
Matrix multiply Course
project overview

• One person teams

• implement a shared memory and distributed memory
matrix multiply.

• This will be due the week before dead week

• There will be some reward, as yet determined and
perhaps only psychological, for the top 10% fastest
project

• You should use cache and communication strategies to
achieve good results.

• I will go over these.

1

Map Reduce Course
project overview

• Two person teams allowed

• Let me know if you are working on a team as soon as
possible

• Both team members should contact me

• An easy way to do this is for one team member to
send email copying the other, and the other to respond
affirmatively

• This is the default project -- you can propose a different
one

• Let me know as soon as possible if you are doing this,
and we should finalize the project by the end of
February

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Mapreduce

Even though this shows one input file for mappers and
reducers, there should be more than one.

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Program startup and initialization

• Input is divided into multiple files prior to
program execution beginning
• No processing of data when dividing it

into multiple files.
• You can do the file dividing before

running the program.
• In any case dividing the files does not

need to be counted in your run time.
• I will supply raw input, you will need to

divide

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Steps in your
mapreduce

Create input files.
This should only be
done a few times
per project (possibly
more than once
because of tuning)

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Handles global functions, including
initialization, global work queue
management, global synchronization

Handles reading input,
executing the map
function, and writing
intermediate files

Handles reading
intermediate file and
executing the reduce
function.

Intermediate files allow buffered high
volume communication between mappers
and reducers

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Create master, mapper and
reducer functions

Master
process One master to rule them all

Enough map
processes to
efficiently
process the
data

reduce and map
processes share
machines

Number of
map/reduce
processes
depends on the
amount of
work in map
and reduce

Total processes = 1 + reduce procs + map procs

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Threads needed in each
process

Master
process One master thread

kMapRead threads to read
input. May be more than
number of cores for best
performance because of
waiting for I/O to finish.
Has an effect on file
types and number of
input files.

kMapWrite threads to write
intermediate files. Issue
concerning the number
of threads are the same
as for kMapRead

kMap threads to perform
map. One per core is
probably right.

The same
considerations
for mappers
need to be
taken into
account for
threads on
reduce
processors

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Master and worker
threads started.

Threads started on
mapper processes

Master will need
different MPI
communicators to
talk to reduce and
map workers

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

The master thread performs MPI
initialization and communicates to
the workers the first file(s) each
will read.

The workers read the file and
begin processing the data with the
map function

When done with a file they
should go to the Master to see if
more files need to be read. The
master serves as a work queue.

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Input threads read each file
and enqueue records, or
groups of records (for
efficiency) on a thread-safe,
shared work queue. Can
use publicly available code
for the work queue.

Map threads pull work off
the work queue, do it, and
then enqueue results onto
an output work queue

Write threads put the data
into the intermediate
scratch files

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

There will be times when
queues are empty.

Threads should wait
intelligently for work, i.e. use
notify/wait type mechanisms,
not spin waiting.

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Decisions need to be made
about scratch files.

The naive approach would
be for each process to
create one file for each key.

In the case of word count,
this would be at least a file
for each different word and
for each map process.
Would result in tens of
thousands of files being
created.

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

We also do not want one
file created by each map
process for each reduce
process (i.e. approximately
⎡|keys|/|reducers|⎤ keys per
file. Would be bad for load
balancing purposes.

We want more files than
there are reduce processes.

Want
⎡|keys|/(kReduceFiles*|reducers|)⎤
 keys/file, where kkReduceFiles is a
number you determine.

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

As mapper processes finish,
they should close files and
clean up what they have
done.

They should also notify the
master thread that they
have finished, and as soon as
they finish. All map threads
should not synchronize
before going onto the
reduce part of the job.

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

output
file

output
file

Only the reduce process(es)
running on the same host as
the map thread that is
finishing should be started.

You do not want reduce
processes competing for
cycles with still running map
processes.

