GPU Teaching Kit

Accelerated Computing

Module 9 — Parallel Computation Patterns (Reduction)
Lecture 9.1 - Parallel Reduction



Objective

— To learn the parallel reduction pattern
— An important class of parallel computation
— Work efficiency analysis
— Resource efficiency analysis




“Partition and Summarize”

— A commonly used strategy for processing large input
data sets

— There is no required order of processing elements in a data set (associative and
commutative)

— Partition the data set into smaller chunks
— Have each thread to process a chunk

— Use a reduction tree to summarize the results from each chunk into the final
answer

— E.G., Google and Hadoop MapReduce frameworks
support this strategy

— We will focus on the reduction tree step for now




Reduction enables other techniques

— Reduction is also needed to clean up after some
commonly used parallelizing transformations

— Privatization

— Multiple threads write into an output location

— Replicate the output location so that each thread has a private output
location (privatization)

— Use a reduction tree to combine the values of private locations into
the original output location




What Is a reduction computation?

— Summarize a set of input values into one value using a
“reduction operation”
— Max
— Min
— Sum
— Product

— Often used with a user defined reduction operation
function as long as the operation
— |Is associative and commutative
— Has a well-defined identity value (e.g., O for sum)

— For example, the user may supply a custom “max” function for 3D
coordinate data sets where the magnitude for the each coordinate
data tuple is the distance from the origin.

An example of “collective operation”




An Efficient Sequential Reduction O(N)

— Initialize the result as an identity value for the reduction
operation
— Smallest possible value for max reduction
— Largest possible value for min reduction
— 0 for sum reduction
— 1 for product reduction

— lIterate through the input and perform the reduction operation

between the result value and the current input value

— N reduction operations performed for N input values
— Each input value is only visited once — an O(N) algorithm

— This is a computationally efficient algorithm.




A parallel reduction tree algorithm
performs N-1 operations in log(N) steps
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A tournament is a reduction tree with “max” operation
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A Quick Analysis

— For N input values, the reduction tree performs
— (1/2)N + (1/4)N + (1/8)N + ... (1)N = (1- (1/N))N = N-1 operations
— InLog (N) steps — 1,000,000 input values take 20 steps
— Assuming that we have enough execution resources
— Average Parallelism (N-1)/Log(N))
— For N = 1,000,000, average parallelism is 50,000
— However, peak resource requirement is 500,000
— This is not resource efficient

— This is a work-efficient parallel algorithm

— The amount of work done is comparable to the an efficient sequential algorithm
— Many parallel algorithms are not work efficient




GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.



http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

GPU Teaching Kit

Accelerated Computing

Module 9 — Parallel Computation Patterns (Reduction)
Lecture 9.2 - A Basic Reduction Kernel



Objective

— To learn to write a basic reduction kernel
— Thread to data mapping
— Turning off threads
— Control divergence




Parallel Sum Reduction

— Parallel implementation

— Each thread adds two values in each step
— Recursively halve # of threads
— Takes log(n) steps for n elements, requires n/2 threads

— Assume an in-place reduction using shared memory
— The original vector is in device global memory
— The shared memory is used to hold a partial sum vector
— Initially, the partial sum vector is simply the original vector
— Each step brings the partial sum vector closer to the sum
— The final sum will be in element O of the partial sum vector
— Reduces global memory traffic due to reading and writing partial sum values
— Thread block size limits n to be less than or equal to 2,048




A Parallel Sum Reduction Example

THREAD O THREAD 1 THREAD 2 THREAD 3




A Naive Thread to Data Mapping

— Each thread is responsible for an even-index location of the partial sum
vector (location of responsibility)

— After each step, half of the threads are no longer needed
— One of the inputs is always from the location of responsibility
— In each step, one of the inputs comes from an increasing distance away




A Simple Thread Block Design

— Each thread block takes 2*BlockDim.x input elements
— Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadldx.x;

unsigned int start = 2*blockldx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];




The Reduction Steps

for (unsigned int stride = 1;
stride <= blockDim.x; stride *= 2)
{
__syncthreads();
if (t % stride == 0)
partialSum[2*t]+= partialSum[2*t+stride];

Why do we need __syncthreads()?




Barrier Synchronization

— __syncthreads() is needed to ensure that all elements of each
version of partial sums have been generated before we proceed
to the next step




Back to the Global Picture

— At the end of the kernel, Thread 0 in each block writes
the sum of the thread block in partialSum[0] into a vector
indexed by the blockldx.x

— There can be a large number of such sums if the original
vector is very large
— The host code may iterate and launch another kernel

— If there are only a small number of sums, the host can
simply transfer the data back and add them together

— Alternatively, Thread O of each block could use atomic
operations to accumulate into a global sum variable.
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Lecture 9.3 - A Better Reduction Kernel



Objective

— To learn to write a better reduction kernel
— Improved resource efficiency
— Improved thread to data mapping
— Reduced control divergence




Some Observations on the naive reduction kernel

— In each iteration, two control flow paths will be sequentially
traversed for each warp
— Threads that perform addition and threads that do not
— Threads that do not perform addition still consume execution resources

— Half or fewer of threads will be executing after the first step

— All odd-index threads are disabled after first step

— After the 5th step, entire warps in each block will fail the 1 ¥ test, poor resource utilization
but no divergence

— This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024),
where each active warp only has one productive thread until all warps in a block retire




Thread Index Usage Matters

— In some algorithms, one can shift the index usage to improve
the divergence behavior
— Commutative and associative operators

— Always compact the partial sums into the front locations in the
partialSum[ ] array

— Keep the active threads consecutive




An Example of 4 threads

Thread 0 Thread 1 Thread 2 Thread 3




A Better Reduction Kernel

for (unsigned int stride = blockDim.x;
stride > 0; stride /= 2)

{
__syncthreads();

1T (t < stride)
partialSum[t] += partialSum[t+stride];




A Quick Analysis
— For a 1024 thread block

— No divergence in the first 5 steps

— 1024, 512, 256, 128, 64, 32 consecutive threads are active in each
step

— All threads in each warp either all active or all inactive
— The final 5 steps will still have divergence
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