
ECE 563: Programming Parallel Machines
Spring 2019

 last updated January 29 (instructor’s Tuesday office hours changed)

Instructor Prof. S. Midkiff

Email smidkiff@purdue.edu (put ECE 563 in the subject line)

Office location EE 310

Office Hours Tuesdays 2:10 to 3:40, Wednesdays 11 – 12:30

Secretary Mary Ann Satterfield, EE 326B
Course Web Page http://www.ecn.purdue.edu/~smidkiff/ece563

Prerequisites: Proficiency in C or Fortran is desirable. Optionally, the shared memory
part of the project can be done in Java, but the distributed memory part will need to be
done in C/C++ or Fortran unless you want to venture into the world of Java isolates,
which may require significant extra work on your part.

Text: There is no required text. The lectures will follow the book Parallel Programming
in C with MPI and OpenMP, along with supplemental material I will provide. This book
may be at the local bookstores.

Additional References: Additional information will be provided from time to time.
You will be expected to know this material. Some of this material may be at a tutorial
level, and some may be research papers.

Piazza will be used to answer online questions and distribute information. I prefer ques-
tions be submitted via piazza instead of email so that everyone in the class, including on-
line students, has the benefit of the answers.

Email: If you send me email, put “563” in the subject line. This increases the chances
that the email doesn’t get put into my spam folder.

Description: This course will enable you to write programs targeting parallel machines,
using any of the four major parallel programming paradigms: MPI (message passing),
OpenMP (for shared memory machines), Pthreads thread programming (for shared mem-
ory machines.) and, GPU programming (using Cuda). We will also discuss system ar-
chitecture and memory and programming language coherency models, as these are nec-
essary to develop correct parallel programs and to debug parallel programs when they are
not correct. We will also spend time on sequential performance optimizations.

This is not a course in parallel algorithms, although you will need implement one or more
parallel algorithms for the course project.

http://www.ecn.purdue.edu/~smidkiff/ece563
mailto:smidkiff@purdue.edu

Objectives: At the end of the course you will be able to

· Write a parallel program using MPI
· Write a parallel program using OpenMP
· Write a parallel program using explicit threads
· Write a GPU program using Cuda (assuming I can get GPU simulators installed

for you to use.)
· Compute the performance, efficiency and performance of a parallel program
· Decide on the suitability of a parallel algorithm for a particular parallel program-

ming model.

Course Grading:

I do not grade on a curve, thus it is possible for everyone to make an A, or everyone to
make an F. The decision is largely yours. I do +/- grading. As you may well know,
Purdue gives only 4 points for an A+, and less than four points for an A-, with a similar
pattern for Bs and Cs. Therefore, if I spread my As across A+, A and A- the average
GPA for the course would drop relative to not doing +/- grading. Therefore, I tend to use
“-” grades for students that are very close to the next grade up, i.e. an A-, if given, would
go to a student that had a B that was very close to an A.

Tests 30% (15% each two midterm exams)
The first exam will be a take home
exam and involve programming and
will done done after we finish MPI. It
is tentatively scheduled for Feb. 22nd

but may be delayed. The second
exam will be held on April 22nd and
will be in-class.

Class participation and exercises/home-
work

30%

Project (Tentative) 40% The project will consist of a larger
MPI/shared memory program for a
more substantial algorithm.

Students can, with my approval, do
another project. I would like it to
have an MPI and shared memory
component.

There will be a 5 - 10 page report that
discusses both of these projects to-
gether and the good and bad points of
your implementation.

Students may work in two-person
teams, but each team member should
participate in all parts of the project.

Regrading Policy: I am willing to regrade tests if given the test and a reason for the re-
grade request. I am allowed to correct errors in your favor, and errors not in your favor.

Academic Honesty: You are expected to do all programming and homework assign-
ments on your own or within the groups designated by the instructor. You may not copy
files or solutions from other students/groups or have anyone do all, or some part, of any
assignment for you.

You may discuss concepts and ideas with other students. You may answer general ques-
tions about programming language rules, help someone interpret an error message, or lo-
cate a bug. In general, if the instructor would provide a particular form of assistance, you
may provide it too. When in doubt, check with the instructor.

Punishment for academic misconduct can be severe, including receiving an F in the
course or being expelled from the University. By departmental rules all cases of cheating
must be reported to the Dean’s office, and I will do this. My personal feeling is that grad-
uate students have passed beyond the need for mercy, and I will prosecute cheaters to the
maximum extent possible.

Tentative Course Schedule: 45 lectures (effectively 15 weeks) plus a final exam. Note
that exam dates are tentative, and may change.

Topics by number of lectures (approximate)

• Introduction to parallelism and the course: 2 lectures
• Shared and distributed memory architectures, multicores, dependence, and the relation-

ship to parallelism: 4 lectures

• Hardware and software coherence in shared memory systems. The focus will be on
software memory models as 565 does a better job of teaching hardware coherence than
I can hope to do: 3 lectures

• Sequential Optimizations - 3 lectures
• OpenMP and shared memory programming: 4 lectures
• Pthreads, Java and shared memory programming: 4 lectures
• MPI and distributed memory programming: 2 lectures
• GPU architecture and programming: 4 lectures
• Tuning applications and speedup theory, Amdahl’s law, strong and weak scaling, etc.

theory: 12 lectures
• Algorithms and techniques for fast reductions, recurrences, parallel prefix, divide and

conquer, super linear speedup, etc.: 2 lectures
• Parallelizing compilers and their limitations: 1 lectures
• New programming models: some of Cilk, Stream, UPC, Galois, X-10: 3 or fewer lec-

tures
• Tests (may be take home, may be in-class): 2 lectures

Staying current with the material: The goal of an instructor is to show you the direc-
tion. Learning the material is something you have to do internally. Reading and trying to
understand the material, sometimes more than once, is necessary to gain a real under-
standing of the material.

Exercises: Homework will be assigned periodically. You will be graded on whether or
not you turn in something that looks reasonable, not correctness. Solutions will be posted
for homeworks, and you should talk to me during office hours if you are not sure about
the correctness of your solution.

Exams: There will be two exams. All exams are comprehensive. For midterm exams, the
emphasis is on the recently learned material. The in-class exam will be "open textbook
and notes".

Class Projects: Each student or team will be assigned one or more algorithms to imple-
ment using MPI, OpenMP and threads. Students are expected to do the programming on
their own. Students that have a problem that they are working on as part of their research
that they would like to implement all, or part of, as the programming project should see
the instructor. Also, I’m happy to have students suggest problems of interest to imple-
ment that are not among the projects I suggest -- in fact I encourage this. Students/teams
will turn in a 5-10 page report at the end of the semester on their project.