Master needs to know
which processors different
processes are running on.

what machines are executing what
maps and reduces? processes

execute on

• Given a map process running on an MPI
process with rank r, what reduce functions
(with rank r’ ≠ r) run on the same physical
process?

• gethostname() returns the standard hostname
for the system

• The master process can build a mapping from
MPI processes to machine names using this

hostname() on linux
should be Windows binding

dynamo 186% cat test2.c
#include <stdio.h>
#include <unistd.h>
#include <string.h> // this allows us to manipulate text strings

int main(int argc, char* argv[]) {
 char name[256];
 int rc;

 rc = gethostname(name, 256);
 if (!rc) printf("%s\n", name); // prints out greeting to screen
}

dynamo 187% ./a.out
dynamo.ecn.purdue.edu

char array to hold
the host’s name

Length of the array --
max hostname length is 256

characters

Master
process

map
worker 0

map
worker 1

map
worker ..

.

map
worker

Nm

reduce
worker 0

reduce
worker 1

reduce
worker ...

reduce
worker

Nr

scratch
file

scratch
file

scratch
file

scratch
file

input
file 0

input
file 1

input
file ...

input
file NI

output
file

output
file

Re
file

output
file

The reduce worker begins
executing. Note that it
needs to know which keys
(and files) it should process.

As map processes finish, they
will notify the master that
they have finished.

The master will know from
this, and from the scheme of
how keys are mapped onto
files (which you did earlier),
what intermediate files are
available.

The master process will use the scheme to map keys (I’ll call it the hash function). The hash
function will map all keys onto kReduceFiles*|reducers| different files. When a reducer is ready
for work, it will give one of the kReduceFiles*|reducers| different sets of file files to that reducer.
When all those files are consumed, the reducer can ask for another file.

When all work is handed out, the master will respond that no more work is available, and
the reduce process will terminate.

output
file

Deliverables
• Working code and a possible demonstration of it for me

before dead week.

• You will only need to do word count

• a writeup, no more than ten pages. Grading will not be by
length, so don’t use more space than necessary. The
writeup should contain

• Information about issues encountered

• Performance bottlenecks -- i.e. why your speedup isn’t
perfect

• performance numbers showing . . .

• The best projects will get a chance to explain what they
did during dead week lectures

Performance numbers

• load imbalance within a node, among threads,

• load imbalance across nodes, within maps and
reduces

• curves showing I/O performance vs numbers of
threads (look for the knee in the curve)

• numbers showing performance (speedup) within
nodes with different number of map and reduce
(i.e. not I/O) threads

• Overall performance

Grading criteria
• 50% of the grade will come from having working

code

• 45% for the writeup, in particular I need to see that
you understand why your application performs the
way it does. This is about as important as raw
speedup.

• 5% for not being “too far away” from acceptable in
speedup. This will be a moving target, overall in your
favor

• if no one gets speedups, not having slowdowns
“significantly worse” than others will be ok

• If the average is linear speedups, getting within a
factor of some c to be determined will be ok.

A possible implementation strategy
—you may have a better way

• Implement a single map
• Determine how many data read threads are

best (kMapRead) (collect data)

• Write a map, integrate with a work queue
• determine number map computation

threads are needed (kMap) (collect data)

• At this point kMapRead is fixed

• Determine how many output threads are
needed (kMapWrite) (collect data)

• Integrate with a master thread

A possible implementation
strategy (2)

• Implement a single reduce
• Determine how many data read threads are

best (kMapRead) (collect data)

• Write a reduce, integrate with a work queue
• determine number map computation

threads are needed (kMap) (collect data)

• At this point kMapRead is fixed

• Determine how many output threads are
needed (kMapWrite) (collect data)

• Integrate with a master thread

A possible implementation
strategy (3)

• Get the handoff between map and reduce
threads working

• Final system tuning, data collection, report
writing, etc.

Clean up after runs

• Do not leave zombie processes, dead files,
etc. in public /tmp and other spaces

• This will sabotage other’s efforts and lead
to bad results for you if it happens enough.

