPU where the thread count is limited to 1536 threads per SM, 

the number of blocks per SM is reduced to one!
– Each __syncthread() can reduce the number of active threads for a 

block
– More thread blocks can be advantageous

12



Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode


Accelerated Computing

GPU Teaching Kit

Handling Arbitrary Matrix Sizes in Tiled Algorithms

Module 4.5 - Memory and Data Locality



2

Objective
– To learn to handle arbitrary matrix sizes in tiled matrix multiplication

– Boundary condition checking
– Regularizing tile contents
– Rectangular matrices
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Handling Matrix of Arbitrary Size
• The tiled matrix multiplication kernel we presented so far can 

handle only square matrices whose dimensions (Width) are 
multiples of the tile width (TILE_WIDTH)
• However, real applications need to handle arbitrary sized matrices.
• One could pad (add elements to) the rows and columns into multiples 

of the tile size, but would have significant space and data transfer time 
overhead.

• We will take a different approach.
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Phase 1 Loads for Block (0,0) for a 3x3 Example 

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special 
treatment in loading N tile 

Threads (0,1) and (1,1) need 
special treatment in loading M tile
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Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory
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Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

All Threads need special 
treatment. None of them should 

introduce invalidate contributions 
to their P elements.
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Phase 0 Loads for Block (1,1) for a 3x3 Example 

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M2,1M2,0

N0,2

N1,2
Shared Memory

Shared Memory

Threads (0,1) and (1,1) need special 
treatment in loading N tile 

Threads (1,0) and (1,1) need 
special treatment in loading M tile
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Major Cases in Toy Example

– Threads that do not calculate valid P elements but still need to 
participate in loading the input tiles

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but 
need to participate in loading tile element N[1,2] 

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but 
attempts to load non-existing N[3,0]
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A “Simple” Solution
– When a thread is to load any input element, test if it is in the valid index 

range
– If valid, proceed to load
– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not 
affect the final value of the output element

– The condition tested for loading input elements is different from the test 
for calculating output P element

– A thread that does not calculate valid P element can still participate in loading input tile 
elements
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Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

0M0,2

M1,2 0

N2,1N2,0

0 0
Shared Memory

Shared Memory
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Boundary Condition for Input M Tile
– Each thread loads

– M[Row][p*TILE_WIDTH+tx]
– M[Row*Width + p*TILE_WIDTH+tx]

– Need to test
– (Row < Width) && (p*TILE_WIDTH+tx < Width)
– If true, load M element
– Else , load 0

A

TILE_WIDTHTILE_WIDTH



12

Boundary Condition for Input N Tile
– Each thread loads

– N[p*TILE_WIDTH+ty][Col]
– N[(p*TILE_WIDTH+ty)*Width+ Col]

– Need to test
– (p*TILE_WIDTH+ty < Width) && (Col< Width)
– If true, load N element
– Else , load 0

B

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H
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Loading Elements – with boundary check
– 8    for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {
–
– ++       if(Row < Width && t * TILE_WIDTH+tx < Width) {
– 9               ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
– ++       } else {
– ++             ds_M[ty][tx] = 0.0;
– ++       }
– ++       if (p*TILE_WIDTH+ty < Width && Col < Width) {
– 10             ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
– ++       } else {
– ++             ds_N[ty][tx] = 0.0;
– ++       }
– 11      __syncthreads();
–
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Inner Product – Before and After
– ++    if(Row < Width && Col < Width) {
– 12     for (int i = 0; i < TILE_WIDTH; ++i) {
– 13            Pvalue += ds_M[ty][i] * ds_N[i][tx];
– }
– 14     __syncthreads();
– 15   } /* end of outer for loop */
– ++   if (Row < Width && Col < Width) 
– 16         P[Row*Width + Col] = Pvalue;
– } /* end of kernel */
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Some Important Points
– For each thread the conditions are different for 

– Loading M element
– Loading N element
– Calculating and storing output elements

– The effect of control divergence should be small for large matrices
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Handling General Rectangular Matrices
– In general, the matrix multiplication is defined in terms of rectangular 

matrices
– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general 
rectangular matrices

– The Width argument is replaced by three arguments: j, k, l
– When Width is used to refer to the height of M or height of P, replace it with j
– When Width is used to refer to the width of M or height of N, replace it with k
– When Width is used to refer to the width of N or width of P, replace it with l
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