
Accelerated Computing

GPU Teaching Kit

Lecture 9.1 - Parallel Reduction
Module 9 – Parallel Computation Patterns (Reduction)

2

Objective
– To learn the parallel reduction pattern

– An important class of parallel computation
– Work efficiency analysis
– Resource efficiency analysis

3

“Partition and Summarize”
– A commonly used strategy for processing large input

data sets
– There is no required order of processing elements in a data set (associative and

commutative)
– Partition the data set into smaller chunks
– Have each thread to process a chunk
– Use a reduction tree to summarize the results from each chunk into the final

answer

– E.G., Google and Hadoop MapReduce frameworks
support this strategy

– We will focus on the reduction tree step for now

4

Reduction enables other techniques
– Reduction is also needed to clean up after some

commonly used parallelizing transformations
– Privatization

– Multiple threads write into an output location
– Replicate the output location so that each thread has a private output

location (privatization)
– Use a reduction tree to combine the values of private locations into

the original output location

5

What is a reduction computation?
– Summarize a set of input values into one value using a

“reduction operation”
– Max
– Min
– Sum
– Product

– Often used with a user defined reduction operation
function as long as the operation
– Is associative and commutative
– Has a well-defined identity value (e.g., 0 for sum)
– For example, the user may supply a custom “max” function for 3D

coordinate data sets where the magnitude for the each coordinate
data tuple is the distance from the origin.

An example of “collective operation”

6

An Efficient Sequential Reduction O(N)
– Initialize the result as an identity value for the reduction

operation
– Smallest possible value for max reduction
– Largest possible value for min reduction
– 0 for sum reduction
– 1 for product reduction

– Iterate through the input and perform the reduction operation
between the result value and the current input value

– N reduction operations performed for N input values
– Each input value is only visited once – an O(N) algorithm
– This is a computationally efficient algorithm.

6

7

A parallel reduction tree algorithm
performs N-1 operations in log(N) steps

13

8

A tournament is a reduction tree with “max” operation

9

A Quick Analysis
– For N input values, the reduction tree performs

– (1/2)N + (1/4)N + (1/8)N + … (1)N = (1- (1/N))N = N-1 operations
– In Log (N) steps – 1,000,000 input values take 20 steps

– Assuming that we have enough execution resources
– Average Parallelism (N-1)/Log(N))

– For N = 1,000,000, average parallelism is 50,000
– However, peak resource requirement is 500,000
– This is not resource efficient

– This is a work-efficient parallel algorithm
– The amount of work done is comparable to the an efficient sequential algorithm
– Many parallel algorithms are not work efficient

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 9.2 - A Basic Reduction Kernel
Module 9 – Parallel Computation Patterns (Reduction)

2

Objective
– To learn to write a basic reduction kernel

– Thread to data mapping
– Turning off threads
– Control divergence

3

Parallel Sum Reduction
– Parallel implementation

– Each thread adds two values in each step
– Recursively halve # of threads
– Takes log(n) steps for n elements, requires n/2 threads

– Assume an in-place reduction using shared memory
– The original vector is in device global memory
– The shared memory is used to hold a partial sum vector
– Initially, the partial sum vector is simply the original vector
– Each step brings the partial sum vector closer to the sum
– The final sum will be in element 0 of the partial sum vector
– Reduces global memory traffic due to reading and writing partial sum values
– Thread block size limits n to be less than or equal to 2,048

4

A Parallel Sum Reduction Example

5

A Naive Thread to Data Mapping

– Each thread is responsible for an even-index location of the partial sum
vector (location of responsibility)

– After each step, half of the threads are no longer needed
– One of the inputs is always from the location of responsibility
– In each step, one of the inputs comes from an increasing distance away

6

A Simple Thread Block Design
– Each thread block takes 2*BlockDim.x input elements
– Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];

7

The Reduction Steps
for (unsigned int stride = 1;

stride <= blockDim.x; stride *= 2)
{
__syncthreads();
if (t % stride == 0)
partialSum[2*t]+= partialSum[2*t+stride];

}

Why do we need __syncthreads()?

8

Barrier Synchronization
– __syncthreads() is needed to ensure that all elements of each

version of partial sums have been generated before we proceed
to the next step

9

Back to the Global Picture
– At the end of the kernel, Thread 0 in each block writes

the sum of the thread block in partialSum[0] into a vector
indexed by the blockIdx.x

– There can be a large number of such sums if the original
vector is very large
– The host code may iterate and launch another kernel

– If there are only a small number of sums, the host can
simply transfer the data back and add them together

– Alternatively, Thread 0 of each block could use atomic
operations to accumulate into a global sum variable.

9

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Lecture 9.3 - A Better Reduction Kernel
Module 9 – Parallel Computation Patterns (Reduction)

2

Objective
– To learn to write a better reduction kernel

– Improved resource efficiency
– Improved thread to data mapping
– Reduced control divergence

3

Some Observations on the naïve reduction kernel

– In each iteration, two control flow paths will be sequentially
traversed for each warp

– Threads that perform addition and threads that do not
– Threads that do not perform addition still consume execution resources

– Half or fewer of threads will be executing after the first step
– All odd-index threads are disabled after first step
– After the 5th step, entire warps in each block will fail the if test, poor resource utilization

but no divergence
– This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024),

where each active warp only has one productive thread until all warps in a block retire

4

Thread Index Usage Matters
– In some algorithms, one can shift the index usage to improve

the divergence behavior
– Commutative and associative operators

– Always compact the partial sums into the front locations in the
partialSum[] array

– Keep the active threads consecutive

4

5

An Example of 4 threads
Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

25

Thread 1 Thread 2 Thread 3

6

A Better Reduction Kernel

for (unsigned int stride = blockDim.x;
stride > 0; stride /= 2)

{
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}

7

A Quick Analysis
– For a 1024 thread block

– No divergence in the first 5 steps
– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each

step
– All threads in each warp either all active or all inactive

– The final 5 steps will still have divergence

7

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

